首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salinities occupied by different life stages of bay anchovy (Anchoa mitchilli) were compared over annual cycles at 128 stations in 12 Florida estuaries. The comparison included eight stations in an oligotrophic, groundwater-based estuary in which all life stages were rare or absent. At other stations, adults, eggs, and early larvae occurred in intermediate to high salinities (10-30 psu) with no apparent central salinity tendency. The larva-juvenile transition was marked by an upstream shift to lower salinities (0-15 psu), also with no central salinity tendency. Mean salinities of the juvenile catch were strongly dependent on the salinities of the sampling effort. This dependence was strongest in estuaries that had weak horizontal salinity gradients. Weak salinity gradients were either natural or resulted from estuarine dams. After using nonlinear regression to account for the interaction between effort salinity and catch salinity, catch salinities were found to be similar from year to year within estuaries, but widely different among estuaries, with interestuarine differences ranging as high as 10–13 psu. Lower salinities were occupied by juveniles in estuaries that had long freshwater turnover times. Inherent geomorphic and inflow-related effects on the distribution of prey resources, coupled with an ontogenetic diet shift, are proposed as the explanation for both the habitat shift and the strong interestuarine variability in salinity at capture.  相似文献   

2.
This study presents shear wave splitting analysis results observed at ISP (Isparta) broadband station in the Isparta Angle, southwestern Turkey. We selected 21 good quality seismic events out of nearly 357 earthquakes and calculated splitting parameters (polarization direction of fast wave, ϕ and delay time between fast and slow waves, δt) from mainly SKS and a few SKKS phases of the selected 21 seismic events. Then, we compared calculated splitting parameters at ISP station (56° ≤ ϕ ≤ 205°; 0.37 s ≤ δt ≤ 4 s) with those previously calculated at ANTO (Ankara) and ISK (İstanbul) stations (27° ≤ ϕ ≤ 59°; 0.6 s ≤ δt ≤ 2.4 s and 26° ≤ ϕ ≤ 54°; 0.6 s ≤ δt ≤ 1.5 s) which are located at 230 and 379 km away from ISP station in central and northwestern Turkey, respectively. The backazimuthal variations of the splitting parameters at ISP station indicate a different and complex mantle polarization anisotropy for the Isparta Angle in southwestern Turkey compared to those obtained for Ankara and İstanbul stations.  相似文献   

3.
The structure of the demersal fish assemblage in Sepetiba Bay, southeast Brazil (22°54′–23°04′S, 43°34′–44°10′W) was described and related to environmental variables. A 3-yr long trawl survey (from July 1993 to June 1996) was conducted using a stratified random sampling strategy at 158 stations. One hundred and seven species of fishes in 80 genera and 44 families were identified. Gerreidae and Ariidae made up 30.5% and 28.6%, and 19.8% and 28.1% of the total number and weight, respectively. Sciaenidae, Engraulididae, Sparidae, and Carangidae were other prominent families. Three assemblages existed in the bay: one inhabited shallow, less saline and less transparent water in the inner zone (depth <5 m, transparency <2 m, salinity <30 psu, and slightly higher temperature); another in the outer zone with the opposite situation (depth >10 m, transparency >3 m, salinity >30 psu, and slightly lower temperature); and a third assemblage in the middle zone likely to prefer average values or show no clear preferences. Most species decreased in abundance over the 3-yr period of study. No seasonal change was detected in the assemblage structure, but many species were rare, indicating high spatial and temporal patchiness. Canonical correlation analyses were used to describe and compare the fish assemblages in the three different habitats. The outer zone had the greatest number of species recorded, lowest abundance, highest diversity and evenness, and was comprised mainly byCynossion leiarchus, Prionotus punctatus, Anchoa tricolor, Haemulon steindachneri, Diplectrum radiale, Etropus crossotus, andSphoeroides greeleyi; the inner zone had the lowest number of species recorded but the greatest number of species per sample, highest abundance, lowest diversity and evenness, being comprised mainly byDiapterus rhombeus, Genidens genidens, Cathrops spixii, Chloroschombrus chrysurus, Sciadeichthyes luniscutis, Cetengraulis edentulus, andArchorsargus rhomboidalis; while the third group had the lowest number of species per sample, being comprised by species widely distributed asGerres aprion, G. genidens, Gerres gula, andMicropogonias furnieri. Depth, followed by transparency and salinity, were the primary factors influencing assemblage distribution.  相似文献   

4.
Aerial photographs and GIS analysis were used to map the distribution of tidal marsh vegetation along the salinity gradients of the estuaries of the Altamaha and Satilla Rivers in coastal Georgia. Vegetation maps were constructed from 1993 U.S. Geological Survey Digital Orthophoto Quarter Quads, 1∶77,000-scale color infrared photographs taken in 1974 and 1∶24,000-scale black and white photographs taken in 1953, Changes between years were identified using a GIS overlay analysis. Four vegetation classifications were identified and groundtruthed with field surveys: salt marsh (areas containing primarilySpartina alterniflora), brackish marsh (Spartina cynosuroides andS. alterniflora), Juncus (Juncus roemerianus), and fresh marsh (Zizania aquatica, Zizaniopsis miliacae, and others). There was no evidence for an upstream shift in marsh vegetation along the longitudinal axis of either estuary over the time frame of this analysis, which implies there has not been a long-term increase in salinity. Although the inland extent of each marsh zone was further upstream in the Satilla than the Altamaha, they corresponded to similar average high tide salinities in each estuary: areas classified as salt marsh occurred from the mouth up to where average high tide salinity in the water was approximately 15 psu;Juncus ranged from 21 to 1 psu; brackish marsh ranged from 15 to 1 psu; and fresh marsh was upstream of 1 psu. Approximately 63% of the 6,786 ha of tidal marsh vegetation mapped in the Altamaha and 75% of the 10,220 ha mapped in the Satilla remained the same in all 3 yr.Juncus was the dominant classification in the intermediate regions of both estuaries, and shifts between areas classified asJuncus and either brackish or salt marsh constituted the primary vegetation change between 1953 and 1993 (87% of the changes observed in the Altamaha and 95% of those in the Satilla). This analysis suggests that the broad distribution of tidal marsh vegetation along these two estuaries is driven by salinity, but that at the local scale these are dynamic systems with a larger number of factors affecting the frequently changing borders of vegetation patches.  相似文献   

5.
Decreased salinity and submarine light associated with hurricanes of 2004?C2005 impacted seagrass habitats in the Florida coastal zone. A combination of salinities ??20 and light attenuation ??1.5?m?1 resulting from the freshwater discharge in 2005 were among the drivers for a widespread decrease in the coverage and biomass of Syringodium filiforme (manatee grass) in 2006. These observations provided an opportunity to develop and apply a modeling framework to simulate responses of S. filiforme to variable water quality. The framework connects water column variables to field monitoring of seagrass abundance and salinity growth response experiments. The base model was calibrated with macrophyte abundance observed in southern Indian River Lagoon (IRL) from 2002 to 2007 and tested against shoot data from a different time (1997?C2002) and nearby location in the IRL. Model shoot biomass (gC?m?2) was similar to field observations (r 2?=?0.70) while responding to monthly seasonal fluctuations in salinity and light throughout the 6-year simulations. Field and model results indicated that S. filiforme growth and survival were sensitive to, and increased with, rising salinity throughout 2007. This modeling study emphasizes that discharge, salinity, and submarine light are inter-dependent variables affecting South Florida seagrass habitats on seasonal to inter-annual time scales.  相似文献   

6.
The Laguna Madre has experienced a persistent bloom ofAureoumbra lagunensis for over eight years. The persistence of this bloom may be due in part to the often hypersaline conditions in Laguna Madre (40–60 psu) that favor the growth ofA. lagunensis. Above-normal rainfall in the fall of 1997 reduced the salinities in Baffin Bay from >40 to<20 psu.A. lagunensis cell densities dropped from>106 cells ml−1 in July 1997 to c. 200 cells ml−1 in January 1998. During this time of low brown tide density, phytoplankton biomass generally remained high and the Laguna Madre experienced successive blooms of diatoms (Rhizosolenia spp.) and cyanobacteria. Hypersaline conditions returned in 1998 and brown tide densities increased to>0.5 × 106 cells ml−1 by summer. The extraordinary persistence of the brown tide and the unusual sequence of intense blooms may be related in part to the reduction of zooplankton populations. Microzooplankton populations declined following the above-normal rain in the fall of 1997; populations did not recover until fall 1998. Copepod populations also declined sharply and remained low in Laguna Madre, but recovered by summer 1998 in Baffin Bay. Dilution experiments indicated that microzooplankton grazing and phytoplankton growth were usually balanced when measured during our cruises. The rapid recovery of theA. lagunensis bloom suggests that this alga may be a more resilient component of the Laguna Madre flora than previously suspected.  相似文献   

7.
The preliminary study of streams and rivers from the Roşia Montană area revealed that the concntration of heavy metals— Cd, Mn, Cu, Pb, and Zn—are above accepted limits. The gold extraction method is based on flotation. The most important pollution sources are mine tailings. The determinations were performed for samples collected in: April 2004, July 2004, September 2004, November 2004, February 2005 and May 2005. The highest concentrations were found for cadmium in September 2004: 0.17 mg/L; for copper in September 2004: 1.38 mg/L; for manganese in July 2004: 239.4 mg/L; for lead in May 2005: 0.54 mg/L; and for zinc in September 2004: 35.37 mg/L;. This study involved three small rivers (streams) that flow into the Mureş River and finally into the Danube River, having a great impact on human health and environmental stability in the area. In May 2005, a sample of drinking water from the mining district was also collected.  相似文献   

8.
Beginning in late 1987 Florida Bay experienced a large and unprecedented die-off ofThalassia testudinum. The die-off occurred only in stands of denseT. testudinum. We initiated an experimental monitoring effort in 1989 to attempt to ascertain the cause of this die-off phenomenon. From 1989 to 1995 the abundance and productivity ofT. testudinum was measured at five stations associated with the seagrass die-off and three stations where no die-off had occurred (including one on the seaside of Key Largo, outside of Florida Bay). Early in the study the salinity was very high, exceeding 46 psu, but it has decreased to 29–38 psu in recent years. Seagrass standing crop and either short-shoot density or mass per short shoot declined at nearly all stations, including the stations without die-off (unaffected stations). Over the course of the study, areal productivity declined at three die-off stations; but mass-specific productivity increased at all die-off stations and one unaffected station. Seasonality was pronounced; detrended standardized residuals showed responses for all of the seagrass parameters to be greater than the yearly mean in spring and summer and less than the mean in fall and winter. Detrended residuals also showed decreased productivity to be correlated with increased salinities in the summer despite a long-term record of declining salinities. We propose a conceptual model of the seagrass die-off phenomenon. We document that salinity does contribute to stress onT. testudinum in Florida Bay, but salinity is believed to be only one contributing factor to the loss of seagrasses. The documented increase in the mass-specific productivity ofT. testudinum over the period 1989–1995 suggests seagrasses are growing rapidly in Florida Bay by 1995; we predict that the loss ofT. testudinum may be slowing down and that recovery is possible.  相似文献   

9.
Seagrass both disappeared and recovered within 4 yr in one region of northern Indian River Lagoon (IRL). For the specific area referred to as Turnbull Bay, a relatively pristine area of the IRL, over 100 ha of seagrass completely disappeared from 1996 to 1997 and then recovered by 2000. Based on lagoon-wide mapping from aerial photographs taken every 2–3 years since 1986, coverage of seagrass in Turnbull Bay declined from 124 ha in 1989 to 34 ha by 1999 and increased to 58 ha in 2003. Bi-annual monitoring of fixed seagrass transects tells a more detailed story. Species composition along the Turnbull transect shifted fromHalodule wrightii toRuppia maritima beginning in 1995, and macroalgal abundance increased. By the summer of 1997, seagrass completely disappeared along the transect, as well as in most of the surrounding areas in Turnbull Bay; macroalgae covered much of the sediment surface. No significant water quality changes were detected. Light attenuation and suspended solid values did increase after the seagrass disappeared. Porewater sulfide concentrations, taken after all the grass was gone in 1997, were high (2,000 μM), but did improve by 1998 (1,200 μM). Seagrass recovery was rapid and occurred in the reverse sequence of species loss. Seedlings ofR. maritima were the first colonizers, then patches ofH. wrightii appeared. In 2000,Halophila engelmannii returned in the deeper water (>0.6m). By the summer of 2000, the beds had completely recovered. We conclude that this demise was a natural event caused by a long-term buildup of seagrass biomass and a thick (10–15 cm) layer of organic detritus and ooze. We surmise that such a crash and subsequent recovery may be a natural cycle of decline and recovery within this semirestricted, poorly-flushed area. The frequency of this cycle remains uncertain.  相似文献   

10.
The correspondence between maximum depth of growth (Zmax) for two seagrases,Halodule wrightii andSyringodium filiforme, and the attenuation of diffuse photosynthetically active radiation (KdPAR) were evaluated over a 3.5-yr period in the southern Indian River Lagoon, Florida. The lower limit of seagrass depth distribution was controlled by light availability. Both species grew to the same maximum depth, indicating they have similar minimum light requirements. Based on average annual values of KdPAR, estimates of seagrass minimum light requirements ranged from 24% to 37% of the light just beneath the water surface (Io), much hgiehr than a photic zone for many phytoplankton and macroalgae (1–5% incident light). In less transparent waters of Hobe Sound, where turbidity (NTU) and color (Pt-Co) had their highest concentrations, minimum light requirements for growth were greatest. These results suggest that more sophisticated optical models are needed to identify specific water quality constituents affecting the light environment of seagrasses. Water quality criteria and standards needed to protect seagrasses from decreasing water transparency must be based on parameters that can be routinely measured and reasonably managed.  相似文献   

11.
Hurricanes and other major storms cause acute changes in salinity within Florida's streams and rivers. Winddriven tidal surges that increase salinities may have long-lasting effects on submersed aquatic vegetation (SAV) and the associated fauna. We investigated potential effects of salinity pulses on SAV in Kings Bay, Florida, by subjecting the three most common macrophytes,Vallisneria americana, Myriophyllum spicatum., andHydrilla verticillata, to simulated salinity pulses. In Kings Bay, we documented changes in salinity during three storms in September 2004 and measured biomass and percent cover before and after these storms. During experiments, macrophytes were exposed to salinities of 5‰, 15‰, or 25‰ for 1, 2, or 7 d, with a 28-d recovery period in freshwater. Relative to controls, plants subjected to salinities of 5‰ exhibited few significant decreases in growth and no increase in mortality. All three species exhibited decreased growth in salinities of 15‰ or 25‰.H. verticillata, exhibited 100% mortality at 15‰ and 25‰, irrespective of the duration of exposure.M. spicatum andV. american exhibited increased mortality after 7-d exposures to 15‰ or any exposure to 25‰ Maximum daily salinities in Kings Bay approached or exceeded 15‰ after each of the three storms, with pulses generally lasting less than 2 d. Total aboveground biomass and percent cover of vascular plants, were reduced following the storms.M. spicatum exhibited an 83% decrease in aboveground biomass and an 80% decrease in percent cover.H. verticillata exhibited a 47% and 15% decline in biomass and percent cover, respectively.V. americana, exhibited an 18% increase in aboveground biomass and a 37% increase in percent cover, which suggests greater tolerance of salinity pulses and release from competition with the invasiveH. verticillata andM. spicatum. Our results indicate that rapid, storm-induced pulses of high salinity can have important consequences for submersed aquatic vegetation, restoration efforts, and management of invasive species.  相似文献   

12.
Gold ore-forming fluids of the Tanami region, Northern Australia   总被引:1,自引:0,他引:1  
Fluid inclusion studies have been carried out on major gold deposits and prospects in the Tanami region to determine the compositions of the associated fluids and the processes responsible for gold mineralization. Pre-ore, milky quartz veins contain only two-phase aqueous inclusions with salinities ≤19 wt% NaCl eq. and homogenization temperatures that range from 110 to 410°C. In contrast, the ore-bearing veins typically contain low to moderate salinity (<14 wt% NaCl eq.), H2O + CO2 ± CH4 ± N2-bearing fluids. The CO2-bearing inclusions coexist with two-phase aqueous inclusions that exhibit a wider range of salinities (≤21 wt% NaCl eq.). Post-ore quartz and carbonate veins contain mainly two-phase aqueous inclusions, with a last generation of aqueous inclusions being very CaCl2-rich. Salinities range from 7 to 33 wt% NaCl eq. and homogenization temperatures vary from 62 to 312°C. Gold deposits in the Tanami region are hosted by carbonaceous or iron-rich sedimentary rocks and/or mafic rocks. They formed over a range of depths at temperatures from 200 to 430°C. The Groundrush deposit formed at the greatest temperatures and depths (260–430°C and ≤11 km), whereas deposits in the Tanami goldfield formed at the lowest temperatures (≥200°C) and at the shallowest depths (1.5–5.6 km). There is also evidence in the Tanami goldfield for late-stage isothermal mixing with higher salinity (≤21 wt% NaCl eq.) fluids at temperatures between 100 and 200°C. Other deposits (e.g., The Granites, Callie, and Coyote) formed at intermediate depths and at temperatures ranging from 240 to 360°C. All ore fluids contained CO2 ± N2 ± CH4, with the more deeply formed deposits being enriched in CH4 and higher level deposits being enriched in CO2. Fluids from deposits hosted mainly by sedimentary rocks generally contained appreciable quantities of N2. The one exception is the Tanami goldfield, where the quartz veins were dominated by aqueous inclusions with rare CO2-bearing inclusions. Calculated δ 18O values for the ore fluids range from 3.8 to 8.5‰ and the corresponding δD values range from −89 to −37‰. Measured δ 13C values from CO2 extracted from fluid inclusions ranged from −5.1 to −8.4‰. These data indicate a magmatic or mixed magmatic/metamorphic source for the ore fluids in the Tanami region. Interpretation of the fluid inclusion, alteration, and structural data suggests that mineralization may have occurred via a number of processes. Gold occurs in veins associated with brittle fracturing and other dilational structures, but in the larger deposits, there is also an association with iron-rich rocks or carbonaceous sediments, suggesting that both structural and chemical controls are important. The major mineralization process appears to be boiling/effervescence of a gas-rich fluid, which leads to partitioning of H2S into the vapor phase resulting in gold precipitation. However, some deposits also show evidence of desulfidation by fluid–rock interaction and/or reduction of the ore-fluid by fluid mixing. These latter processes are generally more prevalent in the higher crustal-level deposits.  相似文献   

13.
Optical constituents as suspended particulate matter (SPM), chlorophyll (Chl-a), colored dissolved organic matter (CDOM), and grain sizes were obtained on a transect in the arctic fjord-type estuary Kangerlussuaq (66°) in August 2007 along with optical properties. These comprised diffuse attenuation coefficient of downwelling PAR (K d(PAR)), upwelling PAR (K u(PAR)), particle beam attenuation coefficient (c p), and irradiance reflectance R(−0, PAR). PAR is white light between 400 and 700 nm. The estuary receives melt water from the Greenland Inland Ice and stations covered a transect from the very high turbid melt water outlet to clear marine waters. Results showed a strong spatial variation with high values as for suspended matter concentrations, CDOM, diffuse attenuation coefficient K d(PAR), particle beam attenuation coefficients (c p), and reflectance R(−0, PAR) at the melt water outlet. Values of optical constituents and properties decreased with distance from the melt water outlet to a more or less constant level in central and outer part of the estuary. There was a strong correlation between inorganic suspended matter (SPMI) and diffuse attenuation coefficient K d(PAR) (r 2 = 0.92) and also for particle beam attenuation coefficient (c p; r 2 = 0.93). The obtained SPMI specific attenuation—K d*(PAR) = 0.13 m2 g−1 SPMI—and the SPMI specific particle beam attenuation—c p* = 0.72 m2 g−1—coefficients were about two times higher than average literature values. Irradiance reflectance R(−0, PAR) was comparatively high (0.09−0.20) and showed a high (r 2 = 0.80) correlation with K u(PAR). Scattering dominated relative to absorption—b(PAR)/a(PAR) = 12.3. Results strongly indicated that the high values in the optical properties were related to the very fine particle sizes (mean = 2–6 μm) of the suspended sediment. Data and results are discussed and compared to similar studies from both temperate and tropical estuaries.  相似文献   

14.
The biogeography of marine benthic macroinvertebrates of US Atlantic estuaries and inshore coastal areas from Delaware Bay north to Passamaquoddy Bay was studied to compare recent data with historical biogeographic studies, define physical–chemical factors affecting species’ distributions, and provide information for calibrating benthic indices of environmental condition. Five years (2000–2004) of data from 614 non-polluted, soft-bottom stations from the National Coastal Assessment were analyzed. Multi-dimensional scaling done on Bray-Curtis similarity matrices of species’ relative abundance (547 species) suggested seven subregions: two based on salinity (oligohaline, mesohaline) and five based on latitude. Species’ distribution patterns for stations with salinities ≥18 (n = 558) were strongly influenced by latitude; Cape Cod was a clear faunal transition zone (R = 0.92, p < 0.001). Conversely, for stations with salinities <18 (n = 56), salinity was the more important factor. An ordination of abiotic variables (temperature, salinity, sediment percent silt-clay, depth) correlated well with the ordination of species’ relative abundance data (R = 0.77, p < 0.001). The first split of a multivariate regression tree was by a summer bottom temperature of 20°C at Cape Cod. Salinity and percent silt-clay led to further splits. These results support the existence of Virginian and Transhatteran biogeographic provinces. They constitute a baseline for addressing broad-scale and long-term issues such as global climate change, species invasions, and conservation planning.  相似文献   

15.
The Laguna Madre of South Texas is a shallow coastal lagoon whose dominant primary producers shifted from seagrasses to phytoplankton with the onset of the Texas brown tide, which persisted from 1990 through 1997. Acartia tonsa is the dominant component of the mesozooplankton and forms an important link in both the phytoplankton and detritus-based pelagic food webs. Stable carbon isotope ratios of A. tonsa, as well as the two major primary producers: phytoplankton (as particulate organic carbon) and seagrasses, were measured from March 1989 to October 1991. Zooplankton samples were collected at four locations in the Laguna Madre: two in shallow water (c. 1 m) over seagrass beds and two in slightly deeper water (c. 2–3 m) over a muddy bottom in a secondary bay without seagrasses. We found seasonal trends in the isotopic composition of A. tonsa collected within both habitats as well as distinct differences between the average {ie995-1} values of individuals collected in the two regions. Isotopic ratios of animals collected during the summer months were generally 4–8‰ enriched in 13C compared with those collected in the winter, at all stations. A. tonsa collected over seagrass beds were 2–5‰ more enriched in 13C than those collected over muddy bottoms. These observations suggest carbon derived from seagrasses can be an important source of nutrition for these copepods in summer, especially for copepods living over seagrass beds. The effects of the persistent brown tide decreased the contribution of seagrasses as a carbon source for A. tonsa during the summer of 1991. The pathway by which seagrass carbon enters the diet of A. tonsa is unclear, but the two pathways considered most likely are through copepods feeding on microzooplankton that have fed on bacteria nourished on seagrass carbon, or by copepods feeding directly on particles of seagrass detritus.  相似文献   

16.
The LTE lithium abundances, logN (Li), have been determined for the atmospheres of the four carbon giants AQ And, HK Lyr, UX Dra, and WZ Cas, applying the synthetic-spectrum technique to the LiI λ670.8 nm resonance doublet. We used estimates of the effective temperatures T eff, metallicities, elemental abundances, and carbon-isotope ratios for these stars from the literature [12C/13C]. The resulting lithium abundances depend significantly on the adopted T eff, so that we can find each star’s range of possible logN(Li) values for a given range of effective temperatures (ΔT eff = 200−300 K). The uncertainty in the derived logN(Li) values is 1.3 for AQ And and UX Dra, 0.5 for HK Lyr, and 0.8 for WZ Cas. Our most probable logN(Li) values (or ranges) are −1.25 for AQ And, −1.2 for HK Lyr, −1.0 ≤ logN(Li) ≤ +0.3 for UX Dra, and 4.3 ≤ logN(Li) ≤ 4.8 for WZ Cas. The derived C/O ratios for the stellar atmospheres also depend on T eff. Possible uncertainties in other atmospheric parameters do not change logN(Li) by more than 0.2.  相似文献   

17.
Organisms tend to inhabit predictable portions of estuaries along salinity gradients between the ocean inlets (salinity > 35 psu) and the freshwater tributaries (salinity = 0). Previous studies have suggested that the continuous change in biological community structure along this gradient is relatively rapid at certain salinities. This is the basis for estuarine salinity zonation schemes similar to the classic Venice System (i.e., 0–0.5, 0.5–5, 5–18, 18–30, 30–40, > 40). An extensive database (n > 16,000 samples) of frequency of occurrence of nekton was used to assess evidence for estuarine salinity zones in two southwest Florida estuaries: Tampa Bay and Charlotte Harbor. Rapid change in nekton community structure occurred at each end of the estuarine salinity gradient, with comparatively slow (but steady) change in between. There was little strong evidence for estuarine salinity zones at anything other than low salinities (0.1–1). As previously suggested by other authors, estuaries may be regarded as ecoclines, because they form areas of relatively slow but progressive ecological change. The ends of the estuarine salinity gradient appear to be ecotones (areas of rapid change) at the interfaces with adjacent freshwater and marine habitats. This study highlights the rapid change that occurs in nekton community structure at low salinities, which is of relevance to those managing freshwater inflow to estuaries.  相似文献   

18.
We examined the contrasting, effects of floods and droughts produced by large changes in local climatology on vegetation patterns in Nueces marsh, a semi-arid subtropical salt marsh in south Texas from 1995 to 2005. Climate variations during the study included an initial 4-yr period of moderate conditions, followed by a 2-yr interval of drought, and a recent 4-yr wet period that included large-scale floods. Variation in freshwater inflow, rainfall, and potential evapotranspiration were used in conjunction with field measurements of salinity, inorganic nitrogen, and vegetation structure collected at sites located at varying distances from Nueces Bay. Tidal creek salinities varied with Nueces Bay salinity, with strength of effect inversely related to distance from the bay. Mean (±standard deviation) pore water salinities ranged from 59±54‰ at two high, marsh stations farthest from the bay (10.1 km distant) to 30±21‰ in soil at a low marsh site closest to the bay (0.5 km distant). Mean pore water ammonium was also higher at stations most distant from the bay; nitrate + nitrite did not exhibit a high marsh to low marsh gradient. Nueces Bay salinity decreased substantially when the 10-d cumulative mean daily Nueces River flows exceeded 10 m3 s−1. During periods of low and moderate flood frequency (flows mostly below 10 m3 s−1), vegetation assemblages were dominated by stress-tolerant clonal plants. A catastrophic flood, which immersed vegetation for several weeks between July and September 2002, resulted in extensive plant mortality, but within months, unvegetated areas were rapidly colonized by the obligate annualSalicornia bigelovii. With the end of major flooding by late 2004, plant community structure began a return to pre-drought assemblages at high and middle marsh stations by summer 2005. At the low marsh station, new conditions favored clonal dominants (Spartina alterniflora andBorrichia frutescens), with the latter replacingSalicornia virginica as the dominant species. Our results support the theory that the importance of competition and abiotic stress in determining community composition are inversely related.  相似文献   

19.
 The variation of the oxygen content in olivines, (Fe x Mg1− x )2SiO4, with 0.2 ≤ x ≤ 1.0, was investigated by thermogravimetric measurements. Mass changes occurring upon oxygen activity changes were measured as a function of oxygen activity and cationic composition at 1130 and 1200 °C. During the measurements the samples were in direct contact with gases containing CO, CO2 and N2 and, at a few spots at the bottom of the sample stack, also with SiO2. By fitting experimental data of mass changes to equations derived using point defect thermodynamics, it was shown for olivines with 0.2 ≤ x ≤ 1.0 at 1130 °C and 0.2 ≤ x ≤ 0.7 at 1200 °C within the oxygen activity ranges investigated that the observed variations in the oxygen contents are compatible with cation vacancies and Fe3+ ions on M sites and Fe3+ ions on silicon sites as majority defects if it is assumed that only three types of point defects occur as majority defects. Different cases were considered, closed systems, taking into account that ξ=[Si]/([Si]+[Fe]+[Mg]) is not necessarily equal to 1/3, and olivines in equilibrium with SiO2 or pyroxenes. The oxygen content variations observed in this study are significantly smaller than those reported previously in the literature. It is proposed that these differences are related to the dissolution of Fe into noble metal containers used as sample holders in earlier studies and/or to the presence of secondary phases. Received: 1 November 1995 / Accepted: 15 September 2002 Acknowledgements This work was supported by the Cornell Center for Materials Research (CCMR), a Materials Research Science and Engineering Center of the National Science Foundation (DMR-0079992). The authors thank Mr. Daniel M. DiPasquo and Mr. Jason A. Schick for helping in experimental work.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号