首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The paper consists of two parts. The first introduces the dynamo equation into a rotating gaseous disk of finite thickness and then searches for its solution for the generation and maintenance of large-scale bisymmetric spiral (BSS) magnetic fields. We determine numerically the dynamo strength and vertical thickness of the gaseous disk which are necessary for the BSS magnetic fields to rotate as a wave over large area of the disk.

Next we present linearized equations of motion for the self-gravitating disk gas under the Lorentz force due to the BSS magnetic fields. Since the angular velocity of the BSS field is very close to that of the spiral density wave, a nearly-resonant interaction is caused between these two waves to produce large-amplitude condensation of gas in a double-spiral way. The BSS magnetic field is considered as a promising agency to trigger and maintain the spiral density wave.  相似文献   

2.
In the present project we investigate the evolution of a three-dimensional (3D), large-scale galactic magnetic field under the influence of gas flows in spiral arms and in the presence of dynamo action. Our principal goal is to check how the dynamical evolution of gaseous spiral arms affects the global magnetic field structure and to what extent our models could explain the observed spiral patterns of polarization B-vectors in nearby galaxies. A two-step scheme is used: the N-body simulations of a two-component, self-gravitating disk provide the time-dependent velocity fields which are then used as the input to solve the mean-field dynamo equations. We found that the magnetic field is directly influenced by large-scale non-axisymmetric density wave flows yielding the magnetic field locally well-aligned with gaseous spiral arms in a manner similar to that discussed already by Otmianowska-Mazur et al. 1997. However, an additional field amplification, introduced by a non-zero -term in the dynamo equations, is required to cause a systematic increase of magnetic energy density against the diffusive losses. Our simulated magnetic fields are also used to construct the models of a high-frequency (Faraday rotation-free) polarized radio emission accounting for effects of projection and limited resolution, thus suitable for direct comparisons with observations.  相似文献   

3.
Abstract

In order to show that aperiodic magnetic cycles, with Maunder minima, can occur naturally in nonlinear hydromagnetic dynamos, we have investigated a simple nonlinear model of an oscillatory stellar dynamo. The parametrized mean field equations in plane geometry have a Hopf bifurcation when the dynamo number D=1, leading to Parker's dynamo waves. Including the nonlinear interaction between the magnetic field and the velocity shear results in a system of seven coupled nonlinear differential equations. For D>1 there is an exact nonlinear solution, corresponding to periodic dynamo waves. In the regime described by a fifth order system of equations this solution remains stable for all D and the velocity shear is progressively reduced by the Lorentz force. In a regime described by a sixth order system, the solution becomes unstable and successive transitions lead to chaotic behaviour. Oscillations are aperiodic and modulated to give episodes of reduced activity.  相似文献   

4.
Abstract

A standard approach to the kinematic dynamo problem is that pioneered by Bullard and Gellman (1954), which utilizes the toroidal-poloidal separation and spherical harmonic expansion of the magnetic and velocity fields. In these studies, the velocity field is given as a combination of small number of toroidal and poloidal harmonics, with their radial dependences prescribed by some physical considerations. Starting from the original paper of Bullard and Gellman (1954), a number of authors repeated such analyses on different combination of velocity fields, including the most recent and comprehensive effort by Dudley and James (1989). In this paper, we re-examine the previous kinematic dynamo models, using the computer algebra approach initiated by Kono (1990). This method is particularly suited to this kind of research since different velocity fields can be treated by a single program. We used the distribution of magnetic energies in various harmonics to infer the convergence of the results.

The numerical results obtained in this study for the models of Bullard and Gellman (1954), Lilley (1970), Gubbins (1973), Pekeris et al. (1973), Kumar and Roberts (1975), and Dudley and James (1989) are consistent with the previously reported results, in particular, with the extensive calculation of Dudley and James. In addition, we found that the combination of velocities used by Lilley can support the dynamo action if the radial dependence of the velocity is modified.

We also examined the helicity distributions in these dynamo models, to see if there is any correlation between the helicity and the efficiency of dynamo action. A successful dynamo can result both from the cases in which the helicity distributions are symmetric or antisymmetric with respect to the equator. In both cases, it appears that the dynamo action is efficient if the volume integral of helicity over a hemisphere is large.  相似文献   

5.
In order to gain a better understanding of the physical processes underlying fast dynamo action it is instructive to investigate the structure of both the magnetic field and the velocity field after the dynamo saturates. Previously, computational results have been presented (Cattaneo, Hughes and Kim, 1996) that indicate, in particular, that Lagrangian chaos is suppressed in the dynamical regime of the dynamo. Here we extend their model by removing the assumption of neglecting the inertial term. This allows for an investigation into the effect of this term on the evolution of the dynamo via a comparison of the two models. Our results indicate that this term plays a crucial role in the physics of the dynamo.  相似文献   

6.
Abstract

A magnetohydrodynamic, dynamo driven by convection in a rotating spherical shell is supposed to have averages that are independent of time. Two cases are considered, one driven by a fixed temperature difference R and the other by a given internal heating rate Q. It is found that when q, the ratio of thermal conductivity to magnetic diffusivity, is small, R must be of order q ?4/3 and Q of order q ?2 for dynamo action to be possible; q is small in the Earth's core, so it is hoped that the criteria will prove useful in practical as well as theoretical studies of dynamic dynamos. The criteria can be further strengthened when the ohmic dissipation of the field is significant in the energy balance. The development includes the derivation of two necessary conditions for dynamo action, both based on the viscous dissipation rate of the velocity field that drives the dynamo.  相似文献   

7.
Abstract

We investigated global axisymmetric (m = 0) and non-axisymmetric (m = 1) modes of magnetic fields generated by the galactic dynamo including the α2-dynamo. The α2-dynamo is responsible for the field generation in the central region of galaxies where the shear of galactic rotation is weak (e.g. M51). The highest growth rate of m = 1 modes is always smaller than that of m = 0 modes; thus m = 1 modes of the standard galactic dynamo cannot explain the dominance of the bisymmetric fields in spiral galaxies. Radial extent of each m = 1 mode is too narrow to reproduce the observed bisymmetric structure extending over a disk.  相似文献   

8.
The turbulent cross helicity is directly related to the coupling coefficients for the mean vorticity in the electromotive force and for the mean magnetic-field strain in the Reynolds stress tensor. This suggests that the cross-helicity effects are important in the cases where global inhomogeneous flow and magnetic-field structures are present. Since such large-scale structures are ubiquitous in geo/astrophysical phenomena, the cross-helicity effect is expected to play an important role in geo/astrophysical flows. In the presence of turbulent cross helicity, the mean vortical motion contributes to the turbulent electromotive force. Magnetic-field generation due to this effect is called the cross-helicity dynamo. Several features of the cross-helicity dynamo are introduced. Alignment of the mean electric-current density J with the mean vorticity Ω , as well as the alignment between the mean magnetic field B and velocity U , is supposed to be one of the characteristic features of the dynamo. Unlike the case in the helicity or α effect, where J is aligned with B in the turbulent electromotive force, we in general have a finite mean-field Lorentz force J ?×? B in the cross-helicity dynamo. This gives a distinguished feature of the cross-helicity effect. By considering the effects of cross helicity in the momentum equation, we see several interesting consequences of the effect. Turbulent cross helicity coupled with the mean magnetic shear reduces the effect of turbulent or eddy viscosity. Flow induction is an important consequence of this effect. One key issue in the cross-helicity dynamo is to examine how and how much cross helicity can be present in turbulence. On the basis of the cross-helicity transport equation, its production mechanisms are discussed. Some recent developments in numerical validation of the basic notion of the cross-helicity dynamo are also presented.  相似文献   

9.
Abstract

An analysis of small-scale magnetic fields shows that the Ponomarenko dynamo is a fast dynamo; the maximum growth rate remains of order unity in the limit of large magnetic Reynolds number. Magnetic fields are regenerated by a “stretch-diffuse” mechanism. General smooth axisymmetric velocity fields are also analysed; these give slow dynamo action by the same mechanism.  相似文献   

10.
Abstract

A simple mean-field model of a nonlinear stellar dynamo is considered, in which dynamo action is supposed to occur in a spherical shell, and where the only nonlinearity retained is the influence of the Lorentz forces on the zonal flow field. The equations are simplified by truncating in the radial direction, while full latitudinal dependence is retained. The resulting nonlinear p.d.e.'s in latitude and time are solved numerically, and it is found that while regular dynamo wave type solutions are stable when the dynamo number D is sufficiently close to its critical value, there is a wide variety of stable solutions at larger values of D. Furthermore, two different types of dynamo can coexist at the same parameter values. Implications for fields in late-type stars are discussed.  相似文献   

11.
Abstract

An explicit example of a steady prototype Lortz dynamo is elaborated in terms of a previously derived illustrative, exact, closed form solution to the nonlinear dynamo equations. The eigenvalue character of the dynamo problem is now introduced which simplifies the solution. The magnetic field lines, which lie on circular cylinders, and velocity streamline pattern are then displayed and discussed. Analysis of the magnetic energy balance by way of the Poynting flux reveals the existence of a finite critical cylinder across which zero net magnetic energy flows, thereby proving that the material inside is a self-excited dynamo, despite the fact that the total magnetic energy is unbounded.  相似文献   

12.
Abstract

The kinematic dynamo problem is considered for certain steady velocity fields with symmetries that are plausible in a rapidly rotating convective system. By generalizing results proved for the mean field dynamo model by Proctor (1977a), it is shown that for a related “comparison problem” with modified boundary conditions, the eigenvalues are degenerate if there is no axisymmetric mean circulation, with modes of dipole and quadrupole parity excited with equal ease. The comparison problem can be shown to be closely similar to the dynamo problem when there is a region unfavourable to dynamo action surrounding the dynamo region. The near-symmetries found by Roberts (1972) for the mean field model are invoked to suggest that a close correspondence is likely even when this region is absent. It is therefore conjectured that such mean motions may be important in explaining the observed preference for solutions of dipole parity by planetary dynamos.  相似文献   

13.
A dynamo driven by motions unaffected by viscous forces is termed magnetostrophic. Although such a model might describe magnetic field generation in Earth’s core well, a magnetostrophic dynamo has not yet been found even though Taylor [Proc. R. Soc. Lond. A 1963, 274, 274–283] devised an apparently viable method of finding one. His method for determining the fluid velocity from the magnetic field and the energy source involved only the evaluation of integrals along lines parallel to the Earth’s axis of rotation and the solution of a second-order ordinary differential equation. It is demonstrated below that an approximate solution of this equation for a broad family of magnetic fields is immediate. Furthermore inertia, which was neglected in Taylor’s theory, is restored here, so that the modified theory includes torsional waves, whose existence in the Earth’s core has been inferred from observations of the length of day. Their theory is reconsidered.  相似文献   

14.
We investigate the parameter space of a Parker dynamo with a simple alpha quenching nonlinearity, taking as governing parameters the dynamo number D (D<0) and the ratio of diffusion times in the radial and latitudinal directions in the convective zone. The latter parameter, μ, is connected with the aspect ratio (dimensionless thickness) of the convective zone. We isolate two asymptotic configuration of the dynamo waves excited by the Parker dynamo in the limiting case of strong generation. Apart from the standard case with the solar type dynamo wave travelling from mid-latitudes to the equator, we describe a form of dynamo activity which is basically an anharmonic standing wave. The first situation occurs when μ increases with |D|. With μ fixed and |D| increasing, the second asymptotic configuration occurs. We discuss possibilities of identifying these asymptotic configurations with various types of stellar activity as traced by stellar CaII data.  相似文献   

15.
An important question regarding the study of mean field dynamo models is how to make precise the nature of their underlying dynamics. This is difficult both because relatively little is known about the dynamical behaviour of infinite dimensional systems and also due to the numerical cost of studying the related partial differential equations. As a first step towards their understanding, it is useful to consider the corresponding truncated models. Here we summarise some recent results of the study of a class of truncated axisymmetric mean field dynamo models. We find conclusive evidence in these models for various types of intermittency as well as multiple attractors and final state sensitivity. We also find that the understanding of the underlying dynamics of such dynamo models requires the study of a new class of dynamical systems, referred to as the non-normal systems. Current work demonstrates that these types of systems are capable of a novel type of intermittency and also of relevance for the understanding of the full axisymmetric PDE dynamo models.  相似文献   

16.
Abstract

This paper is concerned with a three-dimensional spherical model of a stationary dynamo that consists of a convective layer with a simple poloidal flow of the S2c 2 kind between a rotating inner body core and solid outer shell. The rotation of the inner core and the outer shell means that there are regions of concentrated shear or differential rotation at the convective layer boundaries. The induction equation for the inside of the convective layer was solved numerically by the Bullard-Gellman method, the eigenvalue of the problem being the magnetic Reynolds number of the poloidal flow (R M2) and it was assumed that the magnetic Reynolds number of the core (R M1) and of the shell (R M3) were prescribed parameters. Hence R M2 was studied as a function of R M1 and R M3, along with the orientation of the rotation axis, the radial dependence of the poloidal velocity and the relative thickness of the layers for the three different situations, (i) the core alone rotating, (ii) the shell alone rotating and (iii) the core and the shell rotating together. In all three cases it was found that, at definite orientations of the rotation axis, there is a good convergence of both the eigenvalues and the eigenfunctions of the problem as the number of spherical harmonics used to represent the problem increases. For R M1 =R M3= 103, corresponding to the westward drift velocity and the parameters of the Earth's core, the critical values of R M2 are found to be three orders of magnitude lower than R M1, R M3 so that the poloidal flow velocity sufficient for maintaining the dynamo process is 10-20 m/yr. With only the core or the shell rotating, the velocity field generally differs little from the axially symmetric case. However, for R M2 (or R M3) lying in the range 102 to 105, the self-excitation condition is found to be of the form R M2˙R ½ M1=constant (or R M2˙R½ M3=constant) and the solution does not possess the properties of the Braginsky near-axisymmetric dynamo. We should expect this, in particular, in the Braginsky limit R M2˙R?½; M1=constant.

An analysis of known three-dimensional dynamo models indicates the importance of the absence of mirror symmetry planes for the efficient generation of magnetic fields.  相似文献   

17.
Abstract

The weak-field Benard-type dynamo treated by Soward is considered here at higher levels of the induced magnetic field. Two sources of instability are found to occur in the intermediate field regime M ~ T 1/12, where M and T are the Hartmann and Taylor numbers. On the time scale of magnetic diffusion, solutions may blow up in finite time owing to destabilization of the convection by the magnetic field. On a faster time scale a dynamic instability related to MAC-wave instability can also occur. It is therefore concluded that the asymptotic structure of this dynamo is unstable to virtual increases in the magnetic field energy.

In an attempt to model stabilization of the dynamo in a strong-field regime we consider two approximations. In the first, a truncated expansion in three-dimensional plane waves is studied numerically. A second approach utilizes an ad hoc set of ordinary differential equations which contains many of the features of convection dynamos at all field energies. Both of these models exhibit temporal intermittency of the dynamo effect.  相似文献   

18.
We study the effect of stratification on large-scale dynamo action in convecting fluids in the presence of background rotation. The fluid is confined between two horizontal planes and both boundaries are impermeable, stress-free and perfectly conducting. An asymptotic analysis is performed in the limit of rapid rotation (τ???1 where τ is the Taylor number). We analyse asymptotic magnetic dynamo solutions in rapidly rotating systems generalising the results of Soward [A convection-driven dynamo I. The weak field case. Philos. Trans. R. Soc. Lond. A 1974, 275, 611–651] to include the effects of compressibility. We find that in general the presence of stratification delays the efficiency of large-scale dynamo action in this regime, leading to a reduction of the onset of dynamo action and in the nonlinear regime a diminution of the large-scale magnetic energy for flows with the same kinetic energy.  相似文献   

19.
At the Forschungszentrum Karlsruhe an experiment is in preparation which it is hoped, in view of the geodynamo and other cosmic dynamos, that a homogeneous dynamo will be demonstrated and investigated. This experiment is discussed within the framework of mean-field dynamo theory. Results are presented concerning kinematic cylindrical mean-field dynamo models reflecting some features of the experimental device, as well as results of detailed calculations of the -effect that apply to arbitrarily high magnetic Reynolds numbers. On this basis estimates of the excitation conditions of the dynamo are given and predictions concerning the geometrical structure of the generated magnetic fields are made.  相似文献   

20.
Linear α2Ω-dynamo waves are investigated in a thin turbulent, differentially rotating convective stellar shell. A simplified one-dimensional model is considered and an asymptotic solution constructed based on the small aspect ratio of the shell. In a previous paper Griffiths et al. (Griffiths, G.L., Bassom, A.P., Soward, A.M. and Kuzanyan, K.M., Nonlinear α2Ω-dynamo waves in stellar shells, Geophys. Astrophys. Fluid Dynam., 2001, 94, 85–133) considered the modulation of dynamo waves, linked to a latitudinal-dependent local α-effect and radial gradient of the zonal shear flow. These effects are measured at latitude θ by the magnetic Reynolds numbers R α f(θ) and R Ω g(θ). The modulated Parker wave, which propagates towards the equator, is localised at some mid-latitude θp under a Gaussian envelope. In this article, we include the influence of a latitudinal-dependent zonal flow possessing angular velocity Ω*(θ) and consider the possibility of non-axisymmetric dynamo waves with azimuthal wave number m. We find that the critical dynamo number D c?=?R α R Ω is minimised by axisymmetric modes in the αΩ-limit (Rα→0). On the other hand, when Rα?≠?0 there may exist a band of wave numbers 0?m?m ? for which the non-axisymmetric modes have a smaller D c than in the axisymmetric case. Here m ? is regarded as a continuous function of R α with the property m?→0 as R α→0 and the band is only non-empty when m??>1, which happens for sufficiently large R α. The preference for non-axisymmetric modes is possible because the wind-up of the non-axisymmetric structures can be compensated by phase mixing inherent to the α2Ω-dynamo. For parameter values resembling solar conditions, the Parker wave of maximum dynamo activity at latitude θp not only propagates equatorwards but also westwards relative to the local angular velocity Ω* p ). Since the critical dynamo number D c?=?R α R Ω is O (1) for small R α, the condition m ??>?1 for non-axisymmetric mode preference imposes an upper limit on the size of |dΩ*/dθ|.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号