首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis of the spectral distribution of intensity of the Hei recombination continuum is probably the only direct method for determination of the electron temperature of helium emission regions on the Sun. On the basis of data on the Hei Lyman continuum, obtained by Dupree and Reeves from OSO-4, the electron temperature of undisturbed helium regions is determined: T e = = 12500 K. Such a low T e value is a serious argument in favour of the predominant role of UV coronal radiation in the helium ionization on the Sun. Comparison of the Hei Lyman continuum data with results of observations of the 10830 line showed that the visible helium lines and Hei Lyman continuum are produced within the same regions of the undisturbed solar atmosphere at T e = 12500 K.  相似文献   

2.
Ci, Ni, andOi permitted and forbidden lines in the near-infrared spectra of Procyon (F5 IV–V), Sun (G2 V), and Arcturus (K2 IIIp) have been analyzed to determine their carbon, nitrogen, and oxygen abundances. Procyon is found to have normal abundances while Arcturus is found to have an enhanced nitrogen abundance by a factor of 1.03 dex relative to the Sun. The dependence of the derived abundances on the effective temperature and luminosity is investigated.Much of the work reported here was contained in the Ph.D. thesis of the author submitted to the Istanbul University, Turkey, in 1986.  相似文献   

3.
We present the results of polarimetric and photometric observations of dynamically new comet C/2002 T7 (LINEAR) at phase angles from 6° to 26°. During the observations, the comet was at a distance of 2.7–1.3 AU from the Sun and 1.7–2.0 AU from the Earth. The aperture polarimetry was made with the 2.6-m Shain telescope and the 1.25-m AZT-11 telescope of the Crimean Astrophysical Observatory and with the 0.7-m telescope of the Astronomical Institute of the Kharkiv National University during the period from November 21, 2003, to February 21, 2004. The wideband UBVRI and WRC (λ7228/1142 Å) filters and the narrowband GC (λ5260/56 Å) filter were used. The photometric observations of the comet were carried out on February 21, 2004, with narrowband filters isolated the BC (λ4845/65 Å) and RC (λ6840/90 Å) continuum and the C2 emission (λ5140/90 Å). The phase-angle dependence of linear polarization of the comet has been obtained, and its parameters, such as the minimal polarization P min = ?1.63%, the phase angle of the minimal polarization αmin = 10.6°, the inversion angle αinv = 22.7°, and the slope of the phase curve at the inversion angle h = 0.24% per degree, were found. From the photometric observations, the following quantities have been obtained: the column density of molecules C2 in the line of sight logN (C2) = ?9.15 mol/cm2 and their production rate log Q (C2) = 27.11 mol/s, the spectral gradient of reflectivity for the dust S′(BC, RC) ≈ 3%/1000 Å, and the dust production parameter Afρ equal to 371 and 273 cm for the blue and red continuum ranges, respectively. According to these results, the physical parameters of comet C/2002 T7 are close to the average characteristics of typical dusty comets.  相似文献   

4.
Homogeneous plane-parallel model atmospheres for solar flares have been constructed to approximately simulate observations of flares. The wings of the Ca II lines have been used to derive flare upper photosphere models, which indicate temperature increases of ~100 K over the temperature distribution in the pre-existing facula at a height of 300 km above τ5000 = 1. In the case of flares covering sunspots the temperature rise seems to occur much higher in the atmosphere. We solve the transfer and statistical equilibrium equations for a three-level hydrogen atom and a five-level calcium atom in order to obtain the chromospheric flare models. The general properties of flares, including n e, N 2, linear thickness, and Lyman continuum intensity are approximately reproduced. We find that with increasing flare importance the height of the upper chromosphere and transition region occur lower in the solar atmosphere, accounting for the factor of 60–600 increase in pressure in these regions relative to the quiet Sun. The Ca II line profiles agree with observations only by assuming a macro-velocity distribution that increases with height. Also the chromospheric parts of flares appear to be highly inhomogeneous. We show that shock and particle heated flare models do not agree with the observations and propose a thermal response model for flares. In particular, it appears that heating in the photosphere is an essential aspect of flares.  相似文献   

5.
A one-dimensional composition model of Titan's upper atmosphere is constructed, coupling 36 neutral species and 47 ions. Energy inputs from the Sun and from Saturn's magnetosphere and updated temperature and eddy coefficient parameters are taken into account. A rotating technique at constant latitude and varying local-time is proposed to account for the diurnal variation of solar inputs. The contributions of photodissocation, neutral chemistry, ion-neutral chemistry, and electron recombination to neutral production are presented as a function of altitude and local time. Local time-dependent mixing ratio and density profiles are presented in the context of the TA and T5 Cassini data and are compared in detail to previous models. An independent and simplified ion and neutral scheme (19-species) is also proposed for future 3D-purposes. The model results demonstrate that a complete understanding of the chemistry of Titan's upper atmosphere requires an understanding of the coupled ion and neutral chemistry. In particular, the ionospheric chemistry makes significant contributions to production rates of several important neutral species.  相似文献   

6.
Doppler measurements of the photosphere of the entire Sun carried out at the Crimean Astrophysical Observatory (CrAO) in 1974–2007 by the differential technique showed the presence of an enigmatic periodicity of P 1 = 159.967(4) min. The phase of this oscillation was constant over the entire 34-year of surveys and interval. The true nature of this phenomenon is unknown. Pulsation with the former period P 0 = 160.0101(15) min has been reliably detected only in the first nine years, from 1974 to 1982. It is noted that (a) the average amplitude of the P 1 oscillation in the first half of the data was nearly 34% higher than in the second half and (b) the beat period of 400(14) d of these two pulsations is equal within error to the Jovian synodic period (399 d). A hypothesis is discussed relating the P 1 oscillation to the superfast rotation of the inner solar core.  相似文献   

7.
The spectroscopic variability of Arcturus hints at cyclic activity cycle and differential rotation. This could provide a test of current theoretical models of solar and stellar dynamos. To examine the applicability of current models of the flux transport dynamo to Arcturus, we compute a mean‐field model for its internal rotation, meridional flow, and convective heat transport in the convective envelope. We then compare the conditions for dynamo action with those on the Sun. We find solar‐type surface rotation with about 1/10th of the shear found on the solar surface. The rotation rate increases monotonically with depth at all latitudes throughout the whole convection zone. In the lower part of the convection zone the horizontal shear vanishes and there is a strong radial gradient. The surface meridional flow has maximum speed of 170 m/s and is directed towards the equator at high and towards the poles at low latitudes. Turbulent magnetic diffusivity is of the order 1015–1016 cm2/s. The conditions on Arcturus are not favorable for a circulation‐dominated dynamo (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Individual K-line profiles from elements of fine structure on the surface of the Sun are calibrated absolutely. The continuum calibrations of Labs and Neckel and of Houtgast and Namba are considered, and the average K-profile is scaled to that of White and Suemoto.The ranges of intensities across a high-resolution spectrogram are tabulated for various parts of the line profile. Although the spatially-averaged value for K 3 of 4.2% of the continuum corresponds to a brightness temperature of 4155 K, minimum and maximum values were 3980 and 4360 K, respectively. Similarly, K 2v ranges from 4200 to 4560K, and K 2r from 4180 to 4460K in small elements about 1 arc sec across.  相似文献   

9.
Measurements of the bulk density, grain density, porosity, and magnetic susceptibility of 19 Gao-Guenie H5 chondrite meteorite samples are presented. We find average values of bulk density 〈ρbulk〉=3.46±0.07 g/cm3, grain density 〈ρgrain〉=3.53±0.08 g/cm3, porosity 〈P(%)〉=2.46±1.39, and bulk mass magnetic susceptibility 〈log χ〉=5.23±0.11. Measurements of the specific heat capacity for a 3.01-g Gao-Guenie sample, a 61.37-g Gao-Guenie sample, a 62.35-g Jilin H5 chondrite meteorite sample, and a 51.37-g Sikhote-Alin IIAB Iron meteorite sample are also presented. Temperature interpolation formula are further provided for the specific heat capacity, thermal conductivity, and thermal diffusivity of the 3.01-g Gao-Guenie sample in the temperature range 300<T (K)<800. We briefly review the possible effects of the newly deduced specific heat and thermal conductivity values on the ablation of meteoroids within the Earth's atmosphere, the modeling of asteroid interiors and the orbital evolution of meteoroids through the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect.  相似文献   

10.
From results of spectral (in Ba II λ 455.4-nm line) and spectropolarimetric (in Fe I λλ 1564.3–1565.8-nm lines) observations of the active region (an isolated faculae at the solar disk center) with the German vacuum tower telescope (VTT) at the Institute of Astrophysics on the Canary Islands, the peculiarities of propagation of five-minute oscillations from the photosphere base (h = 0 km) to the lower chromosphere (h = 650 km) were investigated. At the height of the continuum formation (h = 0 km), the nature of wave propagation in the active region does not differ much from that in the quiet region: 80–90% of the investigated areas are occupied by waves moving up and down. In the lower chromosphere (h = 650 km), differences in the behavior of the waves are fundamental. In a quiet area, the waves become standing for 90% of the cases. In contrast to this, in the presence of moderate and strong magnetic fields (B = 30–180 mT), in 47% of the cases, the waves are running upward, which gives the principal possibility to heat the active region. The investigations revealed the presence of the waves in the active region, for which the phase shift Φ T,V of the temperature and velocity oscillations is between ?90° and 0°. These waves cannot propagate in a quiet atmosphere.  相似文献   

11.
The radio radii of the Sun at wavelengths of 5, 10.7, 12, and 95 cm have been determined from eclipse observations as R5 ?? (1.0 ± 0.015)R ??, R 10,12 = (1.05 ± 0.003)R ??, and R 95 = (1.2 ± 0.02)R ??. The bright-ness temperatures of quiet solar disk areas at these wavelengths have turned out to be Td 5 = (22 ± 2) × 103, Td 10 = (44 ± 3) × 103, Td 12 = (47 ± 3) × 103, and Td 95 = (1000 ± 30) × 103 K. There were local sources of radio emission with angular sizes from 1.9 to 2.4 arcmin and brightness temperatures from 80 × 103 to 1.75 × 106 K above sunspot groups at short wavelengths of 5, 10.7, and 12 cm. The radio flux from the local sources at 95 cm turned out to be below the detection threshold of 1.0 × 10?22 W m?2 Hz?1. Comparison of the values obtained with the results of observations of another eclipse on August 1, 2008, occurred at the epoch of minimum of the 11-year solar cycle has shown that the radio radius of the Sun at 10.7 and 12 cm increased from 1.016 R ?? to 1.05 ± 0.003R ??, the height of the emitting layer at these wavelengths moved from 11 × 103 km to (30 ± 7) × 103 K, and the brightness temperature of the quiet Sun rose from (35.8 ± 0.4) × 103 K to (44 ± 3) × 103 K at 10.7 cm and from (37.3 ± 0.4) × 103 K to (47 ± 3) × 103 K at 12 cm. Consequently, the parameters of the solar atmosphere changed noticeably in 2 years in connection with the beginning of the new solar cycle 24. The almost complete absence of local sources at the longest wavelength of 95 cm suggests that the magnetic fields of the sunspot groups on January 4, 2011, were weak and did not penetrate to the height from where their emission could originate. If this property is inherent in most sunspot groups of cycle 24, then it can be responsible for its low flare activity.  相似文献   

12.
In 1946, E. Sevin postulated the global vibrations of the Sun with a period P 0 = 1/9 day and a “wavelength” L 0 = c × P 0 = 19.24 AU and predicted the tenth planet at a mean distance of 4.0 × L 0 ≈ 77.0 AU from the Sun (c is the speed of light). The global vibrations of the Sun, precisely with the period of 1/9 day, were actually detected in 1974. Recently, the largest Kuiper Bell object 2003 UB313, or Eris, with an orbital semimajor axis ≈ 3.5 × L 0 ≈ 67.5 AU was discovered. We adduce arguments for the status of Eris as our tenth planet: (i) the object is larger and farther from the Sun than Pluto and (ii) the semimajor axis of Eris agrees well with the sequence of planetary distances that follows from the resonance spectrum of the Solar system dimensions (with the scale L 0 and for all 11 orbits, including those of Pluto, Eris, and the asteroid belt). We point to a mistake of the Prague (2006) IAU Assembly, which excluded Pluto from the family of planets by introducing a new, highly controversial class of objects—“dwarf planets.”  相似文献   

13.
The iron abundance and microturbulent velocities in Arcturus, Canopus, and α CenA have been determined from Fel and Fell lines relative to the Sun. α CenA is found to have an enhanced iron abundance, while Canopus and Arcturus are found to have a deficiency of iron. The behaviour of the determined microturbulent velocities is discussed.  相似文献   

14.
After the collision of Comet Shoemaker-Levy 9 (SL9) with Jupiter, some ring structures were observed propagating outwards at a constant speed (∼450 m/s) on the Jovian surface. These are thought to be linear waves caused by the collision. A linear model of the collision is presented, in which the Jovian atmosphere is considered as an irrotational, inviscid, stratified and incompressible fluid layer moving at a speed of U = b + az. We take an initial impulsive pressure p(r; 0) as the initial condition and solve the fluid dynamics equations for inertia-gravity waves. It is found that most part of the perturbation energy is used to produce internal waves when Jovian atmosphere moves at a constant speed (U = Uo (∼170 m/s)). A relation between the impact depth H and the horizontal phase speed vp is deduced. Finally, the inertia-gravity waves are discussed for the case U = b + az and it is found that the perturbation energy is then not divided equally between kinetic energy and potential energy because of the effect of a shear.  相似文献   

15.
Chultem  Ts.  Yakovkin  N. A. 《Solar physics》1974,34(1):133-150
The statistical equilibrium equations for the continuum and first 10 levels of a hydrogen atom show that the radiation of a bright prominence (the brightness of the H line has attained 56 mÅ of the disc centre spectrum) is completely due to scattering of the Sun radiation. The basic unknowns are separated with certainty: electron concentration (n e = 3.0 × 1010 cm–3), effective thickness (l = 4.2 × 108 cm) and electron temperature (T e = 5000 K).Radiation of a very bright prominence (A (H) = 213 mÅ; T e = 7300 K; n e = 5.0 × 1011 cm–3; l = 1.3 × 107 cm) is on account of electron impacts (40%) and the Sun radiation scattering (60%).The parameters are shown to depend greatly on the prominence optical thickness in the lines of the first subordinate series of a hydrogen atom. In the course of determination all the parameters and 100 interconnected integral equations of the radiation diffusion have been thickness-averaged; the population of levels has been calculated by observations using the self-absorption factors.  相似文献   

16.
It is shown that the planetary distances of the Solar System are distributed according to the L 0 resonance, where L 0 = cP 0 = 19.24 a.u. is the wavelength of the “cosmological oscillation” of the Universe (whose nature is unknown). Here, c is the speed of light and P 0 = 160 min is the period of pulsations of the Sun and the Universe, which turned out to be equal to 1/9 of the mean terrestrial day. Exoplanets do not exhibit the L 0 resonance; instead, they demonstrate on average a spatial resonance on a scale of 14.8 a.u., pointing to a mechanism of formation of exoplanetary systems which differs from the commonly accepted one (by the capture of “mesoplanets,” rather than from near-star nebulae). This indicates that the L 0 resonance is a specific feature just of the Solar System. The L 0 (P 0) aspect of the anthropic principle, realized only near the Sun, distinguishes our planetary system from a number of observed exoplanetary systems. This fact makes the anthropic principle in its strong formulation more evident, localizing its effectiveness. Probably, it is closely related to the appearance of life on the Earth, which unexpectedly, sadly, and charmingly makes any talks on extraterrestrial civilizations devoid of any prospect.  相似文献   

17.
Using wavelet analysis and Fourier analysis, the temporal behavior of ??156-day quasi-periodicity (Rieger quasi-periodicity, RQ) is investigated for series of daily solar indices: Wolf numbers W for 161 years (from 1849), the flux F10.7 of the Sun??s radio emission at a frequency of 2800 MHz for 63 years (from 1947), the number of X-ray flares N X for 29 years (from 1981), and the number of optical flares N ?? for 11 years in cycle 21. The N ?? series are studied for four quadrants of the solar disk. It is found for the W series that there is no stable dependence of the amplitude RQ on the cycle phase and the W value. It is associated with the fact that, corresponding to a period of around eight years, in the power spectrum changes in the amplitude of the Rieger quasiperiodicity of the index W are dominated by the peak. Moreover, the peaks corresponding to the 11-year cyclicity are also significant. The comparative study of the temporal behavior of the Rieger quasi-periodicity amplitude of the indices W, F10.7, and N X has shown that the quasi-periodicity covers the processes, occurring in active regions on the Sun at different altitudes, almost simultaneously. It is found that for N ??, the lag of variations of the Rieger quasi-periodicity amplitude for series of the Sun??s western hemisphere, relative to those for series of the eastern hemisphere, is on average less than for the flare series. Thus, if the flare occurrence is modulated by the Rieger quasi-periodicity process as a wave propagating over the Sun??s disc, then the wave is not a retrograde one. Different interpretations of the nature of the Rieger quasi-periodicity are discussed including the hypothesis of Rossby waves.  相似文献   

18.
Recent papers attributing the observed microwave opacity of the middle atmosphere of Venus to gaseous sulfur dioxide (SO2) and other cloud-related gases have motivated laboratory measurements of their microwave absorbing properties under simulated conditions for this region. In the pressure range from 1 to 5 atmospheres and in the temperature range from 297 to 355°K, the absorption of SO2 in a carbon dioxide (CO2) atmosphere, at 2.257 and 8.342 GHz, has been found to be approximately 50% larger than that calculated from Van Vleck-Weisskopf theory. The measured absorption is about 25 × 106 q?2p1.20 T?3.1 (dB km?1), where q is the sulfur dioxide number mixing ratio, ? is frequency in gigahertz, p is pressure in atmospheres, and T is temperature in degrees Kelvin. This represents the best-fit expression to the observed pressure dependence, while theoretical values of frequency and temperature dependence are accepted as being consistent with the measurements. Another cloud-related gas, sulfur trioxide (SO3), was also tested in a CO2 atmosphere and found to be relatively transparent. These results reduce the amount of SO2 in the Venus middle atmosphere required to explain the opacity measured by radio occulatation, but this amount still exceeds the abundance measured in situ by atmospheric probes, suggesting that there must be another important source of opacity. Preliminary measurements of the 13-cm absorptivity of gaseous sulfuric acid (H2SO4) show it to be a strong microwave absorber, and thus likely to be responsible for a significant and possibly major part of the observed opacity.  相似文献   

19.
Observations with the balloon-borne Sunrise/Imaging Magnetograph eXperiment (IMaX) provide high spatial resolution (roughly 100 km at disk center) measurements of the magnetic field in the photosphere of the quiet Sun. To investigate the magnetic structure of the chromosphere and corona, we extrapolate these photospheric measurements into the upper solar atmosphere and analyze a 22-minute long time series with a cadence of 33 seconds. Using the extrapolated magnetic-field lines as tracer, we investigate temporal evolution of the magnetic connectivity in the quiet Sun’s atmosphere. The majority of magnetic loops are asymmetric in the sense that the photospheric field strength at the loop foot points is very different. We find that the magnetic connectivity of the loops changes rapidly with a typical connection recycling time of about 3±1 minutes in the upper solar atmosphere and 12±4 minutes in the photosphere. This is considerably shorter than previously found. Nonetheless, our estimate of the energy released by the associated magnetic-reconnection processes is not likely to be the sole source for heating the chromosphere and corona in the quiet Sun.  相似文献   

20.
An intense impact flux upon a planet having a CO2 + N2 atmosphere, such as Mars, provides energy to synthesize nitric oxide, NO, which is likely converted into nitrate minerals. The same impact flux can decompose nitrate minerals if present in the crust. We build a numerical model to study the effects of early impact processes on the evolution of nitrogen in a dominantly CO2 atmosphere. We model the period of intense post-accretionary bombardment, the roughly 500 Myr period after crustal stabilization that locks in previously accreted volatiles. A best-guess, “fiducial” set of parameters is chosen, with a fixed “veneer” of post-accretionary impactors (δR=950 m thick), assumed to contain carbon at 1 wt% (fg=0.01), with a molar C/N ratio of 18, an initial atmospheric pressure of 1 bar (with CO2/N2 = 36), and a power law impactor mass distribution slope b=0.75. This model produces a nitrate reservoir RNO3?0.5×1019 moles, equivalent to ∼30 mbars of N2, during the intense impact phase. Starting with 1 bar, the atmosphere grows to 2.75 bars. Results of models with variations of parameter values show that RNO3 responds sluggishly to changes in parameter values. To significantly limit the size of this reservoir, one is required to limit the initial total atmospheric pressure be less than about 0.5 bars, and the impactor volatile content fg to be less than 0.003. The value of fg substantially determines whether the atmosphere grows or not; when fg=0.01, the atmosphere gains about 1.7 bars, while for fg=0.003, the atmosphere gains less than 200 mbars, and for fg=0.001, it loses about 400 mbars. Impact erosion is a minor sink of N, constituting generally less than 10% of the total supply. The loss of impactor volatile plumes can take almost 50% of incoming N and C under fiducial parameters, when atmospheric pressures are low. This nitrogen does not significantly interact with Mars, and hence is not properly delivered. When the initial N is greater than the delivered N, most of the nitrogen ends up as nitrates; when delivered N is larger, most nitrogen ends up in the atmosphere. The reason for this dichotomy seems to be that initial nitrogen is present during the whole bombardment, while delivered N, on average, only experiences half the bombardment. The operating caveat here is that the above results are all conditioned on the assumption that impact processes dominate this period of Mars atmospheric evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号