首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Romano  P.  Contarino  L.  Zuccarello  F. 《Solar physics》2003,218(1-2):137-150
Using a 28-hour time series of line-of-sight magnetograms taken by the Michelson Doppler Imager (MDI), we determined the magnetic flux variations and the rate of magnetic helicity transport at the footpoints of a filament in active region NOAA 8375. The filament was characterized by a positive helicity change due to shearing motions in both footpoints and showed several partial eruptions during the observing time. In particular, we considered 4 events registered in the Hα daily reports of Solar Geophysical Data. We found a strong temporal correlation between filament eruptions and helicity transport from the photospheric magnetic structures at the filament footpoints into the corona: in at least one footpoint, all of the events were preceded by an evident increase and followed by a small decrease of the emerging magnetic flux and of the magnetic helicity change due to shearing motions. We compared these two mechanisms of helicity transport and found that the predominant role to drive filament instability is played by emergence of new magnetic flux from the convection zone.  相似文献   

2.
B. Inhester  J. Birn  M. Hesse 《Solar physics》1992,138(2):257-281
It has been demonstrated in the past that single, two-dimensional coronal arcades are very unlikely driven unstable by a simple shear of the photospheric footpoints of the magnetic field lines. By means of two-dimensional, time-dependent MHD simulations, we present evidence that a resistive instability can result if in addition to the footpoint shear a slow motion of the footpoints towards the photospheric neutral line is included. Unlike the model recently proposed by van Ballegooijen and Martens (1989), the photospheric footpoint velocity in our model is nonsingular and the shear dominates everywhere. Starting from a planar potential field geometry for the arcade, we find that after some time a current sheet is formed which is unstable with respect to the tearing instability. The time of its onset scales with the logarithm of the magnetic diffusivity assumed in our calculation. In its nonlinear phase, a quasi-stationary situation arises in the vicinity of the x-line with an almost constant reconnection rate. The height of the x-line above the photosphere and the distance of the separatrix footpoints remain almost constant in this phase, while the helical flux tube, formed above the neutral line, continuously grows in size.  相似文献   

3.
The heating of the solar corona by resistive turbulence of coronal magnetic fields is considered. The theory of this process, based on the Taylor-Heyvaerts-Priest hypothesis and a magnetic relaxation equation, is developed. Such an approach allows one to obtain the successive magnetic reconnection configurations and energy balance of the coronal magnetic field in response to prescribed motions of the photospheric footpoints. Two specific models of the coronal magnetic configuration are investigated, namely an array of closely packed flux tubes and a two-dimensional magnetic arcade.  相似文献   

4.
We examine the excitation of oscillations in the magnetic network of the Sun through the footpoint motion of photospheric magnetic flux tubes located in intergranular lanes. The motion is derived from a time series of high-resolution G-band and continuum filtergrams using an object-tracking technique. We model the response of the flux tube to the footpoint motion in terms of the Klein-Gordon equation, which is solved analytically as an initial value problem for transverse (kink) waves. We compute the wave energy flux in upward-propagating transverse waves. In general we find that the injection of energy into the chromosphere occurs in short-duration pulses, which would lead to a time variability in chromospheric emission that is incompatible with observations. Therefore, we consider the effects of turbulent convective flows on flux tubes in intergranular lanes. The turbulent flows are simulated by adding high-frequency motions (periods 5-50 s) with an amplitude of 1 km s(-1). The latter are simulated by adding random velocity fluctuations to the observationally determined velocities. In this case, we find that the energy flux is much less intermittent and can in principle carry adequate energy for chromospheric heating.  相似文献   

5.
Observations with the balloon-borne Sunrise/Imaging Magnetograph eXperiment (IMaX) provide high spatial resolution (roughly 100 km at disk center) measurements of the magnetic field in the photosphere of the quiet Sun. To investigate the magnetic structure of the chromosphere and corona, we extrapolate these photospheric measurements into the upper solar atmosphere and analyze a 22-minute long time series with a cadence of 33 seconds. Using the extrapolated magnetic-field lines as tracer, we investigate temporal evolution of the magnetic connectivity in the quiet Sun’s atmosphere. The majority of magnetic loops are asymmetric in the sense that the photospheric field strength at the loop foot points is very different. We find that the magnetic connectivity of the loops changes rapidly with a typical connection recycling time of about 3±1 minutes in the upper solar atmosphere and 12±4 minutes in the photosphere. This is considerably shorter than previously found. Nonetheless, our estimate of the energy released by the associated magnetic-reconnection processes is not likely to be the sole source for heating the chromosphere and corona in the quiet Sun.  相似文献   

6.
The magnetostatic equilibrium of a coronal loop in response to slow twisting of the photospheric footpoints is investigated. A numerical code is used to solve the full non-linear 2-D axisymmetric problem, extending earlier linearised models which assume weak twist and large aspect ratio. It is found that often the core of the loop tends to contract into a region of strong longitudinal field while the outer part expands. It is shown that, away from the photospheric footpoints, the equilibrium is very well approximated by a straight 1-D cylindrical model. This idea is used to develop a simple method for prescribing the footpoint angular displacement and calculating the equilibrium.  相似文献   

7.
We present data and modelling for the quiet Sun that strongly suggest a ubiquitous small-scale atmospheric heating mechanism that is driven solely by converging supergranular flows. A possible energy source for such events is the power transfer to the plasma via the work done on the magnetic field by photospheric convective flows, which exert drag on the footpoints of magnetic structures. We present evidence of small-scale energy release events driven directly by the hydrodynamic forces that act on the magnetic elements in the photosphere, as a result of supergranular-scale flows. We show strong spatial and temporal correlation between quiet-Sun soft X-ray emission (from Yohkoh SXT) and SOHO MDI-derived flux removal events driven by deduced photospheric flows. We also present a simple model of heating generated by flux submergence, based on particle acceleration by converging magnetic mirrors. In the near future, high resolution soft X-ray images from XRT on the Hinode satellite will allow definitive, quantitative verification of our results. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

8.
Démoulin  P.  Priest  E. R. 《Solar physics》1997,175(1):123-155
Dissipation of magnetic energy in the corona requires the creation of very fine scale-lengths because of the high magnetic Reynolds number of the plasma. The formation of current sheets is a natural possible solution to this problem and it is now known that a magnetic field that is stressed by continous photospheric motions through a series of equilibria can easily form such sheets. Furthermore, in a large class of 3D magnetic fields without null points there are locations, called quasi-separatrix layers (QSLs), where the field-line linkage changes drastically. They are the relevant generalisation of normal separatrices to configurations without nulls: along them concentrated electric currents are formed by smooth boundary motions and 3D magnetic reconnection takes place when the layers are thin enough. With a homogenous normal magnetic field component at the boundaries, the existence of thin enough QSL to dissipate magnetic energy rapidly requires that the field is formed by flux tubes that are twisted by a few turns. However, the photospheric field is not homogeneous but is fragmented into a large number of thin flux tubes. We show that such thin tubes imply the presence of a large number of very thin QSLs in the corona. The main parameter on which their presence depends is the ratio between the magnetic flux located outside the flux tubes to the flux inside. The thickness of the QSLs is approximately given by the distance between neighbouring flux tubes multiplied by the ratio of fluxes to a power between two and three (depending on the density of flux tubes). Because most of the photospheric magnetic flux is confined in thin flux tubes, very thin QSLs are present in the corona with a thickness much smaller than the flux tube size. We suggest that a turbulent resistivity is triggered in a QSL, which then rapidly evolves into a dynamic current sheet that releases energy by fast reconnection at a rate that we estimate to be sufficient to heat the corona. We conclude that the fragmentation of the photospheric magnetic field stimulates the dissipation of magnetic energy in the corona.  相似文献   

9.
Tracking of TRACE Ultraviolet Flare Footpoints   总被引:1,自引:0,他引:1  
Solar flares produce bright, compact sources of UV emission in the lower atmosphere, identified as flare footpoints. Observed at high time cadence with the Transition Region and Coronal Explorer, groups of UV footpoints define flare `ribbons' which move as the flare progresses. We have developed a procedure to track individual bright kernels within flare ribbons, enabling us to study the motion of these sites of excitation through the solar chromosphere. We have applied this to a flare observed by TRACE in the 1600 Å passband at 2-s cadence. In this event, the footpoints have an average speed of 15 km s–1, with a superposed random `meandering' component, consistent with the footpoint magnetic field being anchored around the edges of granular cells. Examining the brightness as a function of time, we find that the timing of peaks in brightness is significantly correlated with the timing of peaks in the product of the footpoint speed with the line-of-sight magnetic field strength at the footpoint location; in other words with a measure of the coronal reconnection rate.  相似文献   

10.
Magnetic helicity quantifies the degree to which the magnetic field in a volume is globally sheared and/or twisted. This quantity is believed to play a key role in solar activity due to its conservation property. Helicity is continuously injected into the corona during the evolution of active regions (ARs). To better understand and quantify the role of magnetic helicity in solar activity, the distribution of magnetic helicity flux in ARs needs to be studied. The helicity distribution can be computed from the temporal evolution of photospheric magnetograms of ARs such as the ones provided by SDO/HMI and Hinode/SOT. Most recent analyses of photospheric helicity flux derived a proxy to the helicity-flux density based on the relative rotation rate of photospheric magnetic footpoints. Although this proxy allows a good estimate of the photospheric helicity flux, it is still not a true helicity flux density because it does not take into account the connectivity of the magnetic field lines. For the first time, we implement a helicity density that takes this connectivity into account. To use it for future observational studies, we tested the method and its precision on several types of models involving different patterns of helicity injection. We also tested it on more complex configurations – from magnetohydrodynamics (MHD) simulations – containing quasi-separatrix layers. We demonstrate that this connectivity-based proxy is best-suited to map the true distribution of photospheric helicity injection.  相似文献   

11.
We present a series of numerical simulations of the quiet-Sun plasma threaded by magnetic fields that extend from the upper convection zone into the low corona. We discuss an efficient, simplified approximation to the physics of optically thick radiative transport through the surface layers, and investigate the effects of convective turbulence on the magnetic structure of the Sun’s atmosphere in an initially unipolar (open field) region. We find that the net Poynting flux below the surface is on average directed toward the interior, while in the photosphere and chromosphere the net flow of electromagnetic energy is outward into the solar corona. Overturning convective motions between these layers driven by rapid radiative cooling appears to be the source of energy for the oppositely directed fluxes of electromagnetic energy.  相似文献   

12.
High-cadence, high-resolution magnetograms have shown that the quiet-Sun photosphere is very dynamic in nature. It is comprised of discrete magnetic fragments which are characterized by four key processes – emergence, coalescence, fragmentation and cancellation. All of this will have consequences for the magnetic field in the corona above. The aim of this study is to gauge the effect of the behavior of the photospheric flux fragments on the quiet-Sun corona. By considering a sequence of observed magnetograms, photospheric flux fragments are represented by a series of point sources and the resulting potential field arising from them is examined. It is found that the quiet-Sun coronal flux is generally recycled on time scales considerably shorter than the corresponding time scales for the recycling of photospheric flux. From the motions of photospheric fragments alone, a recycling time of coronal flux of around 3 h is found. However, it is found that the amount of reconnection driven by the motions of fragments is comparable to the amount driven by emergence and cancellation of flux, resulting in a net flux replacement time for the corona of only 1.4 h. The technique used in this study was briefly presented in a short research letter (R. M. Close et al., Astrophys. J., 612, L81, 2004); here the technique is discussed in far greater depth. Furthermore, an estimate is made of the currents required to flow along separator field lines in order to sustain the observed heating rates (assuming separator reconnection is the key mechanism by which the solar corona is heated).  相似文献   

13.
Longcope  D. W. 《Solar physics》1996,169(1):91-121
Magnetic field enters the corona from the interior of the Sun through isolated magnetic features on the solar surface. These features correspond to the tops of submerged magnetic flux tubes, and coronal field lines often connect one flux tube to another, defining a pattern of inter-linkage. Using a model field, in which flux tubes are represented as point magnetic charges, it is possible to quantify this inter-linkage. If the coronal field were current-free then motions of the magnetic features would change the inter-linkage through implicit (vacuum) magnetic reconnection. Without reconnection the conductive corona develops currents to avoid changing the flux linkage. This current forms singular layers (ribbons) flowing along topologically significant field lines called separators. Current ribbons store magnetic energy as internal stress in the field: the amount of energy stored is a function of the flux tube displacement. To explore this process we develop a model called the minimum-current corona (MCC) which approximates the current arising on a separator in response to displacement of photospheric flux. This permits a model of the quasi-static evolution of the corona above a complex active region. We also introduce flaring to rapidly change the flux inter-linkage between magnetic features when the internal stress on a separator becomes too large. This eliminates the separator current and releases the energy stored by it. Implementation of the MCC in two examples reveals repeated flaring during the evolution of simple active regions, releasing anywhere from 1027–1029 ergs, at intervals of hours. Combining the energy and frequency gives a general expression for heat deposition due to flaring (i.e., reconnection).  相似文献   

14.
The changes in the Sun occurring at human time-scales can be pinned down to the presence of magnetic fields. These fields determine the structure of the outer solar atmosphere and, therefore, they are responsible for all the energetic part of the solar spectrum, including the UV. Our understanding of the magnetic fields existing at the base of the atmosphere has changed during the last years. The new spectro-polarimeters reveal an ubiquitous magnetic field, present even in the quiet regions. They are widespread and of complex topology, containing far more (unsigned) magnetic flux and magnetic energy that all traditional manifestations of solar activity. These so-called quiet Sun magnetic fields are the subject of the contribution. I summarize their main observational properties, as well as the models put forward to explain them. According to the common wisdom, they may be generated by a turbulent dynamo driven by convective motions. Their true physical role is not understood yet, but it may be consequential both for the Sun (e.g., in determining the structure of the quiet corona), and for other astronomical objects (e.g., if a turbulent dynamo operates in the Sun, the same mechanism provides a very efficient mean of creating surface magnetic fields in all stars with convective envelopes). I discuss the impact of the quiet Sun fields on the transition region and corona, trying to point out the UV signatures of those fields.  相似文献   

15.
Deng  Yuanyong  Wang  Jingxiu  Yan  Yihua  Zhang  Jun 《Solar physics》2001,204(1-2):11-26
Based on photospheric vector magnetograms obtained at Huairou Solar Observing Station, we have studied the evolution of magnetic nonpotentiality in NOAA AR 9077 from 11 to 15 July 2000. We focus our analysis on the daily change of nonpotential characteristics in the photospheric magnetic field preceding the `Bastille Day' flare. We have identified the following evolving patterns: (1) The shear-angle distribution underwent dramatic change in the filament channel. At a key site of the filament environment, the magnetic shear changed sign from positive to negative. (2) The old current systems disrupted, and new but weaker systems formed before this major event. Similar changes are identified for the longitudinal current helicity. (3) The source field weakened before the flare, and the density of free magnetic energy decreased at the photospheric level. These obvious changes lasted at least nine hours before the `Bastille Day' flare, and they took place where a large amount of magnetic flux disappeared in magnetic flux cancellation. The site of dramatic changes is also found to coincide with the base of helical magnetic ropes which were seen in a 3-D force-free reconstruction. We suggest that the observed evolution of the magnetic nonpotentiality represents a continuous transportation of magnetic energy and complexity from the lower atmosphere to the corona. This transportation seems to be responsible for the energy build-up for the major flare. Moreover, the slow magnetic reconnection in the lower atmosphere, observed as magnetic flux cancellation, appears to play a key role in this energy build-up process. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1014258426134  相似文献   

16.
Schrijver  Carolus J.  Title  Alan M. 《Solar physics》2002,207(2):223-240
We study the statistical properties of the connectivity of the corona over the quiet Sun by analyzing the potential magnetic field above the central area of source planes sprinkled randomly with some 300 magnetic monopoles each. We find that the field is generally more complex than one might infer from a study of the field within the source plane alone, or from a study of the 3D field around a small number of sources. Whereas a given source most commonly connects to only its nearest neighbors, it may connect to up to several dozen sources; only a weak trend relates the source strength and the number of connections. The connections between pairs of sources define volumes, or domains, of connectivity. Domains that have a finite cross section with the source plane are enclosed by surfaces that contain a pair of null points. In contrast, most of the bounding surfaces of domains that lie above the source plane appear not to contain null points. We argue that the above findings imply (i) that we should expect at best a weak correlation between coronal brightness and the flux in an underlying flux concentration, and (ii) that the low-lying chromospheric field lines (such as are observable in H) provide information on source connections that are largely complementary to those traced by the higher-reaching coronal field lines (observable in the extreme ultraviolet). We compare sample TRACE and SOHO/MDI observations of the quiet corona and photosphere with our finding that the number density of null points within the source plane closely matches that of the sources; because we find essentially no foci of coronal brightening away from significant photospheric magnetic flux concentrations, we conclude that coronal heating at such null points does not contribute significantly to the overall heating. We argue that the divergence of field lines towards multiple sources restricts the propagation of braids and twists, so that any coronal heating that is associated with the dissipation of braids induced by footpoint shuffling in mixed-polarity network is likely (a) to occur predominantly low in the corona, and (b) to be relatively more efficient in quiet Sun than in active regions for a given field strength and loop length.  相似文献   

17.
We carried out a multi-wavelength study of a Coronal Mass Ejection (CME) and an associated flare, occurring on 12 May 1997. We present a detailed investigation of magnetic-field variations in NOAA Active Region 8038 which was observed on the Sun during 7??C?16 May 1997. This region was quiet and decaying and produced only a very small flare activity during its disk passage. However, on 12 May 1997 it produced a CME and associated medium-size 1B/C1.3 flare. Detailed analyses of H?? filtergrams and SOHO/MDI magnetograms revealed continual but discrete surge activity, and emergence and cancellation of flux in this active region. The movie of these magnetograms revealed the two important results that the major opposite polarities of pre-existing region as well as in the emerging-flux region were approaching towards each other and moving magnetic features (MMF) were ejected from the major north polarity at a quasi-periodicity of about ten hours during 10??C?13 May 1997. These activities were probably caused by magnetic reconnection in the lower atmosphere driven by photospheric convergence motions, which were evident in magnetograms. The quantitative measurements of magnetic-field variations such as magnetic flux, gradient, and sunspot rotation revealed that in this active region, free energy was slowly being stored in the corona. Slow low-layer magnetic reconnection may be responsible for the storage of magnetic free energy in the corona and the formation of a sigmoidal core field or a flux rope leading to the eventual eruption. The occurrence of EUV brightenings in the sigmoidal core field prior to the rise of a flux rope suggests that the eruption was triggered by the inner tether-cutting reconnection, but not the external breakout reconnection. An impulsive acceleration, revealed from fast separation of the H?? ribbons of the first 150 seconds, suggests that the CME accelerated in the inner corona, which is also consistent with the temporal profile of the reconnection electric field. Based on observations and analysis we propose a qualitative model, and we conclude that the mass ejections, filament eruption, CME, and subsequent flare were connected with one another and should be regarded within the framework of a solar eruption.  相似文献   

18.
We study the propagation of a train of acoustic shocks guided by diverging magnetic fields through a static model of the solar chromospheric network and transition region. Our results show that for initial flux densities of the order 106 ergs cm–2 s–1 in the lower chromosphere, the local efficiency of acoustic transmission into the corona can be much higher than calculated for a plane parallel atmosphere. Thus acoustic energy will tend to be deposited at higher chromospheric levels in diverging magnetic fields, and magnetic guiding may well influence the temperature profile of the network and plages. But the total flux that can be transmitted into the corona along such diverging fields is severely limited, since the magnetic elements occupy a small fractional area of the photosphere, and the transmission efficiency is a rapidly decreasing function of initial acoustic flux density. We conclude that diverging magnetic fields and a varying ratio of specific heats are not likely to allow high frequency shocks to dissipate high enough in a static atmosphere, to contribute significantly to the coronal energy balance. This result strengthens the view that acoustic waves do not heat the solar corona. However, the conclusion may be sensitive to the influence of observed mass motions, such as spicules.  相似文献   

19.
The generally accepted scenario for the events leading up to a two-ribbon flare is that a magnetic arcade (supporting a plage filament) responds to the slow photospheric motions of its footpoints by evolving passively through a series of (largely) force-free equilibria. At some critical amount of shear the configuration becomes unstable and erupts outwards. Subsequently, the field closes back down in the manner modelled by Kopp and Pneuman (1976); but the main problem has been to explain the eruptive instability.The present paper analyses the magnetohydrodynamic stability of several possible arcade configurations, including the dominant stabilizing effect of line-tying at the photospheric footpoints. One low-lying force-free structure is found to be stable regardless of the shear; also some of the arcades that lie on the upper branch of the equilibrium curves are shown to be stable. However, another force-free configuration appears more likely to represent the preflare structure. It consists of a large flux tube, anchored at its ends and surrounded by an arcade, so that the field transverse to the arcade axis contains a magnetic island. Such a configuration is found to become unstable when either the length of the structure, the twist of the flux tube, or the height of the island becomes too great; the higher the tube is situated, the smaller is the twist required for instability.  相似文献   

20.
The solar atmosphere may be divided into a number of isolated active components and a quiet residue. On the largest scale the latter is dominated by a general dipole magnetic field of strength 1–2 G; its observable components are flux concentrations in supergranule boundary regions (SBRs), spicules, mottles and polar plumes. The velocity field in the SBRs is discussed. There are continuous gas streaming motions up and down between the photosphere and the corona; spicules may be mainly downward moving gas.A unifying model is developed of these various components, as well as the heating mechanism of the whole quiet atmosphere. Highly ordered velocity fields of the cell, together with a gravitational wave, cause a vertical magnetic force tube to collapse below a critical level; the result is an upward eruption of a vortex ring at the Alfvén velocity. The complex mass velocity pattern may explain spicules, mottles and plumes, as well as unobservable streaming motions.The quiet atmosphere is divided into regions above SBRs and those above the inner parts of the cells. Hydromagnetic eruptions from the former may account for the entire heat requirement of the atmosphere. The model atmosphere has a chromosphere-corona transition layer which bulges upwards above the SBRs and so conforms with EUV data. The energy and mass balances in this solar atmosphere are considered, and it is also shown to be consistent with the radio data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号