首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the flow. With this, we obtain the global transonic accretion solutions and show that centrifugal barrier in the rotating magnetized accretion flow causes a discontinuous transition of the flow variables in the form of shock waves. The shock properties and the dynamics of the post-shock corona are affected by the flow parameters such as viscosity, cooling rate and strength of the magnetic fields. The shock properties are investigated against these flow parameters. We further show that for a given set of boundary parameters at the outer edge of the disc, accretion flow around a black hole admits shock when the flow parameters are tuned for a considerable range.  相似文献   

2.
《New Astronomy》2007,12(6):454-460
Rotating transonic flows are long known to admit standing or oscillating shocks. The excess thermal energy in the post-shock flow drives a part of the in falling matter as bipolar outflows. We compute mass loss from a viscous advective disc. We show that the mass outflow rate decreases with increasing viscosity of the accretion disc, since viscosity weakens the centrifugal barrier that generates the shock. We also show that the optical depth of the post-shock matter decreases due to mass loss which may soften the spectrum from such a mass losing disc.  相似文献   

3.
We study the dynamical structure of a cooling dominated rotating accretion flow around a spinning black hole. We show that non-linear phenomena such as shock waves can be studied in terms of only three flow parameters, namely the specific energy     , the specific angular momentum (λ) and the accretion rate     of the flow. We present all possible accretion solutions. We find that a significant region of the parameter space in the     plane allows global accretion shock solutions. The effective area of the parameter space for which the Rankine–Hugoniot shocks are possible is maximum when the flow is dissipation-free. It decreases with the increase of cooling effects and finally disappears when the cooling is high enough. We show that shock forms further away when the black hole is rotating compared to the solution around a Schwarzschild black hole with identical flow parameters at a large distance. However, in a normalized sense, the flow parameters for which the shocks form around the rotating black holes are produced shocks closer to the black hole. The location of the shock is also dictated by the cooling efficiency in that higher the accretion rate     , the closer is the shock location. We believe that some of the high-frequency quasi-periodic oscillations may be due to the flows with higher accretion rate around the rotating black holes.  相似文献   

4.
A few classes of the light curve of the black hole candidate GRS 1915+105 have been analysed in detail. We discover that unlike the previous findings, quasi-periodic oscillations (QPOs) occasionally occur even in the so-called 'On' or softer states. Such findings may require a revision of the accretion/wind scenario of the black hole candidates. We conjecture that considerable winds that are produced in 'Off' states cool down as a result of Comptonization and fall back to the disc, creating an excess accretion rate and producing the so-called 'On' state. After the drainage of the excess matter, the disc goes back to the 'Off' state. Our findings strengthen the shock oscillation model for QPOs.  相似文献   

5.
Introducing a spherical, steady, self-supported pair-plasma pressure-mediated shock surface around a Schwarzschild black hole as the effective physical atmosphere that may be responsible for the generation of astrophysical mass outflows from relativistic quasi-spherical accretion, we calculate the mass outflow rate R ̇ by simultaneously solving the set of equations governing transonic polytropic accretion and isothermal winds. R ̇ is computed in terms of only three inflow parameters, which, we believe, has been done for the first time in our work. We then study the dependence of R ̇ on various inflow as well as shock parameters, and establish the fact that the outflow rate is essentially controlled by the post-shock proton temperature.  相似文献   

6.
We study the radiation properties of an accretion disc around a rotating black hole. We solve the hydrodynamic equations and calculate the transonic solutions of accretion disc in the presence of shocks. Then we use these solutions to generate the radiation spectrum in the presence of radiative heating and cooling processes. We present the effect of spin parameter of the black hole on the emitted radiation spectrum. In addition, attention has also been paid to the variation in energy spectral index with Kerr parameter and accretion rate. We find that spectral index becomes harder as the spin parameter changes from negative (accretion disc is counter-rotating with respect to the black hole spin) to a positive value. Finally, we compute and compare the spectral characteristics due to a free-fall flow and a transonic flow. We notice significant differences in high energy contributions from these two solutions.  相似文献   

7.
We examine the behaviour of accretion flow around a rotating black hole in presence of cooling. We obtain global flow solutions for various accretion parameters that govern the accreting flow. We show that standing isothermal shock wave may develop in such an advective accretion flow in presence of cooling. This shocked solution has observational consequences as it successfully provides the possible explanations of energy spectra as well as generation of outflows/jets of various galactic and extra-galactic black hole candidates. We study the properties of isothermal shock wave and find that it strongly depends on the cooling efficiency. We identify the region in the parameter space spanned by the specific energy and specific angular momentum of the flow for standing isothermal shock as a function of cooling efficiencies and find that parameter space gradually shrinks with the increase of cooling rates. Our results imply that accretion flow ceases to contain isothermal shocks when cooling is beyond its critical value.  相似文献   

8.
We review how the recent increase in X-ray and radio data from black hole and neutron star binaries can be merged together with theoretical advances to give a coherent picture of the physics of the accretion flow in strong gravity. Both long term X-ray light curves, X-ray spectra, the rapid X-ray variability and the radio jet behaviour are consistent with a model where a standard outer accretion disc is truncated at low luminosities, being replaced by a hot, inner flow which also acts as the launching site of the jet. Decreasing the disc truncation radius leads to softer spectra, as well as higher frequencies (including quasi periodic oscillations, QPOs) in the power spectra, and a faster jet. The collapse of the hot flow when the disc reaches the last stable orbit triggers the dramatic decrease in radio flux, as well as giving a qualitative (and often quantitative) explanation for the major hard–soft spectral transition seen in black holes. The neutron stars are also consistent with the same models, but with an additional component due to their surface, giving implicit evidence for the event horizon in black holes. We review claims of observational data which conflict with this picture, but show that these can also be consistent with the truncated disc model. We also review suggested alternative models for the accretion flow which do not involve a truncated disc. The most successful of these converge on a similar geometry, where there is a transition at some radius larger than the last stable orbit between a standard disc and an inner, jet dominated region, with the X-ray source associated with a mildly relativistic outflow, beamed away from the disc. However, the observed uniformity of properties between black holes at different inclinations suggests that even weak beaming of the X-ray emission may be constrained by the data. After collapse of the hot inner flow, the spectrum in black hole systems can be dominated by the disc emission. Its behaviour is consistent with the existence of a last stable orbit, and such data can be used to estimate the black hole spin. By contrast, these systems can also show very different spectra at these high luminosities, in which the disc spectrum (and probably structure) is strongly distorted by Comptonization. The structure of the accretion flow becomes increasingly uncertain as the luminosity approaches (and exceeds) the Eddington luminosity, though there is growing evidence that winds may play an important role. We stress that these high Eddington fraction flows are key to understanding many disparate and currently very active fields such as ULX, Narrow Line Seyfert 1’s, and the growth of the first black holes in the Early Universe.  相似文献   

9.
10.
Magnetized accretion flows around black holes which include standing or oscillating shock waves can produce very realistic spectrum till a few MeV. These shocks accelerate hot electrons which produce power-law spectrum. The post-shock region intercepts soft-photons from an external source, namely, a Keplerian disk and also from distributed sources such as the synchrotron photons emitted from thermal and non-thermal electrons originated in the pre-shock and post-shock flow. These photons are inverse Comptonized by the thermal and the non-thermal electrons present in the CENBOL region. Computations show that the emitted radiation is extended till a few MeV. We include the bulk motion Comptonization as well and discuss its importance vis-a-vis the power-law spectrum produced by non-thermal electrons.   相似文献   

11.
We investigate the behaviour of dissipative accreting matter close to a black hole, as this provides important observational features of galactic and extragalactic black hole candidates. We find a complete set of global solutions in the presence of viscosity and synchrotron cooling. We show that advective accretion flow can have a standing shock wave and the dynamics of the shock is controlled by the dissipation parameters (both viscosity and cooling). We study the effective region of the parameter space for standing as well as oscillating shock. We find that the shock front always moves towards the black hole as the dissipation parameters are increased. However, viscosity and cooling have opposite effects in deciding the solution topologies. We obtain two critical cooling parameters that separate the nature of the accretion solution.  相似文献   

12.
In this paper we investigate the dynamical behaviour of radiation-driven winds, specifically winds that arise when Compton scattering transfers momentum from the radiation field to the gas flow. Such winds occur during strong X-ray bursts from slowly accreting neutron stars, and also may be driven from the inner regions of a black hole or neutron star accretion disc when the mass transfer rate is very high. By linearizing the radiation hydrodynamic equations around steady spherical outflow, we evaluate the time-dependent response of these winds to perturbations introduced at their inner boundaries. We find that although radiation-driven winds are generally stable, they act as mechanical filters that should produce quasi-periodic oscillations or peaked noise in their radiation output when perturbations force them stochastically. This behaviour may underlie the photospheric oscillations observed in some strong Type I X-ray bursts.  相似文献   

13.
The assumption that radiative cooling of gas in the centres of galaxy clusters is approximately balanced by energy input from a central supermassive black hole implies that the observed X-ray luminosity of the cooling flow region sets a lower limit on active galactic nucleus (AGN) mechanical power. The conversion efficiency of the mechanical power of the AGN into gas heating is uncertain, but we argue that it can be high even in the absence of strong shocks. These arguments inevitably lead to the conclusion that the time-averaged mechanical power of AGNs in cooling flows is much higher than the bolometric luminosity of these objects observed currently.
The energy balance between cooling losses and AGN mechanical power requires some feedback mechanism. We consider a toy model in which the accretion rate on to a black hole is set by the classic Bondi formula. Application of this model to the best studied case of M87 suggests that accretion proceeds at approximately the Bondi rate down to a few gravitational radii with most of the power (at the level of a few per cent of the rest mass) being carried away by an outflow.  相似文献   

14.
We examine the dynamical behavior of accretion flow around XTE J1859+226 during the 1999 outburst by analyzing the entire outburst data (~166 days) from RXTE Satellite. Towards this, we study the hysteresis behavior in the hardness intensity diagram (HID) based on the broadband (3–150 keV) spectral modeling, spectral signature of jet ejection and the evolution of Quasi-periodic Oscillation (QPO) frequencies using the two-component advective flow model around a black hole. We compute the flow parameters, namely Keplerian accretion rate (\({\dot{m}}_{d}\)), sub-Keplerian accretion rate (\({\dot{m}}_{h}\)), shock location (\(r_{s}\)) and black hole mass (\(M_{\mathit{bh}}\)) from the spectral modeling and study their evolution along the q-diagram. Subsequently, the kinetic jet power is computed as \(L^{\mathrm{obs}}_{\mathrm{jet}} \sim3\mbox{--}6 \times10^{37}~\mbox{erg}\,\mbox{s}^{-1}\) during one of the observed radio flares which indicates that jet power corresponds to 8–16% mass outflow rate from the disc. This estimate of mass outflow rate is in close agreement with the change in total accretion rate (~14%) required for spectral modeling before and during the flare. Finally, we provide a mass estimate of the source XTE J1859+226 based on the spectral modeling that lies in the range of 5.2–7.9 \(M_{\odot}\) with 90% confidence.  相似文献   

15.
Matter accreting onto black holes suffers a standing or oscillating shock wave in much of the parameter space. The post-shock region is hot, puffed up and reprocesses soft photons from a Keplerian disc to produce the characteristic hard tail of the spectrum of accretion discs. The post-shock torus is also the base of the bipolar jets. We study the interaction of these jets with the hard photons emitted from the disc. We show that radiative force can accelerate outflows but the drag can limit the terminal speed. We introduce an equilibrium speed υeq as a function of distance, above which the flow will experience radiative deceleration.  相似文献   

16.
We self-consistently obtain shock locations in an accretion flow by using an analytical method. One can obtain the spectral properties, quasi-periodic oscillation frequencies and the outflow rates when the inflow parameters are known. Since temperature of the CENBOL decides the spectral states of the black hole, and also the outflow rate, the outflow rate is directly related to the spectral states.  相似文献   

17.
18.
We calculate the structure of the accretion disc around a rapidly rotating black hole with a super-Eddington accretion rate. The luminosity and height of the disc are reduced by the advection effect. In the case of large viscosity parameter, α>0.03, the accretion flow deviates strongly from thermodynamic equilibrium and overheats in the central region. With increasing accretion rate, the flow temperature steeply increases, reaches maximum, and then falls off. The maximum is achieved in the advection-dominated regime of accretion. The maximum temperature in the disc around a massive black hole of M =108 M⊙ with α=0.3 is of order 3×108 K. The discs with large accretion rates can emit X-rays in quasars as well as in galactic black hole candidates.  相似文献   

19.
Viscous Keplerian discs become sub-Keplerian close to a black hole since they pass through sonic points before entering into it. We study the time evolution of polytropic viscous accretion discs (both in one- and two-dimensional flows) using smoothed particle hydrodynamics. We discover that for a large region of the parameter space spanned by energy, angular momentum and polytropic index, when the flow viscosity parameter is less than a critical value, standing shock waves are formed. If the viscosity is very high then the shock wave disappears. In the intermediate viscosity, the disc oscillates very significantly in the viscous time-scale. Our simulations indicate that these centrifugally supported high density regions close to a black hole play an active role in the flow dynamics, and consequently, the radiation dynamics.  相似文献   

20.
We solve for the structure of a hot accretion disc with unsaturated thermal Comptonization of soft photons and with advection, generalizing the classical model of Shapiro et al. The upper limit on the accretion rate due to advection constrains the luminosity to ≲ 0.15 y3/5 α7/5 of the Eddington limit, where y and α are the Compton and viscosity parameters, respectively. The characteristic electron temperature and Thomson optical depth of the inner flow at accretion rates within an order of magnitude of that upper limit are ∼ 109 K and ∼ 1, respectively. The resulting spectra are then in close agreement with the X-ray and soft γ-ray spectra from black hole binaries in the hard state and Seyferts. At low accretion rates, bremsstrahlung becomes the dominant radiative process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号