首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
We investigate the seismoelectric/electroseismic wavefields excited by a point source in an air/seawater/three-layered porous medium configuration containing a hydrocarbon layer. The results show that if an explosive source for excitation is used, receivers at seafloor can record the coseismic electromagnetic fields accompanying the P, S, fluid acoustic waves and the interface responses converted from the acoustic waves at seafloor interface and from the seismic waves at the interfaces beneath the seafloor. Employing a vertical electric dipole source shows that, with the exception of the interface responses converted from electromagnetic waves at seafloor, the interface responses converted from transmitted electromagnetic waves at the interfaces beneath the seafloor can also be identified. Given that the strength of the explosive source is within excitation capability of industry air guns, the generated interface responses from the hydrocarbon layer can be detected by current electromagnetic sensors considering the low ambient noise at the seafloor. Our results demonstrate the feasibility of the seismoelectric method applied to marine hydrocarbon exploration. Electroseismic modelling results suggest that it is not practical to employ this method to prospect marine hydrocarbon layer due to the weak interface response signal, unless a much larger current is injected into seafloor.  相似文献   

2.
Juichiro  Ashi Asahiko  Taira 《Island Arc》1992,1(1):104-115
Abstract The Nankai accretionary prism, off southwest Japan represents one of the best developed clastic prisms in the world. A combination of swath mapping including Sea Beam and 'IZANAGI' sidescan sonar and closely spaced seismic reflection data was used to investigate the relationship between the progressive landward change in surface morphology and the internal structural evolution of the prism. The prism surface is divided into three zones sub-parallel to the trough axis on the basis of the IZANAGI backscattering image. The frontal part of the prism is characterized by several continuous lineaments that are approximately perpendicular to the plate convergence direction. These lineaments correspond to anticlinal ridges caused by active imbricate thrusting. Landward, these anticlinal ridges become progressively masked by fine-grained hemipelagic slope sediments that are constantly supplied to the entire prism slope. However, these overlying sediments show little deformation. This implies a change in deformation style from frontal thrusting with fault-bend folds to internal refolding of thrust sheets. In the middle to upper prism slope, the IZANAGI image shows numerous landslide features and large fault scarps, suggesting that exposed sediments are lithified enough to fail in brittle mode compared with the wet sediment deformation at the prism toe. Prism evolution is strongly affected by the decollement depth which may be indirectly controlled by oceanic basement relief; a topographic embayment coincides with a regional minimum of sediment offscraping where a basement high has been subducted. The small tapered prism observed in the embayment may be due to lateral supply of overpressured pore fluids from the adjacent prism. Strain caused by the differential rate of prism growth across the basement relief forms faults trending at high angles to the trough axis.  相似文献   

3.
We investigated the development of a distinct later phase observed at stations near the Japan Trench associated with shallow, outer-rise earthquakes off the coast of Sanriku, northern Japan based on the analysis of three-component broadband seismograms and FDM simulations of seismic wave propagation using a heterogeneous structural model of the Japan Trench subduction zone. Snapshots of seismic wave propagation obtained through these simulations clearly demonstrate the complicated seismic wavefield constructed by a coupling of the ocean acoustic waves and the Rayleigh waves propagating within seawater and below the sea bottom by multiple reflections associated with shallow subduction zone earthquakes. We demonstrated that the conversion to the Rayleigh wave from the coupled ocean acoustic waves and the Rayleigh wave as they propagate upward along the slope of seafloor near the coast is the primary cause of the arrival of the distinct later phase at the station near the coast. Through a sequence of simulations using different structural models of the Japan Trench subduction zone, we determined that the thick layer of seawater along the trench and the suddenly rising sea bottom onshore of the Japanese island are the major causes of the distinct later phase. The results of the present study indicate that for realistic modeling of seismic wave propagation from the subduction zone earthquakes, a high-resolution bathymetry model is very crucial, although most current simulations do not include a water column in their simulation models.  相似文献   

4.
Three thousand kilometres of multichannel (MCS) and wide-angle seismic profiles, gravity and magnetic, multibeam bathymetry and backscatter data were recorded in the offshore area of the west coast of Mexico and the Gulf of California during the spring 1996 (CORTES survey). The seismic images obtained off Puerto Vallarta, Mexico, in the Jalisco subduction zone extend from the oceanic domain up to the continental shelf, and significantly improve the knowledge of the internal crustal structure of the subduction zone between the Rivera and North American (NA) Plates. Analyzing the crustal images, we differentiate: (1) An oceanic domain with an important variation in sediment thickness ranging from 2.5 to 1 km southwards; (2) an accretionary prism comprised of highly deformed sediments, extending for a maximum width of 15 km; (3) a deformed forearc basin domain which is 25 km wide in the northern section, and is not seen towards the south where the continental slope connects directly with the accretionary prism and trench, thus suggesting a different deformational process; and (4) a continental domain consisting of a continental slope and a mid slope terrace, with a bottom simulating reflector (BSR) identified in the first second of the MCS profiles. The existence of a developed accretionary prism suggests a subduction–accretion type tectonic regime. Detailed analysis of the seismic reflection data in the oceanic domain reveals high amplitude reflections at around 6 s [two way travel time (twtt)] that clearly define the subduction plane. At 2 s (twtt) depth we identify a strong reflection which we interpret as the Moho discontinuity. We have measured a mean dip angle of 7° ± 1° at the subduction zone where the Rivera Plate begins to subduct, with the dip angle gently increasing towards the south. The oceanic crust has a mean crustal thickness of 6.0–6.5 km. We also find evidence indicating that the Rivera Plate possibly subducts at very low angles beneath the Tres Marias Islands.  相似文献   

5.
海底表面磁源瞬变响应建模及海水影响分析   总被引:11,自引:4,他引:7       下载免费PDF全文
刘长胜  林君 《地球物理学报》2006,49(6):1891-1898
根据电磁场理论,推导了磁偶源和接收点均位于海水中时层状海底模型的频域电磁场响应一般表达式,并通过此式,得到了海水为均匀半空间和有限海水深度两种情况下,垂直磁偶极装置、中心回线和重叠回线分别置于均匀半空间海底表面时的瞬变电磁响应(磁场和感应电压)表达式. 这些表达式将瞬变响应和海底的电导率等参数有机联系在一起,为海底瞬变电磁法的正演计算和反演解释提供了理论基础. 仿真计算表明,海水的存在不仅使得瞬变响应曲线形态发生变化,而且影响其对海底电导率的分辨能力.  相似文献   

6.
We reanalyzed 3D seismic reflection and logging‐while‐drilling data from the toe of the northern Barbados accretionary prism to interpret structure, deformation, and fluid flow related to subduction processes. The seafloor amplitude and coherence reveal an abrupt change in the thrust orientation from NNE at the thrust front and north and NNW about 5 km west of the thrust front. These thrust sets are separated by a triangular‐shaped quiet area, which may represent a zone of low strength. The northeast‐trending band of strong negative amplitude and high coherence in the décollement, known to be an interval of arrested consolidation, overlaps the quiet area, suggesting that the arrested consolidation may be related to the lack of thrust imbrication, and thus, vertical drainage for fluid in the accretionary prism. Fractal analysis of the décollement and top of the subducting oceanic basement indicates that the relief of the décollement correlates with the topography of the oceanic basement. Differential compaction of the underthrust sediment overlying the rugged oceanic basement, together with the basement faults that penetrate into the décollement probably caused relief or even faulting in the décollement.  相似文献   

7.
潜在地震滑坡危险区区划方法   总被引:5,自引:0,他引:5       下载免费PDF全文
不同地区地震活动的强度和频率是不同的.基于地震危险性分析的地震滑坡危险研究在综合了地震烈度、位置、复发时间等因素的基础上,考虑了地震动峰值加速度时空分布的特点,可以有效地应用于潜在地震滑坡危险区区划.以汶川地震灾区为研究对象,根据研究区的地质构造、地震活动特点等划分出灾区的潜在震源区,对该区进行地震危险性分析,并在此基础上采用综合指标法做出基于地震危险性分析的地震滑坡危险性区划.所得地震滑坡危险性区划按照滑坡危险程度分为高危险、较高危险、较低危险和低危险四级,表示未来一段时间内研究区在遭受一定超越概率水平的地震动作用下,不同地区地震滑坡发生的可能程度. 本文给出的地震滑坡危险性区划结果中,汶川地震滑坡崩塌较发育的汶川、北川、茂县等部分区域均处于高危险或较高危险区域;在对具有较高DEM精度的北川擂鼓镇地区所作的地震滑坡危险性区划中,汶川地震中实际发生的地震滑坡灾害与地震滑坡危险区划结果表现出较好的一致性.对区域范围而言,基于地震危险性分析的地震滑坡区划,可为初期阶段的土地规划使用及重大工程选址提供参考.  相似文献   

8.
Topography and severe variations of near‐surface layers lead to travel‐time perturbations for the events in seismic exploration. Usually, these perturbations could be estimated and eliminated by refraction technology. The virtual refraction method is a relatively new technique for retrieval of refraction information from seismic records contaminated by noise. Based on the virtual refraction, this paper proposes super‐virtual refraction interferometry by cross‐correlation to retrieve refraction wavefields by summing the cross‐correlation of raw refraction wavefields and virtual refraction wavefields over all receivers located outside the retrieved source and receiver pair. This method can enhance refraction signal gradually as the source–receiver offset decreases. For further enhancement of refracted waves, a scheme of hybrid virtual refraction wavefields is applied by stacking of correlation‐type and convolution‐type super‐virtual refractions. Our new method does not need any information about the near‐surface velocity model, which can solve the problem of directly unmeasured virtual refraction energy from the virtual source at the surface, and extend the acquisition aperture to its maximum extent in raw seismic records. It can also reduce random noise influence in raw seismic records effectively and improve refracted waves’ signal‐to‐noise ratio by a factor proportional to the square root of the number of receivers positioned at stationary‐phase points, based on the improvement of virtual refraction's signal‐to‐noise ratio. Using results from synthetic and field data, we show that our new method is effective to retrieve refraction information from raw seismic records and improve the accuracy of first‐arrival picks.  相似文献   

9.
方益志  薛梅 《地震学报》2021,43(2):204-214
本文对大西洋中北部两侧五个地震台站2015年记录到的地震数据进行处理,计算噪声功率谱密度和概率密度函数,并通过极化分析对双频微地动不同周期的主导源区方位角分布进行了分析。研究结果显示:大西洋中北部台站双频微地动发生显著分裂,各台站的峰值周期各不同,且来自相同方向和不同方向的双频微地动都有可能产生双频微地动分裂;大西洋中北部的噪声功率谱密度随季节变化复杂,部分台站冬季的功率谱密度振幅比夏季强,部分台站夏季的比冬季强;而大西洋中北部台站源区方位受季节影响不大,台站主要源区的方位不变,且两季的源区方位角在大范围内重合;大西洋东岸中北部台站,夏季受台站以南大西洋源区影响更多,冬季受台站以北大西洋源区影响更多;靠近加勒比海位于大西洋西岸的台站,其双频微地动源区方向在冬季和夏季都更多地指向加勒比海;大西洋西岸纬度最低的台站MPG,其双频微地动在冬季主要受台站以北大西洋源区的影响,而在夏季则同时受到台站以北大西洋源区和台站西南方位很可能源于太平洋源区的共同影响。   相似文献   

10.
This is the first part of a study on the seismic response of the L’Aquila city using 2D simulation and experimental data. We have studied two velocity-depth models with the aim of outlining the behavior of a velocity reversal in the top layer, which is associated with the stiff Brecce de L’Aquila unit (BrA). In this setting, the SMTH model is topped by a layer with about 2:1 impedance contrast with the underlying layer while the NORV model has no velocity reversal. We have simulated the propagation of SH and P-SV wavefields in the range 0–10 Hz for incidence 0°–90°. Earthquake spectral ratios of the horizontal and vertical components at six sites in L’Aquila downtown are compared to corresponding synthetics spectral ratios. The vertical component of P-SV synthetics enables us to investigate a remarkable amplification effect seen in the vertical component of the recorded strong motion. Sites AQ04 and AQ05 are best matched by synthetics from the NORV model while FAQ5 and AQ06 have a better match with synthetics spectral ratios from the SMTH model. All simulations show this behavior systematically, with horizontal and near-horizontal incident waves predicting the overall pattern of matches more clearly than vertical and near-vertical incidence. The model inferences are in agreement with new geological data reporting lateral passages in the top layer from the stiff BrA to softer sediments. Matches are good in terms of frequency of the first amplification peak and of spectral amplitude: the horizontal components have spectral ratio peaks predominantly at 0.5 Hz in the simulations and at 0.7 Hz in the data, both with amplitudes of 4, while the vertical component spectral ratios reach values of 6 at frequencies of about 1 Hz in both data and simulations. The vertical component spectral ratios are very well matched using Rayleigh waves with incidence at 90°. The NORV model without the velocity reversal predicts spectral ratio peaks for the horizontal components at frequencies up to 6 Hz. The reversal of velocity acts as a low-pass frequency filter on the horizontal components reducing the amplification effect of the sediment filled valley.  相似文献   

11.
The attenuation of seismic waves propagating in reservoirs can be obtained accurately from the data analysis of vertical seismic profile in terms of the quality-factor Q. The common methods usually use the downgoing wavefields in vertical seismic profile data. However, the downgoing wavefields consist of more than 90% energy of the spectrum of the vertical seismic profile data, making it difficult to estimate the viscoacoustic parameters accurately. Thus, a joint viscoacoustic waveform inversion of velocity and quality-factor is proposed based on the multi-objective functions and analysis of the difference between the results inverted from the separated upgoing and downgoing wavefields. A simple separating step is accomplished by the reflectivity method to obtain the individual wavefields in vertical seismic profile data, and then a joint inversion is carried out to make full use of the information of the individual wavefields and improve the convergence of viscoacoustic full-waveform inversion. The sensitivity analysis of the different wavefields to the velocity and quality-factor shows that the upgoing and downgoing wavefields contribute differently to the viscoacoustic parameters. A numerical example validates our method can improve the accuracy of viscoacoustic parameters compared with the direct inversion using full wavefield and the separate inversion using upgoing or downgoing wavefield. The application on real field data indicates our method can recover a reliable viscoacoustic model, which helps reservoir appraisal.  相似文献   

12.
基于局部斜率属性的VSP波场分离研究   总被引:6,自引:2,他引:4       下载免费PDF全文
基于垂直地震剖面(VSP)资料中上、下行波视速度的差异,利用地震剖面同相轴局部斜率属性参数,提出了一种分离上、下行波场的新方法.首先利用Fourier变换初步分离上、下行波场,然后利用平面波分解滤波器(Plane Wave Destruction (PWD) Filter)技术估计初始分离波场的同相轴局部斜率属性参数,在此基础上对VSP原始资料波场分离.该方法是一种时间域最小平方优化分离波场的方法,不存在其他滤波方法阈值滤波器边界的影响,减少了因镶边问题带来的假象.模拟和实际资料处理结果表明,该方法与传统方法相比,分离出的上、下行波噪声假象少,振幅保持好,更好地消除了上、下行波的相互影响.  相似文献   

13.
Abstract Seismic reflections across the accretionary prism of the North Sulawesi provide excellent images of the various structural domains landward of the frontal thrust. The structural domain in the accretionary prism area of the North Sulawesi Trench can be divided into four zones: (i) trench area; (ii) Zone A; (iii) Zone B; and (iv) Zone C. Zone A is an active imbrication zone where a decollement is well imaged. Zone B is dominated by out‐of‐sequence thrusts and small slope basins. Zone C is structurally high in the forearc basin, overlain by a thick sedimentary sequence. The subducted and accreted sedimentary packages are separated by the decollement. Topography of the oceanic basement is rough, both in the basin and beneath the wedge. The accretionary prism along the North Sulawesi Trench grew because of the collision between eastern Sulawesi and the Bangai–Sula microcontinent along the Sorong Fault in the middle Miocene. This collision produced a large rotation of the north arm of Sulawesi Island. Rotation and northward movement of the north arm of Sulawesi may have resulted in southward subduction and development of the accretionary wedge along North Sulawesi. Lateral variations are wider in the western areas relative to the eastern areas. This is due to greater convergence rates in the western area: 5 km/My for the west and 1.5 km/My for the east. An accretionary prism model indicates that the initiation of growth of the accretionary prism in the North Sulawesi Trench occurred approximately 5 Ma. A comparison between the North Sulawesi accretionary prism and the Nankai accretionary prism of Japan reveals similar internal structures, suggesting similar mechanical processes and structural evolution.  相似文献   

14.
We exploit S-wave spectral amplitudes from 112 aftershocks (3.0 ≤ ML ≤ 5.3) of the L’Aquila 2009 seismic sequence recorded at 23 temporary stations in the epicentral area to estimate the source parameters of these events, the seismic attenuation characteristics and the site amplification effects at the recording sites. The spectral attenuation curves exhibit a very fast decay in the first few kilometers that could be attributed to the large attenuation of waves traveling trough the highly heterogeneous and fractured crust in the fault zone of the L’Aquila mainshock. The S-waves total attenuation in the first 30 km can be parameterized by a quality factor QS(f) = 23f 0.58 obtained by fixing the geometrical spreading to 1/R. The source spectra can be satisfactorily modeled using the omega-square model that provides stress drops between 0.3 and 60 MPa with a mean value of 3.3±2.8 MPa. The site responses show a large variability over the study area and significant amplification peaks are visible in the frequency range from 1 to more than 10 Hz. Finally, the vertical component of the motion is amplified at a number of sites where, as a consequence, the horizontal-to-vertical spectral ratios (HVSR) method fails in detecting the amplitude levels and in few cases the resonance frequencies.  相似文献   

15.
通过对南海北部与西部大量反射地震剖面海水层部分进行再处理,与以往地震海洋学主要关注海水层内部的反射结构不同,本文重点对海底附近水体的各种复杂反射地震特征进行分类、分析与总结.与传统对海底边界层的定义不同,我们将海底边界附近的水体称之为海底边界层.本文利用传统地震相分析方法,分析海底边界层各种复杂反射地震结构的几何形态、内部反射结构、连续性、振幅以及视频率特征,结合过去相关的地震海洋学研究成果、海底边界层理论与其它各种海底附近作用/过程,不仅对中尺度涡旋、内孤立波和背风波在地震剖面上的反射地震特征进行了归类与分析,并推断最新发现的一些反射地震特征可能揭示的各种海洋作用/过程,例如不同的地震相特征可能反映了海底湍流边界层,海底沉积物再悬浮,天然气渗漏羽状流和麻坑内部异常上升流相关海底界面作用过程.结果分析表明,地震海洋学方法不仅能够对海洋内波、涡旋等物理海洋现象进行研究,同时也能够对海底附近各种复杂海洋作用/过程进行成像,从而拓展了地震海洋学的研究领域,一定程度上也能为过去不能有效对海底边界面发生的各种冷泉热液活动、生物和沉积等作用过程进行现场观测提供新的探测方法和研究视角.  相似文献   

16.
An analysis of source parameters of the two unexpected earthquakes from the Kaliningrad (Russia) area is presented. The earthquakes occurred on 21 September 2004 at 11:05:01 and 13:32:31 UT, respectively. The first event was located at the latitude φ = 54.924°N and the longitude λ = 20.120°E, with a depth h = 16 km, and the second event at φ = 54.876°N, λ = 20.120°E and h = 20 km. Magnitudes Mw of the two events were very similar: 5.1 and 5.2. The magnitude values reported by various international data centers have been meaningfully different. The reason is the presence of high-frequency components in Z velocity component of the S wavefield. They were observed along the direction defined by two stations, BLEU in Sweden and SUW in Poland, located in opposite sides of the source. Along the direction perpendicular to it, the effects are relatively very small. The high-frequency waves are understood to mean components in the 6–8 Hz band for event 1 and 2-4 Hz for event 2. The effects in question are also clearly visible on displacement spectrograms. The magnitude values calculated at such stations from S-wave amplitudes or from seismic spectra are clearly overestimated and are close to 6. Therefore, we made a careful selection of channels in order to determine the spectral parameters and, on this basis, the source parameters. The size of the source is relatively small, of about 2 km. The closest seismic station is at 100 source radii from the source. One can clearly see the effect of the TT zone which markedly reduces the seismic moment value for seismic stations laying on the opposite sides of the source. Both events have very similar spatial distributions of the source parameters: magnitude, seismic moment and radius.  相似文献   

17.
In this study, we determined f max from near-field accelerograms of the Lushan earthquake of April 20, 2013 through spectra analysis. The result shows that the values of f max derived from five different seismography stations are very close though these stations roughly span about 100 km along the strike. This implies that the cause of f max is mainly the seismic source process rather than the site effect. Moreover, according to the source–cause model of Papageorgiou and Aki (Bull Seism Soc Am 73:693–722, 1983), we infer that the cohesive zone width of the rupture of the Lushan earthquake is about 204 with an uncertainty of 13 m. We also find that there is a significant bulge between 30 and 45 Hz in the amplitude spectra of accelerograms of stations 51YAL and 51QLY, and we confirm that it is due to seismic waves’ reverberation of the sedimentary soil layer beneath these stations.  相似文献   

18.
远震接收函数已广泛用于反演台站下方的结构,然而由于地球的非弹性衰减作用,远震数据较难获得高频接收函数,对浅地表结构约束不足.为了克服这一问题,我们使用近震数据的高频接收函数来研究浅表速度结构,并应用于四川理县西山村滑坡体上3个宽频带地震仪记录到的近震事件.本文发展了接收函数V_P-k(V_P/V_S)叠加方法,结合接收函数H-k叠加和波形反演方法获得了台站下方滑坡体的厚度、S波速度和平均V_P/V_S比,并与钻孔得到的滑坡体厚度进行对比.结果表明,滑坡体具有小尺度的横向不均匀性,台站下方滑坡体的平均V_P/V_S比在2.4~3.1之间变化并且在底层存在78~143m·s~(-1)左右的S波低速层.本文观测到的高V_P/V_S比和底层低的S波速度结构,与电磁法获得的滑坡体底层低的电阻率和底部富水特征一致,表明滑坡体h1底界面的抗剪强度相对较弱,是潜在的滑坡危险区域.本文研究结果表明,利用近震接收函数能有效约束浅表的速度结构,进而能为滑坡灾害治理提供一定的地震学参考.  相似文献   

19.
本文基于对南海东北部东沙海域近期采集的多道反射地震资料进行重新处理获得新的地震海洋学数据,分析了该海域内孤立波/内孤立波包、沙丘上方和陡坎附近特殊反射结构特征,从而提供了新的海水层与海底相互作用依据.研究结果表明,除之前已发表文章中地震海洋学资料显示存在的第一模态内孤立波/波包和沙丘上方常见的反射样式-披毛状发射外,地震海洋学资料上还发现了第二模态内孤立波、陡坎上方的上抬型波动反射结构样式.在新的地震海洋学数据中,第一模态内孤立波振幅均小于50 m,宽度上都小于5 km,单个内孤立波的最大振幅约为45 m.内孤立波包的内孤立波振幅都相对较小,均小于40 m,并且与之前不同的是,彼此之间振幅相差不大,没有明显的排列规律.此次地震海洋学数据记录到的第二模态内孤立波,形态较为完整,上层和下层反射的振幅相差不大,在30 m左右;中间层大约在水深130 m位置处,垂向结构的整体大小大于200 m.沙丘上方反射结构普遍存在弱反射层,可能是湍流边界层,并且存在特殊反射样式-披毛状反射.但并不是沙丘上方都存在披毛状反射样式,本文分析它出现在地震海洋学资料上可能是受测线与沙丘走向之间夹角的影响.陡坎区域的水层反射结构则表现为上抬型波动,并常常伴随着同相轴连续性的变化.该波动的大小及反射同相轴的连续性可能取决于陡坎的高度/坡度及水层动力的强度,新数据中出现的一个上抬型波动,高度达20~30 m,它的附近水层还存在一个形态不完整的内孤立波.陡坎附近的水层反射也常常出现弱反射带和小的波动.  相似文献   

20.
The complexity of near surface intensifies the diversity of seismic wave fields, which makes study on near surface wavefields important in many aspects. The strong absorption of low velocity layer can affect the resolution of seismic data, and free boundary can cause surface wave. Considering the above problems, we focus on the Rayleigh wavefields simulation using finite-difference wave equation of higher-order staggered grids and PML boundary conditions. Free boundary, buried source and overlying low velocity layer are taken into consideration and point explosion source is adopted. Through some numerical simulation with different parameters, we quantitatively analyze relationship between wave intensity and source depth, as well as the energy variation with propagation and obtain some practical knowledge and conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号