首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optimum design of seismic structures equipped with active controls is presented. The design variables are structural parameters, such as structural stiffness or moment of inertia. The optimization procedure is carried out in two stages. First, the optimal control forces are expressed in closed form, as implicit functions of the design variables. In the second stage, the structural parameters are varied in order to minimize a structural weight objective function. The algorithm is applied to structural systems under earthquake excitations, for displacement, frequency and control force constraints.  相似文献   

2.
Time-delay causes unsynchronized application of the control forces which may not only degrade the performance of the control system but also even induce instability to the dynamic system. Time-delay control algorithm is developed in this paper to solve this practical problem. The control system is first formulated in discrete-time form. In the presence of time-delay, the motion equation of the discrete-time control system remains a difference equation which can be transformed into first-order difference equation by augmenting the state variables. Optimal time-delay control algorithm is derived based on the augmented system. The time-delay control forces are simply generated from the time-delay states multiplied by the constant feedback gain. Numerical simulation is illustrated to verify the feasibility of the proposed control algorithm. Since time-delay effect is incorporated in the mathematical model for the structural control system throughout the derivation of the proposed algorithm, system performance and dynamic stability are guaranteed.  相似文献   

3.
This paper deals with the transient response of a non‐linear dynamical system with random uncertainties. The non‐parametric probabilistic model of random uncertainties recently published and extended to non‐linear dynamical system analysis is used in order to model random uncertainties related to the linear part of the finite element model. The non‐linearities are due to restoring forces whose parameters are uncertain and are modeled by the parametric approach. Jayne's maximum entropy principle with the constraints defined by the available information allows the probabilistic model of such random variables to be constructed. Therefore, a non‐parametric–parametric formulation is developed in order to model all the sources of uncertainties in such a non‐linear dynamical system. Finally, a numerical application for earthquake engineering analysis is proposed concerning a reactor cooling system under seismic loads. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
The problem of spatial dynamic response of a suspension bridge to the passage of trains of concentrated forces with random values is considered. The arrival of forces at the bridge is assumed to constitute a Poisson process of events. Such an excitation process is an appropriate model of vehicular traffic loads acting on the bridge. The bridge is idealized by a single-span thin-walled beam underslung to two cables. The response of the bridge in the space-time domain is described by a coupled system of non-linear, integro-differential equations. The dynamic influence functions of vertical and horizontal deflections at each cross-section point are obtained for the linear case. Cumulants and probability density functions of response are determined. Numerical methods have been used to develop a computer-oriented algorithm aimed at the numerical solution of the problem. As examples, numerical results for a particular bridge with some practical load cases are presented and illustrated by graphs.  相似文献   

5.
This paper describes the development and numerical verification of a test method to realistically simulate the seismic structural response of full‐scale buildings. The result is a new field testing procedure referred to as the linear shaker seismic simulation (LSSS) testing method. This test method uses a linear shaker system in which a mass mounted on the structure is commanded a specified acceleration time history, which in turn induces inertial forces in the structure. The inertia force of the moving mass is transferred as dynamic force excitation to the structure. The key issues associated with the LSSS method are (1) determining for a given ground motion displacement, xg, a linear shaker motion which induces a structural response that matches as closely as possible the response of the building if it had been excited at its base by xg (i.e. the motion transformation problem) and (2) correcting the linear shaker motion from Step (1) to compensate for control–structure interaction effects associated with the fact that linear shaker systems cannot impart perfectly to the structure the specified forcing functions (i.e. the CSI problem). The motion transformation problem is solved using filters that modify xg both in the frequency domain using building transfer functions and in the time domain using a least squares approximation. The CSI problem, which is most important near the modal frequencies of the structural system, is solved for the example of a linear shaker system that is part of the NEES@UCLA equipment site. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The classical performance index optimization control algorithm is considered in order to check the real optimality of the control procedure; the basic steps for the optimal algorithm are reviewed, and the equation for the optimal control force derived. It is shown that the optimality conditions cannot be met with regard to the performance index, unless one is concerned with simple free oscillations. It is proved that in this case on one side the optimal control turns out to be of the linear closed‐loop type, yielding explicit optimal control coefficients, and on the other side that no solution can exist of the optimal problem for a generic forcing function. It is concluded that one is forced to calibrate the control force for free oscillations, and that the reliability of the index procedure mainly rests on some implicit expectation that linear control can be calibrated in the absence of the external disturbance and that it works under forced oscillations as well. Furthermore, the problem of delayed active control, with reference to a s.d.o.f. system controlled by a closed‐loop linear algorithm and under the action of a dynamic forcing function is investigated. In particular, the effects produced on the response of the structure by the introduction in the control law of assessed critical values of time delay are analysed and the comparison is proposed between the numerical results that one gets by adopting two different procedures (on one hand the above‐mentioned optimal linear control law and on the other hand the constrained minimization of the structural response norm) to compensate for time lag occurring in the actuation of the active control servomechanisms. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
A procedure for vibration suppression of elastic structures and systems is introduced in this paper. First, the equations of the response of the system to external forces, based on a discretized linear model, are developed. Next, the vibration suppression is formulated as a minimization problem with control (external) forces as unknowns. Then, the optimality condition is applied to this problem and a set of linear simultaneous equations is obtained for the unknown forces. The scheme is applied to a number of simple examples for illustration. The results show that the procedure is very effective and, at the same time, very flexible compared to methods that are based on continuous models (partial differential equations). The actual (hardware) implementation can be achieved by means of either passive absorbers or active forces (actuators).  相似文献   

8.
Considerable effort has been devoted to develop optimal control methods for reducing structural response under seismic forces. In this study analytical solution of the linear regulator problem applied widely to the control of earthquake‐excited structures is obtained by using the sufficient conditions of optimality even though almost all of the optimal controls proposed previously for structural control are based on the necessary conditions of optimality. Since the resulting optimal closed–open‐loop control cannot be implemented for civil structures exposed to earthquake forces, the solution of the optimal closed–open‐loop control is carried out approximately based on the prediction of the seismic acceleration values in the near future. Upon obtaining the relation between the exact optimal solution and future values of seismic accelerations, it is shown numerically that the solution of the optimal closed–open‐loop control problem can be performed approximately by using only the first few predicted seismic acceleration values if a given norm criteria is satisfied. Calculated performance measures indicate that the suggested approximate solution is better than the closed‐loop control and as we predict the future values of the excitation more accurately, it will approach the optimal solution. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
This paper deals with the lower order (first four) nonstationary statistical moments of the response of linear systems with random stiffness and random damping properties subject to random nonstationary excitation modeled as white noise multiplied by an envelope function. The method of analysis is based on a Markov approach using stochastic differential equations (SDE). The linear SDE with random coefficients subject to random excitation with deterministic initial conditions are transformed to an equivalent nonlinear SDE with deterministic coefficients and random initial conditions subject to random excitation. In this procedure, new SDE with random initial conditions, deterministic coefficients and zero forcing functions are introduced to represent the random variables. The joint statistical moments of the response are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vectors and the random variables of the structural system. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. The statistical moment equations are ordinary nonlinear differential equations where hierarchy of moments appear. The hierarchy is closed by the cumulant neglect closure method applied at the fourth order statistical moment level. General formulation is given for multi-degree-of-freedom (MDOF) systems and the performance of the method in problems with nonstationary excitations and large variabilities is illustrated for a single-degree-of-freedom (SDOF) oscillator.  相似文献   

10.
It is well known that the classical optimal control method requires all the state variables of the controlled system to be measurable and available for control feedback. However, for a high‐order or complex system some state variables are possibly unmeasurable in practice. In addition, the control cost will be higher if more sensors are used, because it is expensive to install sensors. On the other hand, when using the optimal control method with full‐state feedback, some state variables in control feedback have only a small effect on control performance. Neglecting these state variables does not affect the control performance greatly. Good control effectiveness can be obtained by using only the state variables that have a big effect on the control performance. So the questions become how to determine those state variables which have a big effect on the control performance? and how to design the optimal controller using only the determined state variables? The discrete sub‐optimal control method with partial‐state feedback is investigated in this paper. Firstly, the continuous control system and performance index are both transformed into discrete forms. Then the state variables, which have a big effect on the control performance, are determined using the second‐order sensitivity which is the second‐order derivative of the performance index with respect to control gain. The sub‐optimal controller is finally designed using only the determined state variables. Numerical examples are worked out to demonstrate the application of the proposed control algorithm. It is shown that the relative importance of each state variable can be indicated clearly by the second‐order sensitivity. The sub‐optimal control method presented is effective in reducing maximum responses of the structure. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, a stepwise cluster forecasting (SCF) framework is proposed for monthly streamflow prediction in Xiangxi River, China. The developed SCF method can capture discrete and nonlinear relationships between explanatory and response variables. Cluster trees are generated through the SCF method to reflect complex relationships between independent (i.e. explanatory) and dependent (i.e. response) variables in the hydrologic system without determining specific linear/nonlinear functions. The developed SCF method is applied for monthly streamflow prediction in Xiangxi River based on the local meteorological records as well as some climate index. Comparison among SCF, multiple linear regression, generalized regression neural network, and least square support vector machine methods would be conducted. The results indicate that the SCF method would produce good predictions in both training and testing periods. Besides, the inherent probabilistic characteristics of the SCF predictions are further analyzed. The results obtained by SCF can presented as intervals, formulated by the minimum and maximum predictions as well as the 5 and 95 % percentile values of the predictions, which can reflect the variations in streamflow forecasts. Therefore, the developed SCF method can be applied for monthly streamflow prediction in various watersheds with complicated hydrologic processes.  相似文献   

12.
This paper presents a new optimization approach for designing minimum-cost fail-safe distributions of fluid viscous dampers for seismic retrofitting. Failure is modeled as either complete damage of the dampers or partial degradation of the dampers' properties. In general, this leads to optimization problems with large number of constraints. This may result in high computational costs if all the constraints are simultaneously considered during the optimization analysis. Thus, to reduce the computational effort, the use of a working-set optimization algorithm is proposed in this paper. The main idea is to solve a sequence of relaxed optimization subproblems with a small subset of all constraints. The algorithm terminates once a solution of a subproblem is found that satisfies all the constraints of the problem. The retrofitting cost is minimized with constraints on the interstory drifts at the peripheries of frame structures. The structures considered are subjected to a realistic ensemble of ground motions, and their response is evaluated with time-history analyses. The transient optimization problem is efficiently solved with a gradient-based sequential linear programming algorithm. The gradients of the response functions are calculated with a consistent adjoint sensitivity analysis procedure. Promising results attained for 3-D irregular frames are presented and discussed. The numerical results highlight the fact that the optimized layout and size of the dampers can change significantly even for moderate levels of damage.  相似文献   

13.
A heuristic algorithm is presented for problems which are formulated to find an optimal groundwater remediation strategy with constraints on confined groundwater flow and contaminant transport. The problem is simplified by decoupling the transport constraints from the hydraulic constraints to produce a linear hydraulic control optimization problem. The solution is obtained by an iterative process in which the constraints on hydraulic gradient are updated, using information from transport simulation, and the hydraulic control problem is solved repeatedly. In effect, the transport simulation is used to calibrate the head difference constraint values of the hydraulic control problem. The algorithm is described in detail and its convergence is demonstrated on several examples. The advantages and limitations of the algorithm are discussed.  相似文献   

14.
Two equivalent semi-discrete formulations are presented for the problem of the transient response of soil-structure interaction systems to seismic excitation, considering linear behaviour of the soil material and arbitrary non-linear structural properties. One formulation results in a direct method of analysis in which the motion in the structure and the entire soil medium, rendered finite by an artificial absorbing boundary, is determined simultaneously. The other represents a substructuring technique in which the structure and the soil are analysed separately. The forces induced in the discretized system by the incident seismic motion are obtained as part of the general formulation by using the free-field motion of the unaltered soil as the earthquake input. It is shown that these forces act within the soil region in the direct method, but only on the soil-structure interface in the substructure formulation. Both sets of forces, however, involve only the displacements and tractions acting on the fictitious surface in the unaltered (linear) soil which coincides with the soil-structure interface of the complete system. It is shown, further, that the free-field displacements alone define a minimal set of data for evaluating the seismic response of the structure, since the tractions and displacements on that surface are interrelated. In practice, the minimal set must be obtained by extrapolating the available information, as the free-field ground motion at a site is usually specified at a single reference point.  相似文献   

15.
16.
This paper presents a theoretical study of a predictive active control system used to improve the response of multi‐degree‐of‐freedom (MDOF) structures to earthquakes. As an example a building frame equipped with electrorheological (ER) dampers is considered. The aim of the design is to find a combination of forces that are produced by the ER dampers in order to obtain an optimal structural response. The mechanical response of ER fluid dampers is regulated by an electric field. Linear auto‐regressive model with exogenous input (ARX) is used to predict the displacements and the velocities of the frame in order to overcome the time‐delay problem in the control system. The control forces in the ER devices are calculated at every time step by the optimal control theory (OCT) according to the values of the displacements and of the velocities that are predicted at the next time step at each storey of the structure. A numerical analysis of a seven‐storey ER damped structure is presented as an example. It shows a significant improvement of the structural response when the predictive active control system is applied compared to that of an uncontrolled structure or that of a structure with controlled damping forces with time delay. The structure's displacements and velocities that were used to obtain the optimal control forces were predicted according to an ‘occurring’ earthquake by the ARX model (predictive control). The response was similar to that of the structure with control forces that were calculated from a ‘known’ complete history of the earthquake's displacement and velocity values, and were applied without delay (instantaneous control). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Proper incorporation of linear and quadratic constraints is critical in estimating parameters from a system of equations. These constraints may be used to avoid a trivial solution, to mitigate biases, to guarantee the stability of the estimation, to impose a certain “natural” structure on the system involved, and to incorporate prior knowledge about the system. The Total Least-Squares (TLS) approach as applied to the Errors-In-Variables (EIV) model is the proper method to treat problems where all the data are affected by random errors. A set of efficient algorithms has been developed previously to solve the TLS problem, and a few procedures have been proposed to treat TLS problems with linear constraints and TLS problems with a quadratic constraint. In this contribution, a new algorithm is presented to solve TLS problems with both linear and quadratic constraints. The new algorithm is developed using the Euler-Lagrange theorem while following an optimization process that minimizes a target function. Two numerical examples are employed to demonstrate the use of the new approach in a geodetic setting.  相似文献   

18.
The problem of determining optimal power spectral density models for earthquake excitation which satisfy constraints on total average power, zero crossing rate and which produce the highest response variance in a given linear system is considered. The solution to this problem is obtained using linear programming methods. The resulting solutions are shown to display a highly deterministic structure and, therefore, fail to capture the stochastic nature of the input. A modification to the definition of critical excitation is proposed which takes into account the entropy rate as a measure of uncertainty in the earthquake loads. The resulting problem is solved using calculus of variations and also within linear programming framework. Illustrative examples on specifying seismic inputs for a nuclear power plant and a tall earth dam are considered and the resulting solutions are shown to be realistic.  相似文献   

19.
The relative advantages of several control strategies to reduce the seismic response of multi-storey structures are studied. The strategies involve the separate or combined use of passive base isolation mechanisms and active control forces. The base isolation mechanism is modelled as an equivalent linear soft storey with high damping. The active control forces are selected so that an absorbing boundary is obtained at the top of the structure and non-reflecting or reflecting boundaries are obtained at the base of the building. It is found that the best results are obtained when a passive base isolation system is combined with an active absorbing boundary placed at the top of the building. However, the incremental gains resulting from adding a base isolation system to a structure already controlled by a roof-top active absorbing boundary are significant only for relatively soft base isolation systems. Also, the incremental gains appear to decrease as the number of storeys of the structure increases.  相似文献   

20.
An algorithm to calculate direct velocity feedback gain with limited number of sensors is developed in a simple way such that a certain performance index is minimized according to QN control method. If a limited number of velocity outputs can be measured, full velocity responses of the whole structure can be interpolated based on the mode shapes. By defining the performance index function as a combination of the structure's velocity responses and control forces only, feedback gain can be determined according to QN control method with the external excitation being taken into account throughout the entire algorithm. Control forces are then regulated by the time‐invariant feedback gain matrix. The effective location of the active control devices for a building structure subjected to intermediate‐storey excitation has been determined to be in the three floors adjacent to the vibration source. Hence for the purpose of this paper, only the optimal placement of sensors is verified. It is shown in this paper that if the dynamic behaviour of the structure is well described by a mathematical model, sufficient response reduction effect can be achieved according to the new DVFC algorithm, and the degradation of control performance due to time delay can also be verified. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号