首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A three-dimensional model based on the Princeton Ocean Model (POM) has been implemented to study the circulation of the west coast of India. The model uses a curvilinear orthogonal horizontal grid with higher resolution near the coast (3–9 km) and a terrain following sigma coordinate in the vertical. The model is able to simulate Lakshadweep High and Lakshadweep Low (LL) during the winter and summer monsoons, respectively. During winter, the downwelling processes noticed along the coast help in the formation of temperature inversions. The inversions can be seen even up to the depths of ~50 m, which agrees with the available ARGO data in the region. Model simulations show that coastal upwelling off Kerala is at its peak in July. The intensity of upwelling reduces along the coast towards north. During the existence of LL, there is a cyclonic eddy in the sub-surface waters over the South-Eastern Arabian Sea, with vertical extent up to the depths of 100–150 m and it is strengthened due to the presence of northward counter current in the shelf region. The southerly coastal jet formed along the southern coast as a result of upwelling is noticed a westward shift along with LL. The location of the eddy off Kerala is tilted towards the open ocean with depth and our experiments suggest that this flow can be understood as a first baroclinic mode.  相似文献   

2.
《Continental Shelf Research》2005,25(9):1003-1022
The coastal upwelled waters of the Guajira coast, the most northerly peninsula of South America, were studied on the basis of historical data bases, remotely sensed data, and three oceanographic cruises. The Guajira Peninsula is the locus of particularly strong upwelling because it protrudes into the Caribbean Low-Level Wind Jet and its west coast parallels the direction of the strongest winds. The year-round upwelling varies with the wind forcing: strongest in December–March and July, and weakest in the October–November rainy season. The east–west temperature, salinity and density front that delimits the upwelling lies over the shelf edge in the east of the peninsula but separates from the south-westward trending topography to the west. A coastal westward surface jet geostrophically adjusted to the upwelling flows along the front, and an eastward sub-surface counterflow is trapped against the Guajira continental slope. The undercurrent shoals toward the western limit of the upwelling, Santa Marta, beyond which point it extends to the surface. Some of the westward jet re-circulates inshore with the counterflow but part continues directly west to form an upwelling filament. Much of the mesoscale variation is associated with upwelling filaments, which expel cooler, chlorophyll-rich coastal upwelling waters westward and northward into the Caribbean Sea. Freshwater plumes from the Magdalena and Orinoco rivers influence the area strongly, and outflow from Lake Maracaibo interacts directly with upwelled waters off Guajira. Another important factor is the Aeolian input of dust from the Guajira desert by episodes of offshore winds.  相似文献   

3.
Mesoscale circulation along the Sakhalin Island eastern coast   总被引:1,自引:1,他引:0  
The seasonal and interannual variability of mesoscale circulation along the eastern coast of the Sakhalin Island in the Okhotsk Sea is investigated using the AVISO velocity field and oceanographic data for the period from 1993 to 2016. It is found that mesoscale cyclones with the horizontal dimension of about 100 km occur there predominantly during summer, whereas anticyclones occur predominantly during fall and winter. The cyclones are generated due to a coastal upwelling forced by northward winds and the positive wind stress curl along the Sakhalin coast. The anticyclones are formed due to an inflow of low-salinity Amur River waters from the Sakhalin Gulf intensified by southward winds and the negative wind stress curl in the cold season. The mesoscale cyclones support the high biological productivity at the eastern Sakhalin shelf in July– August.  相似文献   

4.
Monsoon-induced upwelling off the Vietnamese coast   总被引:1,自引:0,他引:1  
During the southwest monsoon from July 8 to 28, 2003, an interdisciplinary cruise took place in the central area of Vietnamese upwelling with “MV Nghien Cuu Bien” in the South China Sea. Physical observations in the upwelling area are analyzed with respect to local/regional wind forcing and far field forcing. Nutrients and phytoplankton measurements are discussed with respect to exchange processes between different water masses. The wind-induced coastal upwelling by local wind forcing is much weaker than in the previous years due to weaker-than-normal winds. This can be attributed to the far field forcing of the 2002/2003 El Niño event which modulates the upwelling intensity. The atmospheric conditions reflect the typical situation after an El Niño event which weakens the wind-induced coastal upwelling, reduces the latent heat flux, and results in higher-than-normal sea-surface temperatures. The general circulation pattern during SW monsoon is driven by the spatial asymmetry in the monsoon forcing. The flow pattern is characterized by an upwelling-induced northward undercurrent and a recently detected southward countercurrent. The resulting stretching deformation of this flow pattern forms an offshore jet between ~12°N and 12.5°N and causes a local enhancement of the upwelling intensity. The upwelling due to stretching deformation is a peculiarity, which makes the Vietnamese upwelling area different to other upwelling areas. A budget of the upwelling components is presented: the strongest contribution in 2003 to the Vietnamese upwelling is the dynamical upwelling due to the clockwise rotation of the northward undercurrent. The internal radius of deformation separates the upwelling area from the offshore area as well as different water masses. Mekong River and the Gulf of Thailand waters which are offshore show nutrient depletion. Therefore, high chlorophyll maxima cannot be explained by nutrient supply from river runoff. The dynamical upwelling brings in nutrient-rich Maximum Salinity Water into the euphotic zone. This causes a subsurface chlorophyll maximum between 20 and 40 m water depth along the northward undercurrent. Deflection from the Redfield ratio in the C:N ratio and negative excess nitrogen identifies the region as nitrogen-limited which may favor cyanobacteria blooms. The consequence is a unique feature in new production: in the upwelling area, new production is based on upwelled nitrate, whereas offshore in the nutrient-depleted Mekong and Gulf of Thailand water, new production is based in addition on nitrogen fixation.  相似文献   

5.
A two-dimensional numerical model is applied to a coastal ocean wherein alongshore elevation and density gradients, normally calculated by a three-dimensional model, are instead supplied by climatologically averaged data for the California Current System between 25 and 40°N. Surface wind stress is also obtained from climatological data. Both surface and bottom boundary layers are resolved in the model calculations; a second moment turbulence closure submodel supplies vertical diffusivities. Near steady state solutions are possible when surface buoyancy flux is imposed at the surface.Model results are as follows: Southward wind stress produces a broad equatorward current with an embedded coastal jet in accordance with previous studies. Positive wind stress curl reduces the jet current and produces a poleward undercurrent which then surfaces as the curl is increased. The jet currents are reduced and poleward flow increases as bottom steepness increases; to a lesser extent, inclusion of the beta effect has a similar effect. The existence of near bottom, poleward or equatorward flow is explained rather simply in terms of the bottom stress resulting from the alongshore balance of surface wind stress and vertically integrated pressure gradient, the latter involving the alongshore surface elevation and density gradient. A further finding is that the upwelling circulation associated with wind stress is confined to the top 200 to 300 m of the ocean along the California coast.  相似文献   

6.
Nearshore currents of the southern Namaqua shelf were investigated using data from a mooring situated three and a half kilometres offshore of Lambert's Bay, downstream of the Cape Columbine upwelling cell, on the west coast of South Africa. This area is susceptible to harmful algal blooms (HABs) and wind-forced variations in currents and water column structure are critical in determining the development, transport and dissipation of blooms. Time series of local wind data, and current and temperature profile data are described for three periods, considered to be representative of the latter part of the upwelling season (27 January–22 February), winter conditions (5–29 May) and the early part of the upwelling season (10 November–12 December) in 2005. Differences observed in mean wind strength and direction between data sets are indicative of seasonal changes in synoptic meteorological conditions. These quasi-seasonal variations in wind forcing affect nearshore current flow, leading to mean northward flow in surface waters early in the upwelling season when equatorward, upwelling-favourable winds are persistent. Mean near-surface currents are southward during the latter part of the upwelling season, consistent with more prolonged periods of relaxation from equatorward winds, and under winter conditions when winds were predominantly poleward. Within these seasonal variations in mean near-surface current direction, two scales of current variability were evident within all data sets: strong inertial oscillations were driven by diurnal winds and introduced vertical shear into the water column enhancing mixing across the thermocline, while sub-inertial current variability was driven by north–south wind reversals at periods of 2–5 days. Sub-inertial currents were found to lag wind reversals by approximately 12 h, with a tendency for near-surface currents to flow poleward in the absence of wind forcing. Consistent with similar sites along the Californian and Iberian coasts, the headland at Cape Columbine is considered to influence currents and circulation patterns during periods of relaxation from upwelling-favourable winds, favouring the development of a nearshore poleward current, leading to poleward advection of warm water, the development of stratification, and the creation of potentially favourable conditions for HAB development.  相似文献   

7.
Numerical simulations with the Regional Ocean Modeling System (ROMS) are used to study the initial spin-up and the evolution of a mesoscale, topographically linked eddy under steady and variable wind conditions. The development of a pool of dense water on the southern Vancouver Island shelf allows cyclonic eddies formed by coastal upwelling off Cape Flattery to spread westward, ultimately contributing to the shelf-wide circulation known as the Juan de Fuca Eddy. This dense water arises through upwelling of water present in the underlying canyon system and tidal mixing over several shallow banks to the north. Tidal mixing is critical to the separation of the eddy from the coast. Although steady upwelling winds with a seasonal mean magnitude (combined with estuarine flow and tides) produce an eddy, only fluctuating winds with timescales and magnitudes typical of the region result in an eddy with a westward extent similar to seasonal observations. With each period of upwelling-favorable winds, newly upwelled water from the coast is entrained into the eddy which grows in size and moves westward. Wind events also significantly affect the baroclinic structure of the eddy. Specifically, during typical summer wind reversals, model surface drifters continue to move cyclonically within the eddy for several days after each downwelling wind event. Under upwelling-favorable wind conditions, model drifters exit the eddy to the southeast as the eddy and coastal upwelling fronts merge into a continuous southeastward shelf break jet.  相似文献   

8.
The zonally averaged UK Meteorological Office (UKMO) zonal mean temperature and zonal winds for the latitudes 8.75°N and 60°N are used to investigate the low-latitude dynamical response to the high latitude sudden stratospheric warming (SSW) events that occurred during winter of the years 1998–1999, 2003–2004 and 2005–2006. The UKMO zonal mean zonal winds at 60°N show a short-term reversal to westward winds in the entire upper stratosphere and lower mesosphere and the low-latitude winds (8.75°N) show enhanced eastward flow in the upper stratosphere and strong westward flow in the lower mesosphere during the major SSW events at high latitudes. The mesosphere and lower thermosphere (MLT) zonal winds acquired by medium frequency (MF) radar at Tirunelveli (8.7°N, 77.8°E) show a change of wind direction from eastward to westward several days before the onset of SSW events and these winds decelerate and weak positive (eastward) winds prevail during the SSW events. The time variation of zonal winds over Tirunelveli is nearly similar to the one reported from high latitudes, except that the latter shows intense eastward winds during the SSW events. Besides, the comparison of daily mean meridional winds over Tirunelveli with those over Collm (52°N, 15°E) show that large equatorial winds are observed over Tirunelveli during the 2005–2006 event and over Collm during the 1998–1999 events. The variable response of MLT dynamics to different SSW events may be explained by the variability of gravity waves.  相似文献   

9.
利用155个宽频带流动地震仪记录的连续地震波形数据,通过有限频层析成像技术,反演获得了华南地区上地幔的高分辨率P波三维速度模型.结果显示,大致以江南造山带为界,研究区域南部的华夏块体的大部分区域上地幔存在一个清晰的低速异常构造,而研究区北部的扬子克拉通的大部分区域上地幔则存在高速异常结构,并且这些速度异常体都向下延伸到地幔转换带.一个重要的结果是在(27°N,118°E)处观测到通过410-km界面的上涌流,并且在上升的过程中逐渐向西和向北扩展,显示为华夏块体深部200~400 km深度的大范围低速异常,可能为华夏块体广泛分布的新生代岩浆活动提供深部来源.更重要的是华夏块体通过410-km界面上涌流在上涌的过程中向北延伸,越过江南造山带"侵入"到扬子克拉通的南部地区,造成了扬子克拉通较厚的岩石圈对应的高速异常体向南倾斜的假象.最后,位于117°E(郯庐断裂的南端)以东的扬子克拉通岩石圈已经被"活化",即被来自南部热的软流圈物质替而代之.同时,推断在华夏块体下方地幔转换带内低速异常体可能是与海南地幔柱有关.海南地幔柱和(27°N,118°E)410-km界面上涌流的关系还有待于今后更大范围地震台阵反演研究进行验证.  相似文献   

10.
A linear coastal-trapped-wave (CTW) model is used to examine the effects of large-scale winds, with time scale ranging from a few days to a few weeks, on the West India Coastal Current (WICC), particularly on the shelf off the central west coast of India. We show that unlike the seasonal cycle of WICC, which is primarily forced by the winds along the east coast of India, the high-frequency WICC is mostly driven by the west-coast winds. Nevertheless, the influence of winds as far as Sri Lanka and east coast of India cannot be neglected. Simple numerical experiments with the CTW model show that the strong current observed at Goa (15° N) compared to Bhatkal (13° N) and Jaigarh (17° N) is due to two factors: (1) the superposition of local and remote CTWs and (2) the widening of shelf width north of Goa, which decreases the amplitude of the currents poleward of Goa. If the local winds are weak, the amplitude of current decreases poleward due to friction, and the current at the south leads the north. We also note that the observed phase difference between sea level and alongshore current at Goa could be attributed to the propagation of remotely forced higher-order modes of CTWs.  相似文献   

11.
In the present study, an attempt was made to understand the role of South China Sea (SCS) convection associated with northerly cold surges and Typhoon Peipah in initiating Cyclone Sidr in the Bay of Bengal (BoB). The variation of air sea fluxes during the entire history of Cyclone Sidr tracking before its landfall over Bangladesh was also studied. The presence of cold surges in the north SCS associated with heavy rainfall episodes has been noticed at the southern Gulf of Tonkin coast prior to the formation of Typhoon Peipah. Subsequently, these surges migrated south, which resulted in intensification of a deep convection on reaching the Vietnamese coast. During the same period in the western Pacific, Typhoon Peipah developed, propagating in the westward direction and entering the SCS. Analysis of geostationary water vapour images, mean sea level pressure, and surface wind maps clearly depicted the transport of convective cloud clusters, moisture, and westward momentum from Typhoon Peipah to the deep convection cells over the SCS. Consequently, the existing deep convection over the Vietnamese coast resulted in a westward direction and entered the Gulf of Thailand and Andaman Sea. The availability of higher latent heat fluxes, warmer sea surface temperatures, and suitable atmospheric conditions over this region favoured the formation of a tropical depression in the Andaman Sea. This depression further intensified in the southeast BoB, resulting in the formation of Cyclone Sidr. NCEP/NCAR wind fields and air-sea fluxes revealed left asymmetry surface winds and higher latent heat flux on the left side of the track during the intensification phase of Sidr.  相似文献   

12.
The spatial dynamics of geomagnetic variations and pulsations, auroras, and riometer absorption during the development of the main phase of the extremely strong magnetic storm of November 7–8, 2004, has been studied. It has been indicated that intense disturbances were observed in the early morning sector of auroral latitudes rather than in the nighttime sector, as usually takes place during magnetic storms. The unusual spatial dynamics was revealed at the beginning of the storm main phase. A rapid poleward expansion of disturbances from geomagnetic latitudes of 65°–66° to 74°–75° and the development of the so-called polar cap substorm with a negative bay amplitude of up to 2500 nT, accompanied by precipitation of energetic electrons (riometer absorption) and generation of Pi2–Pi3 pulsations, were observed when IMF B z was about ?45 nT. The geomagnetic activity maximum subsequently sharply shifted equatorward to 60°–61°. The spatial dynamics of the westward electrojet, Pi2–Pi3 geomagnetic pulsations, and riometer absorption was similar, which can indicate that the source of these phenomena is common.  相似文献   

13.
We investigate the relationship between sea surface temperature (SST) cooling and upwelling along Papua New Guinea’s (PNG) north coast before the onset of El Niño events using a hindcast experiment with a high-resolution ocean general circulation model. Coastal upwelling and related SST cooling appear along PNG north coast during the boreal winter before the onsets of six El Niño events occurring during 1981–2005. Relatively cool SSTs appear along PNG north coast during that time, when anomalous northwesterly surface wind stress, which can cause coastal upwelling by offshore Ekman transport appearing over the region. In addition, anomalous cooling tendencies of SST are observed, accompanying anomalous upward velocities at the base of the mixed layer and shallow anomalies of 27°C isotherm depth. It is also shown that entrainment cooling plays an important role in the cooling of the mixed layer temperature in this region.  相似文献   

14.
Marine magnetic data collected along 37 east-west lines off the Washington and Oregon coast between 42°N and 48°N westward to 144°W have been interpreted. Our interpretation shows that decrease in the offsets of the anomalies across the Surveyor fracture zone and the presence of undisturbed north-south lineations east of it are the result of continuous asymmetric spreading along the Surveyor fracture zone. The survey has delineated the extension of the Blanco fracture zone north-westward to about 133°W. Movement along the Blanco fracture zone was initiated about 15 million years ago. The undisturbed north-south trend of the magnetic anomalies between latitudes 42°N and 48°N and longitudes 133°W and 136°W is interpreted as the interval (22 to 15 my) during which the Juan de Fuca and Gorda rises were one continuous structure. West of 137° the Surveyor, Sedna and three minor fracture zones are mapped.  相似文献   

15.
Through a set of observations including satellite, cruise and mooring data during May-July 1997 the transition between the downwelling and upwelling regimes off Galicia has been characterized. The poleward flow, typical of downwelling, was associated with a series of mesoscale eddies and interacted with coastal freshwater inputs. The poleward flow along the continental slope was separated into an offshore branch and a nearshore branch by a well-defined equatorward flow and both associated with a prominent salinity maximum. With the onset of upwelling-favorable winds, equatorward flow was established over the entire shelf. At the same time, a buoyant, warm surface layer spread out over the shelf from the Rías as water previously forced in by southerly winds was flushed out by the upwelling winds. The completed transition to summertime coastal upwelling took place after the cruise but was evident in satellite images. A conceptual model is used to demonstrate that the coastal orientation with respect to the upwelling winds enhances offshore flow outside the Rías and displaces the poleward flow offshore after several days of upwelling.  相似文献   

16.
The western boundary current in the southern South China Sea (SCS) in summer does not always flow northward along the Indo-China Peninsula, it leaves the southeast coast of peninsula around 10–14°N, forming a strong eastward jet called “Vietnam Coastal Current” or “Southeast Vietnam Offshore Current” (SVOC). It is known that the wind stress curl is the major driving factor responsible for this current. In this paper, we carry on the study of the separation position, strength and forming time of this current. A connected single-layer/two-layer model is employed here to study these problems. According to the numerical experiments and analyses of the vorticity dynamics, it is found that, the local wind stress curl (including the northern cyclonic and the southern anticyclonic wind forcing curl), the nonlinear term, the topographic effect, the planetary vorticity advection and the water exchange between the SCS and Java Sea via the Sunda Shelf have an important effect on both the position where this current leaves the coast and its strength; when there is an inflow via the Sunda Shelf, the current is stronger and the separation position is more northward; whereas the water stratification, the coastline and the inflow of Kuroshio have little effect on its separation. In fact, two opposite flowing currents, the northward SVOC and the southward western branch of the cyclonic eddy to its north near the Indo-China Peninsula, collide with each other, and the strength of these two currents determine the separation position of the SVOC. Origin of the SVOC may be driven by the local negative wind stress curl in the middle SCS in mid-spring, this current flows along the coast of the Indo-China Peninsula and leaves the coast at high latitude, flowing northeastward; once the local positive wind stress curl near the northern Indo-China Peninsula or the negative one near the southern Indo-China Peninsula is large enough, this current will begin to leave the coast at low latitude.  相似文献   

17.
The geomagnetic and auroral response to the variations in the solar wind dynamic pressure (Pd) are investigated in the periods of positive values of the IMF B z component. It is shown that the growth of Pd results in the intensification of luminosity along the auroral oval and in the poleward expansion of the poleward boundary of luminosity (PBL) in the nightside part of the oval by ~7° in latitude at a velocity of ~0.5 km/s and is accompanied by an enhancement of the DP2-type current system. A decrease in Pd, accompanied by an abrupt reversal of the IMF B y polarity from positive to negative, results in an enhancement of the westward electrojet and in a poleward shift of PBL and electrojet center. The conclusion has been made that the available three types of auroral response to Pd variations differ in the azimuthal velocity of the luminosity region or particle precipitation along the auroral oval: V 1 ~ 30–40 km/s, V 2 ~ 10, and V 3 ~ 1 km/s.  相似文献   

18.
The role of wind-driven upwelling in stratifying a semiarid bay in the Gulf of California is demonstrated with observations in Bahía Concepción, Baja California Sur, Mexico. The stratification in Bahía Concepción is related to the seasonal heat transfer from the atmosphere as well as to cold water intrusions forced by wind-driven upwelling. During winter, the water column is relatively well-mixed by atmospheric cooling and by northwesterly, downwelling-favorable, winds that typically exceed 10 m/s. During summer, the water column is gradually heated and becomes stratified because of the heat flux from the atmosphere. The wind field shifts from downwelling-favorable to upwelling-favorable at the beginning of summer, i.e., the winds become predominantly southeasterly. The reversal of wind direction triggers a major cold water intrusion at the beginning of the summer season that drops the temperature of the entire water column by 3–5 °C. The persistent upwelling-favorable winds during the summer provide a continuous cold water supply that helps maintain the stratification of the bay.  相似文献   

19.
A three-dimensional regional ocean model is used to examine the impact of positive Indian ocean dipole (pIOD) events on the coastal upwelling features at the southwest coast of India (SWCI). Two model experiments are carried out with different surface boundary conditions that prevailed in the normal and pIOD years from 1982 to 2010. Model experiments demonstrate the weakening of coastal upwelling at the SWCI in the pIOD years. The reduced southward meridional wind stress off the SWCI leads to comparatively lower offshore Ekman transport during August–October in the pIOD years to that in normal years. The suppressed coastal upwelling results in warmer sea surface temperature and deeper thermocline in the pIOD years during June–September. The offshore spatial extent of upwelled colder (<?22 °C) water was up to 75.5° E in August–September in normal years that was limited up to 76.2° E in pIOD years. The heat budget analysis reveals the decreased contribution of vertical entrainment process to the mixed layer cooling in pIOD years which is almost half of that of normal years in October. The net heat flux term shows warming tendency during May–November with a higher magnitude (+?0.4 °C day?1) in normal years than pIOD years (+?0.28 °C day?1). The biological productivity is found to reduce during the pIOD years as the concentration of phytoplankton and zooplankton decreases over the region of coastal upwelling at SWCI. Nitrate concentration in the pIOD years dropped by half during August–September and dropped by an order of magnitude in October as compared to its ambient concentration of 13 μmol L?1 in normal years.  相似文献   

20.
Geophysical data contiguous with the Narmada-Son lineament suggests its possible extension westward into the Arabian Sea and eastward up to the Shillong Plateau. The airborne magnetic anomaly map of the north Arabian Sea delineates a linear trend of magnetic anomalies in line with the Narmada-Son lineament. This group of magnetic anomalies, spreading over 20°N to 22°N, starts near the west coast of India at 21°N, 69°30′E and extends to the Murray Ridge. The tectonic feature represented by this group of magnetic anomalies is buried by a thick layer of sediments. This westward extension of the lineament is also reflected in the average Bouguer gravity anomaly map of the Indian Ocean. Towards the east, the gravity and magnetic data delineate a subsurface linear tectonic feature which extends in line with this lineament to the eastern syntaxial bend. These various geophysical signatures further suggest the lineament to be a typical rift-like structure. The tectonic implications of the lineament, which extends from the western to the eastern margins of the Indian plate, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号