首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
本文基于2007年和2008年生长季内蒙古羊草和大针茅草原湍流观测资料,分析了两种典型草原下垫面生长季的不同土壤水分条件下水汽和二氧化碳通量交换特征及其控制因子。主要结果如下:(1)在植被生长峰值期,日尺度上,干旱条件下土壤湿度是潜热通量的主要控制因子,而土壤水分条件较好时潜热通量主要受净辐射控制。(2)与大针茅草原相比,羊草草原叶面积指数较大,水分条件较好时,其潜热通量平均值更大,CO2吸收能力更强,吸收CO2更多;但在土壤水分胁迫出现时,羊草草原叶面的气孔闭合度急剧增加,大针茅草原的潜热通量、和CO2吸收反而更大,表现出更为耐旱的植被特性。(3)地表导度可以用来解释土壤水分条件对羊草和大针茅草原碳水通量的影响。  相似文献   

2.
Anemometer and CO2 concentration data from temporary campaigns performed at six CARBOEUROFLUX forest sites were used to estimate the importance of non-turbulent fluxes in nighttime conditions. While storage was observed to be significant only during periods of both low turbulence and low advection, the advective fluxes strongly influence the nocturnal CO2 balance, with the exception of almost flat and highly homogeneous sites. On the basis of the main factors determining the onset of advective fluxes, the ‘advection velocity’, which takes net radiation and local topography into account, was introduced as a criterion to characterise the conditions of storage enrichment/depletion. Comparative analyses of the six sites showed several common features of the advective fluxes but also some substantial differences. In particular, all sites where advection occurs show the onset of a boundary layer characterised by a downslope flow, negative vertical velocities and negative vertical CO2 concentration gradients during nighttime. As a consequence, vertical advection was observed to be positive at all sites, which corresponds to a removal of CO2 from the ecosystem. The main differences between sites are the distance from the ridge, which influences the boundary-layer depth, and the sign of the mean horizontal CO2 concentration gradients, which is probably determined by the source/sink distribution. As a consequence, both positive and negative horizontal advective fluxes (corresponding respectively to CO2 removal from the ecosystem and to CO2 supply to the ecosystem) were observed. Conclusive results on the importance of non-turbulent components in the mass balance require, however, further experimental investigations at sites with different topographies, slopes, different land covers, which would allow a more comprehensive analysis of the processes underlying the occurrence of advective fluxes. The quantification of these processes would help to better quantify nocturnal CO2 exchange rates.  相似文献   

3.
A land-surface model (LSM) is coupled with a large-eddy simulation (LES) model to investigate the vegetation-atmosphere exchange of heat, water vapour, and carbon dioxide (CO2) in heterogeneous landscapes. The dissimilarity of scalar transport in the lower convective boundary layer is quantified in several ways: eddy diffusivity, spatial structure of the scalar fields, and spatial and temporal variations in the surface fluxes of these scalars. The results show that eddy diffusivities differ among the three scalars, by up to 10–12%, in the surface layer; the difference is partly attributed to the influence of top-down diffusion. The turbulence-organized structures of CO2 bear more resemblance to those of water vapour than those of the potential temperature. The surface fluxes when coupled with the flow aloft show large spatial variations even with perfectly homogeneous surface conditions and constant solar radiation forcing across the horizontal simulation domain. In general, the surface sensible heat flux shows the greatest spatial and temporal variations, and the CO2 flux the least. Furthermore, our results show that the one-dimensional land-surface model scheme underestimates the surface heat flux by 3–8% and overestimates the water vapour and CO2 fluxes by 2–8% and 1–9%, respectively, as compared to the flux simulated with the coupled LES-LSM.  相似文献   

4.
Turbulent fluxes obtained using the conventional eddy covariance approach result in erratic results with large time fluctuations in extremely stable conditions. This can limit efforts to estimate components of the nocturnal energy budget and respiratory CO2 fluxes. Well-organized fluxes that show a clear dependence on turbulent intensity were obtained when multiresolution decomposition was used to estimate turbulent exchanges. CO2, heat and water vapour fluxes were observed at a site in the eastern Amazon basin that had been cleared for agricultural purposes. Temporal scales of the carbon transfer were determined and shown to be similar to those of latent heat, but as much as three times larger than those of sensible heat. CO2 eddy diffusivities at the temporal scales on which most of the vertical CO2 exchange occurs are shown to be 50 times larger than the eddy diffusivity for heat. A process associated with the vertical scale of the scalar accumulation layer is suggested to explain these different scales and turbulent diffusivities of carbon and sensible heat transfer. For an appreciable range of turbulence intensities, the observed vertical turbulent carbon exchange is insufficient to account for the locally respired CO2 estimated independently. Evidence that shallow drainage currents may account for this is given.  相似文献   

5.
SiB2和SiB3对高寒草甸和茶树地表能量通量模拟的比较   总被引:1,自引:1,他引:0  
运用简单生物圈模式第2版(SiB2)和第3版(SiB3),分别模拟青藏高原两个观测站(那曲、安多)和长江三角洲苏州东山观测站的近地面能量收支,并与相应观测数据进行比较研究,分析SiB2、SiB3模拟结果和观测资料产生差异的原因,以此来认识上述地区地表能量收支特点。结果表明,SiB2和SiB3模拟的近地面能量通量与观测数据有较好的一致性。对感热通量,那曲和安多站SiB3比SiB2模拟的结果更接近观测资料,但苏州站SiB2模拟的结果与观测资料更吻合;对潜热通量,SiB3比SiB2模拟的日变化与观测资料更一致,SiB3的模拟结果与观测资料(除苏州站外)相关系数都在0.8以上;对地表土壤热通量,SiB2和SiB3模拟结果与观测数据相关系数都在0.8以上;对净辐射通量,SiB2和SiB3模拟结果与观测资料相关系数接近1.0。与SiB2相比,SiB3引用通用陆面模式的土壤描述并增加对冠层空间层温度、湿度和痕量气体的预报,使其能够改善潜热通量和土壤热通量的模拟,但对复杂下垫面的感热和净辐射通量模拟能力提高不明显。  相似文献   

6.
A mesoscale meteorological model (FOOT3DK) is coupled with a gas exchange model to simulate surface fluxes of CO2 and H2O under field conditions. The gas exchange model consists of a C3 single leaf photosynthesis sub-model and an extended big leaf (sun/shade) sub-model that divides the canopy into sunlit and shaded fractions. Simulated CO2 fluxes of the stand-alone version of the gas exchange model correspond well to eddy-covariance measurements at a test site in a rural area in the west of Germany. The coupled FOOT3DK/gas exchange model is validated for the diurnal cycle at singular grid points, and delivers realistic fluxes with respect to their order of magnitude and to the general daily course. Compared to the Jarvis-based big leaf scheme, simulations of latent heat fluxes with a photosynthesis-based scheme for stomatal conductance are more realistic. As expected, flux averages are strongly influenced by the underlying land cover. While the simulated net ecosystem exchange is highly correlated with leaf area index, this correlation is much weaker for the latent heat flux. Photosynthetic CO2 uptake is associated with transpirational water loss via the stomata, and the resulting opposing surface fluxes of CO2 and H2O are reproduced with the model approach. Over vegetated surfaces it is shown that the coupling of a photosynthesis-based gas exchange model with the land-surface scheme of a mesoscale model results in more realistic simulated latent heat fluxes.  相似文献   

7.
Vertical turbulent fluxes of water vapour, carbon dioxide, and sensible heat were measured from 16 August to the 28 September 2006 near the city centre of Münster in north-west Germany. In comparison to results of measurements above homogeneous ecosystem sites, the CO2 fluxes above the urban investigation area showed more peaks and higher variances during the course of a day, probably caused by traffic and other varying, anthropogenic sources. The main goal of this study is the introduction and establishment of a new gap filling procedure using radial basis function (RBF) neural networks, which is also applicable under complex environmental conditions. We applied adapted RBF neural networks within a combined modular expert system of neural networks as an innovative approach to fill data gaps in micrometeorological flux time series. We found that RBF networks are superior to multi-layer perceptron (MLP) neural networks in the reproduction of the highly variable turbulent fluxes. In addition, we enhanced the methodology in the field of quality assessment for eddy covariance data. An RBF neural network mapping system was used to identify conditions of a turbulence regime that allows reliable quantification of turbulent fluxes through finding an acceptable minimum of the friction velocity. For the data analysed in this study, the minimum acceptable friction velocity was found to be 0.15 m s−1. The obtained CO2 fluxes, measured on a tower at 65 m a.g.l., reached average values of 12 μmol m−2 s−1 and fell to nighttime minimum values of 3 μmol m −2 s−1. Mean daily CO2 emissions of 21 g CO2 m−2d −1 were obtained during our 6-week experiment. Hence, the city centre of Münster appeared to be a significant source of CO2. The half-hourly average values of water vapour fluxes ranged between 0.062 and 0.989 mmol m−2 s−1and showed lower variances than the simultaneously measured fluxes of CO2.  相似文献   

8.
We present an approach for assessing the impact of systematic biases in measured energy fluxes on CO2 flux estimates obtained from open-path eddy-covariance systems. In our analysis, we present equations to analyse the propagation of errors through the Webb, Pearman, and Leuning (WPL) algorithm [Quart. J. Roy. Meteorol. Soc. 106, 85–100, 1980] that is widely used to account for density fluctuations on CO2 flux measurements. Our results suggest that incomplete energy balance closure does not necessarily lead to an underestimation of CO2 fluxes despite the existence of surface energy imbalance; either an overestimation or underestimation of CO2 fluxes is possible depending on local atmospheric conditions and measurement errors in the sensible heat, latent heat, and CO2 fluxes. We use open-path eddy-covariance fluxes measured over a black spruce forest in interior Alaska to explore several energy imbalance scenarios and their consequences for CO2 fluxes.  相似文献   

9.
A Eulerian-Lagrangian canopy microclimate model wasdeveloped with the aim of discerning physical frombiophysical controls of CO2 and H2O fluxes. The model couples radiation attenuation with mass,energy, and momentum exchange at different canopylevels. A unique feature of the model is its abilityto combine higher order Eulerian closure approachesthat compute velocity statistics with Lagrangianscalar dispersion approaches within the canopy volume. Explicit accounting for within-canopy CO2,H2O, and heat storage is resolved by consideringnon-steadiness in mean scalar concentration andtemperature. A seven-day experiment was conducted inAugust 1998 to investigate whether the proposedmodel can reproduce temporal evolution of scalar(CO2, H2O and heat) fluxes, sources andsinks, and concentration profiles within and above auniform 15-year old pine forest. The modelreproduced well the measured depth-averaged canopy surfacetemperature, CO2 and H2O concentrationprofiles within the canopy volume, CO2 storageflux, net radiation above the canopy, and heat andmass fluxes above the canopy, as well as the velocitystatistics near the canopy-atmosphere interface. Implications for scaling measured leaf-levelbiophysical functions to ecosystem scale are alsodiscussed.  相似文献   

10.
Summary  Surface radiative fluxes play a major role in the energy exchange process between the atmosphere and earth surface and are thus very crucial to climatic processes within the atmospheric boundary layer. Based on four years REKLIP (REgio-KLIma-Project) data set of measured radiative fluxes and additional supporting meteorological variables, the surface radiation regime for selected lowland site (Bremgarten 212 m a.s.l.) and mountain sites (Geiersnest at 870 m a.s.l.; Feldberg 1489 m a.s.l.) in the southern Upper Rhine valley region (south-west Germany) has been reported. Time series of radiative fluxes and surface albedo showed significant inter-site differences. Possible reasons for the observed differences have been made. Downward atmospheric radiation A l at the study sites was parameterised in terms of air temperature, vapour pressure and cloud amount, all of which strongly govern the variation of A l . Effective terrestrial radiation amounted to about 50% of absorbed shortwave radiation at the study sites annually. During clear sky conditions, global solar irradiance G s constituted about 76.0% of the incident extraterrestrial solar irradiance at Feldberg mountain site but only 68.5% of that at Bremgarten lowland site. Annual cumulative of net radiative flux R n amounted to 1722 MJm−2 yr−1 at the lowland site, while that at Geiersnest and Feldberg mountain sites constituted 84% and 73% respectively of the corresponding magnitude for the lowland site. In the same vein, annual mean of radiation efficiency (defined here as R n /G s ) amounted to 0.32 in Feldberg, 0.37 in Geiersnest and 0.41 in Bremgarten. Consequently the annual available energy, of which net radiative flux is representative, was smaller at the mountain ous sites relative to the lowland site during the study period. Inter-annual variability of net radiative flux, its constituent variables and derivatives at the study sites were generally below 10%, with longwave fluxes showing the lowest fluctuation. This renders the measured data quite suitable for modelling purposes. In winter, mean daily sums of R n showed a slow rise with cloud amount N at the lowland site but a sharp rise with N at Feldberg mountain site. In summer however, mean daily sums of R n declined significantly with N as well as Linke turbidity factor at the study sites. Received June 24, 1999 Revised November 2, 2000  相似文献   

11.
Single-tower eddy-covariance measurements represent the complete surface flux of a scalar only under idealized conditions. Therefore, we often find an underestimation of energy fluxes expressed as a lack of energy balance closure at many sites. In this study, a multi-tower approach to measure atmospheric energy fluxes based on spatial averaging is evaluated and possible mechanisms causing a lack of energy balance closure are analysed, focussing on daytime data only. It is shown that the multi-tower technique is also unable to measure the entire flux for our site, likely because the assumption of horizontal homogeneity is violated. Heterogeneity-induced and buoyancy-driven quasi-stationary circulations are probably the dominant processes causing the underestimation of energy fluxes. A dependence of the energy balance residual on stability is found, with residuals close to zero for stable stratification, a maximum under unstable to near-neutral conditions and still relatively large residuals for stronger instability. Assuming the processes transporting energy and CO2 are similar, the implications on long-term CO2 flux measurements are analysed. Accordingly, the resulting selective systematic error of cumulative net ecosystem exchange estimates for agricultural regions such as ours can be of the order of more than 100%, since mainly the fluxes during periods of net CO2 uptake are underestimated while periods of net CO2 release are much less affected by this bias. Further investigations about this issue are highly warranted.  相似文献   

12.
The Summer Surface Energy Balance of the High Antarctic Plateau   总被引:1,自引:0,他引:1  
The summertime surface energy balance (SEB) at Kohnen station, situated on the high Antarctic plateau (75°00′ S, 0°04′ E, 2892m above sea level) is presented for the period of 8 January to 9 February 2002. Shortwave and longwave radiation fluxes were measured directly; the former was corrected for problems associated with the cosine response of the instrument. Sensible and latent heat fluxes were calculated using the bulk method, and eddy-correlation measurements and the modified Bowen ratio method were used to verify these calculated fluxes. The calculated sub-surface heat flux was checked by comparing calculated to measured snow temperatures. Uncertainties in the measurements and energy-balance calculations are discussed. The general meteorological conditions were not extraordinary during the period of the experiment, with a mean 2-m air temperature of −27.5°C, specific humidity of 0.52×10−3kg kg−1 and wind speed of 4.1ms−1. The experiment covered the transition period from Antarctic summer (positive net radiation) to winter (negative net radiation), and as a result the period mean net radiation, sensible heat, latent heat and sub-surface heat fluxes were small with values of −1.1, 0.0, −1.0 and 0.7 Wm−2, respectively. Daily mean net radiation peaked on cloudy days (16 Wm−2) and was negative on clear-sky days (minimum of −19 W m−2). Daily mean sensible heat flux ranged from −8 to +10 Wm−2, latent heat flux from −4 to 0 Wm−2 and sub-surface heat flux from −8 to +7 Wm−2.  相似文献   

13.
A modified profile method for determining the vertical deposition (or/and exhalation) fluxes of NO, NO2, ozone, and HNO3 in the atmospheric surface layer is presented. This method is based on the generally accepted micrometeorological ideas of the transfer of momentum, sensible heat and matter near the Earth's surface and the chemical reactions among these trace gases. The analysis (aerodynamic profile method) includes a detailed determination of the micrometeorological quantities (such as the friction velocity, the fluxes of sensible and latent heat, the roughness length and the zero plane displacement), and of the height-invariant fluxes of the composed chemically conservative trace gases with group concentrations c 1=[NO]+[NO2]+[HNO3], c 2=[NO2]+[O3]+3/2·[HNO3], and c 3=[NO]–[O3]–1/2·[HNO3]. The fluxes of the individual species are finally determined by the numerical solution of a system of coupled nonlinear ordinary differential equations for the concentrations of ozone and HNO3 (decoding method). The parameterization of the fluxes is based on the flux-gradient relationships in the turbulent region of the atmospheric surface layer. The model requires only the vertical profile data of wind velocity, temperature and humidity and concentrations of NO, NO2, ozone, and HNO3.The method has been applied to vertical profile data obtained at Jülich (September 1984) and collected in the BIATEX joint field experiment LOVENOX (Halvergate, U.K., September 1989).  相似文献   

14.
Components of the surface energy balance of a mature boreal jack pine forest and a jack pine clearcut were analysed to determine the causes of the imbalance that is commonly observed in micrometeorological measurements. At the clearcut site (HJP02), a significant portion of the imbalance was caused by: (i) the overestimation of net radiation (R n ) due to the inclusion of the tower in the field of view of the downward facing radiometers, and (ii) the underestimation of the latent heat flux (λE) due to the damping of high frequency fluctuations in the water vapour mixing ratio by the sample tube of the closed-path infrared gas analyzer. Loss of low-frequency covariance induced by insufficient averaging time as well as systematic advection of fluxes away from the eddy-covariance (EC) tower were discounted as significant issues. Spatial and temporal distributions of the total surface-layer heat flux (T), i.e. the sum of sensible heat flux (H) and λE, were well behaved and differences between the relative magnitudes of the turbulent fluxes for several investigated energy balance closure (C) classes were observed. Therefore, it can be assumed that micrometeorological processes that affected all turbulent fluxes similarly did not cause the variation in C. Turbulent fluxes measured at the clearcut site should not be forced to close the energy balance. However, at the mature forest site (OJP), loss of low-frequency covariance contributed significantly to the systematic imbalance when a 30-min averaging time was used, but the application of averaging times that were long enough to capture all of the low-frequency covariance was inadequate to resolve all of the high-frequency covariance. Although we found qualitative similarity between T and the net ecosystem exchange (NEE) of carbon dioxide (CO2), forcing T to closure while retaining the Bowen ratio and applying the same factor to CO2 fluxes (F C ) cannot be generally recommended since it remains uncertain to what extent long wavelength contributions affect the relationship between T, F C and C.  相似文献   

15.
In order to provide high quality data for climate change studies, the data quality of turbulent flux measurements at the station of SACOL (Semi-Arid Climate & Environment Observatory of Lanzhou University), which is located on a semi-arid grassland over the Loess Plateau in China, has been analyzed in detail. The effects of different procedures of the flux corrections on CO2, momentum, and latent and sensible heat fluxes were assessed. The result showed that coordinate rotation has a great influence on the momentum flux but little on scalar fluxes. For coordinate rotation using the planar fit method, different regression planes should be determined for different wind direction sectors due to the heterogeneous nature of the ground surface. Sonic temperature correction decreased the sensible heat flux by about 9%, while WPL correction (correction for density fluctuations) increased the latent heat flux by about 10%. WPL correction is also particularly important for CO2 fluxes. Other procedures of flux corrections, such as the time delay correction and frequency response correction, do not significantly influence the turbulent fluxes. Furthermore, quality tests on stationarity and turbulence development conditions were discussed. Parameterizations of integral turbulent characteristics (ITC) were tested and a specific parameterization scheme was provided for SACOL. The ITC test on turbulence development conditions was suggested to be applied only for the vertical velocity. The combined results of the quality tests showed that about 62%–65% of the total data were of high quality for the latent heat flux and CO2 flux, and as much as about 76% for the sensible heat flux. For the momentum flux, however, only about 35% of the data were of high quality.  相似文献   

16.
锡林浩特草原CO2通量特征及其影响因素分析   总被引:1,自引:0,他引:1  
利用锡林浩特国家气候观象台开路涡度相关系统、辐射土壤观测系统,测得的长期连续通量观测数据,对锡林浩特草原2009—2011年期间的CO2通量观测特征进行了分析。结果表明:CO2通量存在明显的年际、季节和日变化特征。3 a中NEE年际变率达到200 g·m-2,季节变率最大达到460 g·m-2,日变化幅度生长季最大达到0.25 mg·m-2·s-1。通过不同时间尺度碳通量与温度、水分、辐射等环境因子的分析,认为CO2通量日变化主要受温度和光合有效辐射影响,而季节变化和年变化主要受降水和土壤含水量的影响。降水强度及时间分布是制约牧草CO2吸收的关键因素,大于15%的土壤含水量有利于促进牧草生长。  相似文献   

17.
珠海凤凰山地处北回归线以南,森林植被覆盖率达90%,植被类型为南亚热带常绿阔叶林群落,是岭南地区典型的城市或村庄周边的再生森林,我们选择在凤凰山麓森林冠层较为平缓的低矮坡地建立了陆-气相互作用和碳通量的观测铁塔塔站。本文详细介绍了观测塔的地理环境、初步的仪器布设和基本观测,并利用已获得的资料分析了旱季典型晴天主要观测量的日变化特征。太阳总辐射及其分光辐射和反射辐射的日变化都是比较常规的中午最高的对称结构;冠层接收到的长波辐射比向上长波辐射低;气温日变化的峰值比太阳辐射滞后,白天达到最高值前的气温是低层高于高层,达到最高值后到落日前气温陡然下降,夜晚的气温是低层低于高层。相对湿度凌晨最大,下午最小,夜晚是低层相对偏湿,白天正好相反;11月份,珠海地区盛行旱季的偏北季风,有明显的海陆风的作用,白天的海风较强,夜晚的陆风较弱;森林冠层向大气释放的感热和潜热的量值基本相当,潜热基本为正;感热白天为正,夜晚基本为负;森林冠层吸收的二氧化碳的最高值出现在午后,此时空气中水汽浓度达到最低,向大气释放的二氧化碳在日出后的清晨最大,此时空气中的二氧化碳浓度达到最大,同时空气密度也最大;由于森林冠层高、密度大,土壤湿度基本没有日变化;表层土壤温度日变化的振幅随土壤深度加深而变小,土壤热流的变化是下午高,清晨低。本文还发现了一些值得深入探讨的现象,需要以后根据充沛的资料分析论证。  相似文献   

18.
Summary Measuring turbulent fluxes with the eddy covariance method has become a widely accepted and powerful tool for the determination of long term data sets for the exchange of momentum, sensible and latent heat, and trace gases such as CO2 between the atmosphere and the underlying surface. Several flux networks developed continuous measurements above complex terrain, e.g. AmeriFlux and EUROFLUX, with a strong focus on the net exchange of CO2 between the atmosphere and the underlying surface. Under many conditions basic assumptions for the eddy covariance method in its simplified form, such as stationarity of the flow, homogeneity of the surface and fully developed turbulence of the flow field, are not fulfilled. To deal with non-ideal conditions which are common at many FLUXNET sites, quality tests have been developed to check if these basic theoretical assumptions are valid.In the framework of the CARBOEUROFLUX project, we combined quality tests described by Foken and Wichura (1996) with the analytical footprint model of Schmid (1997). The aim was to identify suitable wind sectors and meteorological conditions for flux measurements. These tools were used on data of 18 participating sites. Quality tests were applied on the fluxes of momentum, sensible and latent heat, and on the CO2-flux, respectively. The influence of the topography on the vertical wind component was also checked. At many sites the land use around the flux towers is not homogeneous or the fetch may not be large enough. So the relative contribution of the land use type intended to be measured was also investigated. Thus the developed tool allows comparative investigations of the measured turbulent fluxes at different sites if using the same technique and algorithms for the determination of the fluxes as well as analyses of potential problems caused by influences of the surrounding land use patterns.  相似文献   

19.
The available energy (AE), driving the turbulent fluxes of sensible heat and latent heat at the earth surface, was estimated at four partly complex coniferous forest sites across Europe (Tharandt, Germany; Ritten/Renon, Italy; Wetzstein, Germany; Norunda, Sweden). Existing data of net radiation were used as well as storage change rates calculated from temperature and humidity measurements to finally calculate the AE of all forest sites with uncertainty bounds. Data of the advection experiments MORE II (Tharandt) and ADVEX (Renon, Wetzstein, Norunda) served as the main basis. On-site data for referencing and cross-checking of the available energy were limited. Applied cross checks for net radiation (modelling, referencing to nearby stations and ratio of net radiation to global radiation) did not reveal relevant uncertainties. Heat storage of sensible heat J H, latent heat J E, heat storage of biomass J veg and heat storage due to photosynthesis J C were of minor importance during day but of some importance during night, where J veg turned out to be the most important one. Comparisons of calculated storage terms (J E, J H) at different towers of one site showed good agreement indicating that storage change calculated at a single point is representative for the whole canopy at sites with moderate heterogeneity. The uncertainty in AE was assessed on the basis of literature values and the results of the applied cross checks for net radiation. The absolute mean uncertainty of AE was estimated to be between 41 and 52 W m?2 (10–11 W m?2 for the sum of the storage terms J and soil heat flux G) during mid-day (approximately 12% of AE). At night, the absolute mean uncertainty of AE varied from 20 to about 30 W m?2 (approximately 6 W m?2 for J plus G) resulting in large relative uncertainties as AE itself is small. An inspection of the energy balance showed an improvement of closure when storage terms were included and that the imbalance cannot be attributed to the uncertainties in AE alone.  相似文献   

20.
Results from numerical investigations regarding the exchange of HNO3, NH3, and NH4NO3 between the atmosphere and the biosphere are presented. The investigations were performed with a modified inferential method which is based on the generally accepted micrometeorological ideas of the transfer of momentum, sensible heat and matter near the Earth's surface and the chemical reactions among these nitrogen compounds. This modified inferential method calculates the micrometeorological quantities (such as the friction velocity and the fluxes of sensible and latent heat), the height-invariant fluxes of the composed chemically conservative trace species with group concentrationsc 1=[HNO3]+[NH4NO3] (total nitrate),c 2=[NH3]+[NH4NO3] (total ammonia), andc 3=[HNO3]-[NH3] as well as the fluxes of the individual nitrogen compounds. The parameterization of the fluxes is based on the flux-gradient relationships in the turbulent region of the atmospheric surface layer. The modified inferential method requires only the data of wind velocity, temperature, humidity and concentrations (HNO3, NH3, and NH4NO3) measured at a reference height by stations of a monitoring network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号