首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present experimental investigations study the effect of layering over rigid base on the dynamic behavior of foundation under vertical mode of vibration. Model block vibration tests were conducted on a rigid surface footing resting on different layered soil systems underlain by rigid base. The rigid base was used to simulate the presence of bedrock. The tests were carried out in a pit of size 2.0?m?×?2.0?m?×?1.9?m (deep) using a concrete footing of size 0.4?m?×?0.4?m?×?0.1?m. A rotating mass type mechanical oscillator was used for inducing vibration in vertical direction. Different layered soil systems were prepared within the total depth of 1,200?mm over the rigid base. Locally available gravel and fly ash were used to form different layered soil systems. In total, 132 nos. model block vibration tests in vertical mode were conducted for different layering and loading combinations. The experimentally obtained results are also compared with the results obtained from the analysis by mass-spring-dashpot and equivalent half-space theory.  相似文献   

2.
A simplified analytical method is presented for the vertical dynamic analysis of a rigid, massive, cylindrical foundation embedded in a poroelastic soil layer. The foundation is subjected to a time‐harmonic vertical loading and is perfectly bonded to the surrounding soil in the vertical direction. The soil underlying the foundation base is represented by a single‐layered poroelastic soil based on rigid bedrock while the soil at the side of the foundation is modeled as an independent poroelastic layer composed of a series of infinitesimally thin layers. The behavior of the soil is governed by Biot's poroelastodynamic theory and its governing equations are solved by the use of Hankel integral transform. The contact surface between the foundation base and the soil is smooth and fully permeable. The dynamic interaction problem is solved following standard numerical procedures. The accuracy of the present solution is verified by comparisons with the well‐known solutions obtained from other approaches for both the elastodynamic interaction problem and poroelastodynamic interaction problem. Numerical results for the vertical dynamic impedance and response factor of the foundation are presented to demonstrate the influence of nondimensional frequency of excitation, soil layer thickness, poroelastic material parameters, depth ratio and mass ratio on the dynamic response of a rigid foundation embedded in a poroelastic soil layer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
包汉营  陈文化  张谦 《岩土力学》2018,39(9):3277-3284
针对地铁竖向振动在成层地基中的传播,提出了移动荷载作用下层状地基的分析模型。基于该模型,利用狄拉克函数及三重傅里叶变换将时空域内单个移动简谐荷载转换为频率-波数域内的荷载,结合薄层法和移动坐标系法推导了单个移动简谐荷载和移动简谐线荷载作用下三维层状地基动力响应的解析解,并给出了移动简谐线荷载动力响应解析解中参数n的经验取值范围;分析了荷载的移动速度对层状地基动力响应的影响以及弹性模量、泊松比、阻尼比和荷载频率对土体临界速度的影响。结果表明:荷载的移动速度对不同频带的动力响应的影响范围不同;移动速度对低频响应的影响程度大于对高频响应的影响程度;相比于泊松比和阻尼比,弹性模量对土体临界速度的影响最大;频率越接近荷载振动频率的振动响应,其幅值越大,临界速度越小。  相似文献   

4.
赵爽  余俊  刘新源  胡钟伟 《岩土力学》2022,43(1):152-159
从水平简谐振动作用下二维土?悬臂式刚性墙计算模型出发,基于波动力学理论,同时考虑土层的竖向应力和竖向位移,对二维场地中悬臂式刚性墙的动力响应特性进行了解析研究。首先对土层振动方程进行变换,得到关于体积应变? 的方程,通过分离变量法进行求解,再回代振动方程得到关于位移运动方程的非齐次方程,结合墙与土层的相互作用条件及远场边界条件得到振动方程定解,进而得到地下刚性墙墙上土压力、墙底剪力及弯矩的更为严格的解析解。将所得解与忽略竖向应力解、忽略竖向位移解进行了对比。研究表明,所得解能多反映出一个共振频率,且当土体泊松比大于0.45时,忽略竖向位移解失去意义。通过参数分析,表明激励频率与土体阻尼因子对墙体动力响应影响较大,考虑的振动模态阶数对墙体动力响应影响较小。  相似文献   

5.
A finite element method is developed for the study of elastic wave propagation in layered ground environments. The formulation is based on a spectral finite‐element approach using a mixture of high‐order element shape functions and wave solutions. The numerical method provides solutions to vibration transmission on and within layered elastic waveguides. Examples of its use include the theoretical analysis of transmission of vibrations in the vicinity of the surface of the ground. The mathematical model is two dimensional, and the interior of the ground is modelled as an elastic layer overlying a rigid foundation. An analysis of the natural modes of free vibration in a single layer and two layers is presented and compared with known results. In addition the forced response of the layers, for which the surface is assumed to be subjected to a harmonic point force load is shown. These results also include an illustration of the attenuation of surface vibration due to ‘wave impedance blocks’ in the ‘near field’ of the source up to a frequency of 200 Hz for two soil types. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A numerical procedure is described for the analysis of vertical deformation of smooth, rigid foundations of arbitrary shape on homogeneous and layered soil media. The contact area at the interface of the foundation and soil medium is approximated by square subdivisions. The response of the system is then obtained from the superposition of the influence of the individual subdivisions. The flexibility influence coefficients are based on equivalent smooth, rigid circular areas with the same contact area as the square subdivisions. For foundations on a homogeneous, isotropic elastic half-space, the flexibility coefficients are given analytically by the integrated forms of the Boussinesq's solution. For a layered soil medium, the flexibility coefficients are determined from an axisymmetric finite element analysis which is essentially two dimensional. Thus, there is no necessity for a full three-dimensional finite element analysis. Comparison with solutions obtained using the integral transform technique for smooth, rigid rectangular foundations on a homogeneous, isotropic elastic half-space shows good agreement. Parametric solutions are presented for the response of rectangular foundations on some ‘typical’ soil profiles. The use of a simplified method to estimate the settlement of rectangular foundations on a layered soil medium by superposing solutions for homogeneous, elastic strata is discussed.  相似文献   

7.
熊浩  高广运  王小岗 《岩土力学》2011,32(4):1131-1137
空沟是一种常用的连续隔振屏障,可以有效地降低人工振动。以位移为变量的二维格子法在波动问题计算中具有良好的适应性、高效性,兼备有限元与差分法的一些优点,应用该法针对层状地基中作用于路堤上的交通荷载引起振动的空沟竖向隔振问题进行了参数研究,分别考虑了上软下硬地基和上硬下软地基两种情况。研究结果表明:空沟宽度对隔振效果的影响较小;空沟深度与空沟的位置是影响隔振效果的关键因素,它们相互关联,其取值应综合考虑;在上述两类层状地基中,若空沟深度与上层土的厚度接近或相等均对竖向隔振不利;路堤高度越大对竖向隔振效果越不利。  相似文献   

8.
This paper presents a new method to derive the analytical solution for the vertical impedance of an end‐bearing pile in viscoelastic soil. The soil is assumed as a homogeneous and isotropic layer, and the pile is considered as a one‐dimensional Euler rod. Considering both the vertical and radial displacements of soil and soil–pile coupled vibration, the governing equations of the soil and pile are established. The volumetric strain of soil is obtained by transformation on the equations of soil and variable separation method. Then the vertical and radial displacements of soil are obtained accordingly. The displacement response and impedance function of pile are derived based on the continuity assumption of the displacement and stress between the pile and soil. The solution is verified by being compared with an existing solution obtained by introducing potential functions. Furthermore, a comparison with two other simplified solutions is conducted. Numerical examples are presented to analyze the vibration characteristics of the pile. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
This paper emphasizes on the dynamic interaction of two closely spaced embedded square or rectangular foundations under the action of machine vibration. One of the foundations is excited with a known vibration source placed on the top of it, called the active foundation. The objective is to study the effect of dynamic motion of the active foundation on the nearby passive foundation through a layered soil medium. The analysis is performed numerically by using the explicit finite difference code FLAC 3D . The soil profile is assumed to obey the Mohr–Coulomb yield criteria with non-linear failure envelope. The analysis is performed under sinusoidal dynamic loading with varying amplitude. Under the dynamic excitation, the settlement behavior of the interacting foundations is studied by varying the spacing between the foundations. In addition, the variation of vertical normal and shear stress developed beneath the interacting foundations is also explored. The present theoretical investigation indicates that the settlement and vertical normal stress below the active foundation is generally found to be higher than that obtained for the passive foundation, whereas the shear stress response below the foundations follows the reverse trend.  相似文献   

10.
根据Biot动力控制方程,运用Fourier积分变换技术,并按照混合边值条件和连续条件建立了上覆单相弹性层饱和地基上刚性条形基础竖向振动的对偶积分方程,并将其退化到完全饱和地基的情形。通过引进正交多项式将对偶积分方程化为线性代数方程组,从而得到了上覆单相弹性层的饱和地基上刚性条形基础的竖向振动规律。通过算例分析得到,单相弹性层的厚度对动力柔度系数有着较大的影响,在单相弹性层厚度较小时(小于条形基础半宽的0.1),动力柔度系数曲线与完全饱和的基本重合;完全饱和地基上刚性基础的竖向振动是上覆弹性层厚度Hn=0的特例。  相似文献   

11.
含饱和土的层状场地的动力响应   总被引:1,自引:0,他引:1  
利用精确的土层和半空间动力刚度矩阵求解了含饱和土的层状场地的动力响应,给出了含饱和土层状场地的自由场(入射P波、SV波)、动力Green函数及刚性条形基础动力刚度的计算方法,由此建立的场地模型更接近实际情况。建议方法的退化结果与单相场地结果一致。研究了界面不同透水条件对基础动力刚度的影响,并与相应单相场地结果进行了对比。研究表明:界面透水条件对竖向弹簧系数影响最大,饱和土体中孔隙水对场地动力响应具有不可忽视的影响。  相似文献   

12.
Elastic lateral dynamic impedance functions are defined as the ratio of the lateral dynamic force/moment to the corresponding lateral displacement/rotation at the top ending of a foundation at very small strains. Elastic lateral dynamic impedance functions have a defining influence on the natural frequencies of offshore wind turbines supported on cylindrical shell type foundations, such as suction caissons, bucket foundations, and monopiles. This paper considers the coupled horizontal and rocking vibration of a cylindrical shell type foundation embedded in a fully saturated poroelastic seabed in contact with a seawater half‐space. The formulation of the coupled seawater–shell–seabed vibration problem is simplified by treating the shell as a rigid one. The rigid shell vibration problem is approached by the integral equation method using ring‐load Green's functions for a layered seawater‐seabed half‐space. By considering the boundary conditions at the shell–soil interface, the shell vibration problem is reduced to Fredholm integral equations. Through an analysis of the corresponding Cauchy singular equations, the intrinsic singular characteristics of the problem are rendered explicit. With the singularities incorporated into the solution representation, an effective numerical method involving Gauss–Chebyshev method is developed for the governing Fredholm equations. Selected numerical results for the dynamic contact load distributions, displacements of the shell, and lateral dynamic impedance functions are examined for different shell length–radius ratio, poroelastic materials, and frequencies of excitation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
高广运  张博  李伟 《岩土力学》2012,33(2):349-353
为了研究水平-摇摆耦合激振作用下层状和竖向非均匀地基波阻板(简称WIB)的三维隔振效果,基于薄层法研究层状介质中波传播问题的高效性和边界元法处理无限域问题的精确性,建立了以薄层法基本解答为格林函数的半解析边界元法。分别对上软下硬和上硬下软层状和竖向非均匀地基中WIB的三维隔振效果进行了分析。研究表明,地基的分层参数和非均匀性对WIB的隔振效果有显著影响,上硬下软地基的隔振效果稍好于上软下硬的情况。  相似文献   

14.
王霜  陈建生  周鹏 《岩土力学》2015,36(10):2847-2854
对由弱透水黏土层、细砂层和强透水砂砾层组成的三层堤基进行了管涌发展的砂槽模型试验,为了便于观察分析,细砂层由各种颜色的细彩砂依次排列在砂砾石层上表面,通过改变彩砂层的厚度分析研究了不同细砂层厚度对管涌发生、发展机制及过程的影响。试验结果表明,三层堤基细砂层厚度的不同使管涌发生的临界水力梯度、涌砂量和通道发展的速度不同,与双层堤基有很大区别。临界水力梯度是由多种元素决定的,包括破坏土体的性质及其整体性等;细砂层的存在使流量在渗透变形初期对涌砂不敏感;在试验中发生的相同水位下多次间歇性涌砂,其原因一方面是颗粒在运动过程中发生堵塞,另一方面是通道边界的土体失去支撑发生应力释放,抵抗力随着时间逐渐减小。  相似文献   

15.
马建军  韩书娟  高笑娟  李达  郭颖 《岩土力学》2022,43(6):1705-1716
桩周土场受冲刷作用的变化是部分埋置单桩结构失效的主要原因之一。工程中土场多呈层状,此类场地中桩基的力学特性研究日益受到关注。为精确揭示冲刷作用对层状土场中部分埋置单桩动力响应的影响,基于改进Vlasov地基模型,利用Hamilton原理建立层状土场中横向受荷单桩的动力学模型。利用有限差分法求解受冲刷作用单桩的固有频率,实现对冲刷作用下土−结构相互作用系统的准确建模,进而用Green函数法求得单桩受迫振动的解析解。通过数值计算和参数分析,研究了层状土场的物理特性对受冲刷作用部分埋置单桩动力响应的影响。结果表明:基于改进Vlaosv地基模型建立的层状土场中部分埋置单桩动力学模型可精确预测冲刷作用对桩基动力学特性的影响。随冲刷程度加剧,层状土场中单桩的第一阶固有频率显著降低,改进Vlasov地基模型中各层土体的地基反力系数均减小,剪切系数则增大。当冲刷至非埋置段桩长 ( 为桩长)时,部分埋置单桩在动荷载作用下出现横向失稳现象。随底层土体厚度增加,各冲刷等级下单桩的第一阶固有频率均增大。如果第1层土的弹性模量增大了约0.43倍、1.14倍、1.86倍,则冲刷等级为0时单桩第一阶固有频率分别增大了约8.9%、19.5%、27.1%。  相似文献   

16.
Experimental and numerical investigations into the bearing capacity of circular footing on geogrid-reinforced compacted granular fill layer overlying on natural clay deposit have been conducted in this study. A total of 8 field tests were carried out using circular model rigid footing with a diameter of 0.30 m. 3D numerical analyses were performed to simulate soil behavior using finite element program Plaxis 3D Foundation. The results from the FE analysis are in very good agreement with the experimental observations. It is shown that the degree of improvement depends on thickness of granular fill layer and properties and configuration of geogrid layers. Parameters of the experimental and numerical analyses include depth of first reinforcement, vertical spacing of reinforcement layers. The results indicate that the use of geogrid-reinforced granular fill layers over natural clay soils has considerable effects on the bearing capacity and significantly reduces the lateral displacement and vertical displacement of the footing.  相似文献   

17.
The dynamic response of an end bearing pile embedded in a linear visco‐elastic soil layer with hysteretic type damping is theoretically investigated when the pile is subjected to a time‐harmonic vertical loading at the pile top. The soil is modeled as a three‐dimensional axisymmetric continuum in which both its radial and vertical displacements are taken into account. The pile is assumed to be vertical, elastic and of uniform circular cross section. By using two potential functions to decompose the displacements of the soil layer and utilizing the separation of variables technique, the dynamic equilibrium equation is uncoupled and solved. At the interface of soil‐pile system, the boundary conditions of displacement continuity and force equilibrium are invoked to derive a closed‐form solution of the vertical dynamic response of the pile in frequency domain. The corresponding inverted solutions in time domain for the velocity response of a pile subjected to a semi‐sine excitation force applied at the pile top are obtained by means of inverse Fourier transform and the convolution theorem. A comparison with two other simplified solutions has been performed to verify the more rigorous solutions presented in this paper. Using the developed solutions, a parametric study has also been conducted to investigate the influence of the major parameters of the soil‐pile system on the vertical vibration characteristics of the pile. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
某超大型离心机基础埋置于复杂软土地基中,自振特性研究十分关键。分别建立离心机基础的等效土弹簧模型和实体地基模型,对比分析不同地基模拟方法下的模态分析结果;开展基于白噪声激励的动力时程分析,分析地基参振质量对自振特性的影响。结果表明:超大型离心机基础前两阶模态振型分别为水平横向和纵向的摆动;基于不同的地基模拟方法计算得到的振型结果一致,自振频率相差在10%以内;超大型离心机基础结构的前两阶地基参振质量分别为1.376倍和0.998倍的基础总质量,地基参振质量使得结构的振动响应幅值下降50%左右,频谱峰值频率减小约2 Hz。结论对大型埋置式动力机器基础的自振特性研究具有指导和参考意义。  相似文献   

19.
埋地管道应用广泛,而在管道铺设过程中穿越的大范围可液化土层,面临着地震作用下管道液化上浮和变形破坏等风险。依托某临海火电站直埋管道工程,采用室内振动台模型试验方法,分析了海洋液化地基中输水管道的变形特性和动力响应,探究了砾石压重法和排水板加固法的抗液化效果。结果表明:海洋饱和砂土地基在动力荷载作用下发生液化,不同深度土层加速度出现不同程度的衰减,上部土层加速度衰减幅度最大且沿深度减小;不同土层中土体超孔压先快速上升达到峰值并维持稳定直至振动停止;在振动过程中,管道发生了明显上浮,且上浮速率逐渐降低,当振动停止时达到最大上浮位移;砾石压重法对于管道抗液化效果不佳,加速度和超孔压时程曲线与标准工况基本一致,中上层砂土出现明显液化现象,但超孔压峰值存在一定下降,且管道上浮与标准工况相比下降65.4%;而宽、窄排水板加固法效果更加显著,整体土层液化现象得到抑制,超孔压峰值与标准工况相比较小,且在振动期间持续降低,平均峰值与标准工况相比分别下降48.30%和38.91%,同时管道竖向位移与标准工况相比降幅均超过100%。在实际工程应用中,推荐使用排水板加固方案,同时需要选择适当的排水通道宽度。  相似文献   

20.
碎石桩复合地基性状的弹塑性分析   总被引:3,自引:2,他引:1  
刘杰  赵明华 《岩土力学》2006,27(10):1678-1684
基于双剪统一强度理论,利用复合地基中碎石桩与桩周土的竖向位移相等、侧向变形协调与连续的条件,通过弹塑性理论对碎石桩复合地基在竖向荷载作用下的应力、应变状态进行了弹塑性分析,探讨了权系数b的取值方法;讨论了b的大小对复合地基承载及变形性状的影响,并推出了作用在复合地基上的荷载、碎石桩所分担的荷载及加固区压缩量与桩周土的塑性区半径的关系的系列解析算式;提出了对于碎石桩复合地基的设计应该实行承载力和沉降双重控制的设计思想。为验证该方法的可行性,将模型试验的结果与计算结果进行了对比,结果表明该方法对碎石桩复合地基的设计具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号