首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An endeavor is made to compute peak ground horizontal accelerations at bedrock level in the Delhi region due to the seismogenic sources present around Delhi. The entire area is divided into six seismogenic sources for which seismic hazard analysis is carried out using the complete and extreme part of the seismicity data. Maximum likelihood estimates of hazard parameters viz., seismic activity rate , b value and maximum probable earthquake M max are made for each zone. The return periods and the probabilities of occurrence of various magnitudes for return periods of 50, 100 and 1000 years are also computed for each zone. The peak ground acceleration (PGA) values for 20% exceedance in 50 years are then computed for the Delhi region from each zone. The maximum PGA value considering all the zones is 0.34 g, which is due to the Mathura fault zone. The seismogenic zones V and VI, i.e., Mathura fault zone and the Sohna fault zone are observed to be contributing maximum PGA values in the Delhi region governing the isoacceleration contours computed for the region. The seismic zonation map for the PGA values at the bedrock level is obtained for the Delhi region. This can be used directly as input for the microzonation of ground motion at the surface by incorporating the local site conditions.  相似文献   

2.
The present study aims at understanding the seismotectonic province of the Shillong Plateau (SP) by identifying the potential seismic source zones within a radius of 500 km from the centre of the SP. From existing literature and earthquake (EQ) data, the seismotectonic region is found to vary in terms of seismicity, tectonic features, geology, thickness of overburden, rupture characteristics and rate of movement. Thus, entire 500-km-radius seismotectonic region is divided into four seismic source zones: namely (1) the Shillong Plateau–Assam Valley Zone (SP-AVZ), (2) the Indo-Burma Ranges Zone (IBRZ), (3) the Bengal Basin Zone (BBZ) and (4) the Eastern Himalaya Zone (EHZ). EQ catalogues for each source zone is analysed for completeness of magnitude and time. Seismic parameter b estimated using a maximum likelihood method is found to be 0.91 ± 0.03, 0.94 ± 0.02, 0.80 ± 0.03 and 0.89 ± 0.03 for the SP-AVZ, IBRZ, BBZ and EHZ, respectively. In addition, the maximum likelihood method is used to estimate the mean annual activity rate, maximum possible magnitude (m max), return period and probability of exceedance for the four zones. The b values estimated suggest that the BBZ is seismically more active; however, the rate of occurrence of EQs is highest in the IBRZ. Findings from this study are an indication of the relative contribution from each of the four seismic source zones towards a seismic hazard of the SP.  相似文献   

3.
Probabilistic seismic hazard analysis in Nepal   总被引:3,自引:0,他引:3  
The seismic ground motion hazard for Nepal has been estimated using a probabilistic approach. A catalogue of earthquakes has been compiled for Nepal and the surrounding region (latitude 26% N and 31.7% N and longitude 79° E and 90° E) from 1255 to 2011. The distribution of catalogued earthquakes, together with available geological and tectonic information were used to delineate twenty-three seismic source seismic source information and probabilistic earthquake hazard prediction relationship, peak ground accelerations (PGAs) have zones in Nepal and the surrounding region. By using the parameters in conjunction with a selected ground motion been calculated at bedrock level with 63%, 10%, and 2% probability of exceedance in 50 years. The estimated PGA values are in the range of 0.07-0.16 g, 0.21 0.62 g, and 0.38-1.1 g for 63%, 10%, and 2% probability of exceedance in 50 years, respectively. The resulting ground motion maps show different characteristics of PGA distribution, i.e., high hazard in the far-western and eastern sections, and low hazard in southern Nepal. The quantified PGA values at bedrock level provide information for microzonation studies in different parts of the country.  相似文献   

4.
Northeast India and adjoining regions (20°–32° N and 87°–100° E) are highly vulnerable to earthquake hazard in the Indian sub-continent, which fall under seismic zones V, IV and III in the seismic zoning map of India with magnitudes M exceeding 8, 7 and 6, respectively. It has experienced two devastating earthquakes, namely, the Shillong Plateau earthquake of June 12, 1897 (M w 8.1) and the Assam earthquake of August 15, 1950 (M w 8.5) that caused huge loss of lives and property in the Indian sub-continent. In the present study, the probabilities of the occurrences of earthquakes with magnitude M ≥ 7.0 during a specified interval of time has been estimated on the basis of three probabilistic models, namely, Weibull, Gamma and Lognormal, with the help of the earthquake catalogue spanning the period 1846 to 1995. The method of maximum likelihood has been used to estimate the earthquake hazard parameters. The logarithmic probability of likelihood function (ln L) is estimated and used to compare the suitability of models and it was found that the Gamma model fits best with the actual data. The sample mean interval of occurrence of such earthquakes is estimated as 7.82 years in the northeast India region and the expected mean values for Weibull, Gamma and Lognormal distributions are estimated as 7.837, 7.820 and 8.269 years, respectively. The estimated cumulative probability for an earthquake M ≥ 7.0 reaches 0.8 after about 15–16 (2010–2011) years and 0.9 after about 18–20 (2013–2015) years from the occurrence of the last earthquake (1995) in the region. The estimated conditional probability also reaches 0.8 to 0.9 after about 13–17 (2008–2012) years in the considered region for an earthquake M ≥ 7.0 when the elapsed time is zero years. However, the conditional probability reaches 0.8 to 0.9 after about 9–13 (2018–2022) years for earthquake M ≥ 7.0 when the elapsed time is 14 years (i.e. 2009).  相似文献   

5.
A straightforward Bayesian statistic is applied in five broad seismogenic source zones of the northwest frontier of the Himalayas to estimate the earthquake hazard parameters (maximum regional magnitude M max, β value of G–R relationship and seismic activity rate or intensity λ). For this purpose, a reliable earthquake catalogue which is homogeneous for M W ≥ 5.0 and complete during the period 1900 to 2010 is compiled. The Hindukush–Pamir Himalaya zone has been further divided into two seismic zones of shallow (h ≤ 70 km) and intermediate depth (h > 70 km) according to the variation of seismicity with depth in the subduction zone. The estimated earthquake hazard parameters by Bayesian approach are more stable and reliable with low standard deviations than other approaches, but the technique is more time consuming. In this study, quantiles of functions of distributions of true and apparent magnitudes for future time intervals of 5, 10, 20, 50 and 100 years are calculated with confidence limits for probability levels of 50, 70 and 90 % in all seismogenic source zones. The zones of estimated M max greater than 8.0 are related to the Sulaiman–Kirthar ranges, Hindukush–Pamir Himalaya and Himalayan Frontal Thrusts belt; suggesting more seismically hazardous regions in the examined area. The lowest value of M max (6.44) has been calculated in Northern-Pakistan and Hazara syntaxis zone which have estimated lowest activity rate 0.0023 events/day as compared to other zones. The Himalayan Frontal Thrusts belt exhibits higher earthquake magnitude (8.01) in next 100-years with 90 % probability level as compared to other zones, which reveals that this zone is more vulnerable to occurrence of a great earthquake. The obtained results in this study are directly useful for the probabilistic seismic hazard assessment in the examined region of Himalaya.  相似文献   

6.
Probabilistic seismic hazard analysis (PSHA) has been carried out for Iraq. The earthquake catalogue used in the present study covers an area between latitude 29°–38.5° N and longitude 39°–50° E containing more than a thousand events for the period 1905–2000. The entire Iraq region has been divided into thirteen seismogenic sources based on their seismic characteristics, geological setting and tectonic framework. The completeness of the seismicity catalogue has been checked using the method proposed by Stepp (1972). The analysis of completeness shows that the earthquake catalogue is not complete below Ms=4.8 for all of Iraq and seismic source zones S1, S4, S5, and S8, while it varies for the other seismic zones. A statistical treatment of completeness of the data file was carried out in each of the magnitude classes. The Frequency Magnitude Distributions (FMD) for the study area including all seismic source zones were established and the minimum magnitude of complete reporting (Mc) were then estimated. For the entire Iraq the Mc was estimated to be about Ms=4.0 while S11 shows the lowest Mc to be about Ms=3.5 and the highest Mc of about Ms=4.2 was observed for S4. The earthquake activity parameters (activity rate , b value, maximum regional magnitude mmax) as well as the mean return period (R) with a certain lower magnitude mmin m along with their probability of occurrence have been determined for all thirteen seismic source zones of Iraq. The maximum regional magnitude mmax was estimated as 7.87 ± 0.86 for entire Iraq. The return period for magnitude 6.0 is largest for source zone S3 which is estimated to be 705 years while the smallest value is estimated as 9.9 years for all of Iraq.The large variation of the b parameter and the hazard level from zone to zone reflects crustal heterogeneity and the high seismotectonic complexity. The seismic hazard near the source boundaries is directly and strongly affected by the change in the delineation of these boundaries. The forces, through which the geological structure along the plate boundary in Eastern and Northeastern Iraq are evolved, are still active causing stress-strain accumulation, deformation and in turn producing higher probabilities of earthquake activity. Thus, relatively large destructive earthquakes are expected in this region. The study is intended to serve as a reference for more advanced approaches and to pave the path for the probabilistic assessment of seismic hazard in this region.  相似文献   

7.
Double difference relocations of the 1402 Kachchh events (2001–2006) clearly delineate two fault zones viz. south-dipping North Wagad fault (NWF) and almost vertical Gedi fault (GF). The relocated focal depths delineate a marked variation of 4 and 7 km in the brittle-ductile transition depths beneath GF and NWF, respectively. The focal mechanism solutions of 464 aftershocks (using 8–12 first motions) show that the focal mechanisms ranged between pure reverse and pure strike-slip except for a few pure dip-slip solutions. The stress inversions performed for five rectangular zones across the Kachchh rift reveal both clockwise and anticlockwise rotation (7–32°) in the σ1 orientation within the rupture zone, favoring a heterogeneous stress regime with an average N-S fault normal compression. This rotation may be attributed to the presence of crustal mafic intrusives (5–35 km depth) in the rupture zone of the 2001 Bhuj main shock. Results suggest a relatively homogeneous stress regime in the GF zone favoring strike-slip motion, with a fault normal N-S compression.  相似文献   

8.
Three sites in the UK are taken, representative of low, medium and high hazard levels (by UK standards). For each site, the hazard value at 10−4 annual probability is computed using a generic seismic source model, and a variety of ground motion parameters: peak ground acceleration (PGA), spectral acceleration at 10 Hz and 1 Hz, and intensity. Disaggregation is used to determine the nature of the earthquakes most likely to generate these hazard values. It is found (as might be expected) that the populations are quite different according to which ground motion parameter is used. When PGA is used, the result is a rather flat magnitude distribution with a tendency to low magnitude events (\le 4.5 ML) which are probably not really hazardous. Hazard-consistent scenario earthquakes computed using intensity are found to be in the range 5.8–5.9 ML, which is more in accord with the type of earthquake that one expects to be a worst-case event in the UK. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Probabilistic seismic hazard assessment for Thailand   总被引:3,自引:1,他引:2  
A set of probabilistic seismic hazard maps for Thailand has been derived using procedures developed for the latest US National Seismic Hazard Maps. In contrast to earlier hazard maps for this region, which are mostly computed using seismic source zone delineations, the presented maps are based on the combination of smoothed gridded seismicity, crustal-fault, and subduction source models. Thailand’s composite earthquake catalogue is revisited and expanded, covering a study area limited by 0°–30°N Latitude and 88°–110°E Longitude and the instrumental period from 1912 to 2007. The long-term slip rates and estimates of earthquake size from paleoseismological studies are incorporated through a crustal fault source model. Furthermore, the subduction source model is used to model the megathrust Sunda subduction zones, with variable characteristics along the strike of the faults. Epistemic uncertainty is taken into consideration by the logic tree framework incorporating basic quantities, such as different source modelling, maximum cut-off magnitudes and ground motion prediction equations. The ground motion hazard map is presented over a 10 km grid in terms of peak ground acceleration and spectral acceleration at 0.2, 1.0, and 2.0 undamped natural periods and a 5% critical damping ratio for 10 and 2% probabilities of exceedance in 50 years. The presented maps give expected ground motions that are based on more extensive data sources than applied in the development of previous maps. The main findings are that northern and western Thailand are subjected to the highest hazard. The largest contributors to short- and long-period ground motion hazard in the Bangkok region are from the nearby active faults and Sunda subduction zones, respectively.  相似文献   

10.
Ground-Motion Hazard Values for Northern Algeria   总被引:2,自引:0,他引:2  
This study examines distinctive features of ground motion parameters in northern Algeria. An initial computation of seismic hazard in terms of horizontal peak ground acceleration (PGA) and spectral acceleration (SA) at different periods, damped at 5%, is carried out for three different types of soils (rock, stiff soils and soft soils) for return periods of 100 and 475 years. In addition, uniform hazard spectra (UHS) are computed for these two return periods at several locations in the region. Then, the UHS computed for different soil types are proposed as a starting point to define elastic design spectra for building-code purposes. We have used the well-known Newmark-Hall approach. As proposed in the most recent International Building Codes, the SA (0.2 s) value is used to establish the spectral region for lower periods (region controlled by acceleration), whereas the SA (1.0 s) value is used to establish the spectral region for intermediate periods (region controlled by velocity). We also obtained important relations, dependent on site condition, between SA (0.2 s), SA (1.0 s) or SAmax values, and the PGA, for both return periods of 100 and 475 years. Other relationships between PGA or SAmax values have also been derived for return periods of 100 and 475 years, in this case independent of site condition.  相似文献   

11.
A probabilistic seismic hazard assessment of the Province of Murcia in terms of peak ground acceleration (PGA) and spectral accelerations [SA(T)] is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA making use of intensity-to-PGA relationships, hazard is here calculated in terms of magnitude and using European spectral ground-motion models. Moreover, we have considered the most important faults in the region as specific seismic sources, and also comprehensively reviewed the earthquake catalogue. Hazard calculations are performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for three different seismic source zonings and three different ground-motion models. Hazard maps in terms of PGA and SA(0.1, 0.2, 0.5, 1.0 and 2.0 s) and coefficient of variation (COV) for the 475-year return period are shown. Subsequent analysis is focused on three sites of the province, namely, the cities of Murcia, Lorca and Cartagena, which are important industrial and tourism centres. Results at these sites have been analysed to evaluate the influence of the different input options. The most important factor affecting the results is the choice of the attenuation relationship, whereas the influence of the selected seismic source zonings appears strongly site dependant. Finally, we have performed an analysis of source contribution to hazard at each of these cities to provide preliminary guidance in devising specific risk scenarios. We have found that local source zones control the hazard for PGA and SA(T ≤ 1.0 s), although contribution from specific fault sources and long-distance north Algerian sources becomes significant from SA(0.5 s) onwards.  相似文献   

12.
Source parameters of the earthquakes of the Baikal rift system   总被引:1,自引:0,他引:1  
The dynamic parameters of the earthquake source—the seismic moment, the moment magnitude, the source radius, the stress drop, and the amplitude of displacement—are determined by the amplitude Fourier spectra of the body shear waves (S-waves) for 62 earthquakes of the Baikal rift system with the energy class of K P = 9.1–15.7. In the calculations I used the classical Brune model. The seismic moment of the earthquakes being investigated changes from 3.65 × 1011 N m to 1.35 × 1018 N m, and the radii of earthquake sources vary from 390 m to 1.84 km. The values of the drop in stress Δσ grow with an increase in the seismic moment up to 1.7 × 108 Pa. For the group of weak earthquakes (M w = 1.7–3.3), extremely low values of the drop in stress 103–104 Pa are observed. The maximum amplitude of displacement in the source amounts to 5.95 m. The empirical equations between the seismic moment and the other dynamic parameters of the source are determined. The regional dependence of the seismic moment and energy class is obtained: log M 0 ± 0.60 = 1.03K P + 3.17. The character of the relationship between the seismic moment and the corner frequency indicates that the classical scaling law of the seismic spectrum for the earthquakes in question is not fulfilled. The obtained estimates of the dynamic parameters are in satisfactory agreement with the published data concerning the analogous parameters of the other rift zones, which reflects the general regular patterns of the destruction of the lithosphere and the seismicity in the extension zones of the lithosphere.  相似文献   

13.
Probabilistic seismic hazard for Mainland Portugal was re-evaluated in order to perform its disaggregation. Seismic hazard was disaggregated considering different spaces of random variables, namely, univariate conditional hazard distributions of M (magnitude), R (source-to-site distance) and ε (deviation of ground motion to the median value predicted by an attenuation model), bivariate conditional hazard distributions of MR and XY (seismic source latitude and longitude) or multivariate conditional hazard distributions of MRε and M–(XY)–ε. The main objective of the present work was achieved, as it was possible, based on the modal values of the above mentioned distributions, to characterize the scenarios that dominate some seismic hazard levels of the 278 Mainland Portuguese counties. In addition, results of 4D disaggregation analysis, in M–(XY)–ε, pointed out the existence of one geographic location shared by the dominant scenario of most analyzed counties, especially for hazard levels correspondent to high return periods. Those dominant scenarios are located offshore at a distance of approximately 70 km WSW of S. Vicente cape. On the other hand, the lower the return period the higher is the number of modal scenarios in the neighbourhood of the analyzed site. One may conclude that modal scenarios reproduce hazard target values in each site with great accuracy enabling the applications derived from those scenarios (e.g. loss evaluation) to be associated to a hazard level exceedance probability.  相似文献   

14.
—?The procedure developed by Kijko and Sellevoll (1989, 1992) and Kijko and Graham (1998, 1999) is used to estimate seismic hazard parameters in north Algeria. The area-specific seismic hazard parameters that were calculated consist of the b value of the Gutenberg–Richter frequency–magnitude relation, the activity rate λ(M) for events above the magnitude M, and the maximum regional magnitude M max. These parameters were calculated for each of the six seismogenic zones of north Algeria. The site-specific seismic hazard was calculated in terms of the maximum possible PGA at hypothetical engineering structures (HES), situated in each of the six seismogenic zones with coordinates corresponding with those of the six most industrial and populated cities in Algeria.  相似文献   

15.
In this study, the spatial distributions of seismicity and seismic hazard were assessed for Turkey and its surrounding area. For this purpose, earthquakes that occurred between 1964 and 2004 with magnitudes of M ≥ 4 were used in the region (30–42°N and 20–45°E). For the estimation of seismicity parameters and its mapping, Turkey and surrounding area are divided into 1,275 circular subregions. The b-value from the Gutenberg–Richter frequency–magnitude distributions is calculated by the classic way and the new alternative method both using the least-squares approach. The a-value in the Gutenberg–Richter frequency–magnitude distributions is taken as a constant value in the new alternative method. The b-values calculated by the new method were mapped. These results obtained from both methods are compared. The b-value shows different distributions along Turkey for both techniques. The b-values map prepared with new technique presents a better consistency with regional tectonics, earthquake activities, and epicenter distributions. Finally, the return period and occurrence hazard probability of M ≥ 6.5 earthquakes in 75 years were calculated by using the Poisson model for both techniques. The return period and occurrence hazard probability maps determined from both techniques showed a better consistency with each other. Moreover, maps of the occurrence hazard probability and return period showed better consistency with the b-parameter seismicity maps calculated from the new method. The occurrence hazard probability and return period of M ≥ 6.5 earthquakes were calculated as 90–99% and 5–10 years, respectively, from the Poisson model in the western part of the studying region.  相似文献   

16.
Faulting, shallow seismicity (0–30 km), and seismic hazard of the Costa Rican Central Valley were analyzed. Faults in the study area are oriented northwest or northeast. There is an active fault system in the south flank of the Central Volcanic Ridge and another in the north flank of the Talamanca Ridge. Faults of these systems have generated 15 destructive earthquakes in the area during the last 228 years all of them shallow and their locations show one cluster near the Poas Volcano and another southward the Central Valley. These earthquakes have damaged cities of the Central Valley, two of them destroyed Cartago city and almost 1000 people were killed. Regarding recent seismicity, there are three main seismic sources at the Central Volcanic Ridge: Irazu, Bajo de la Hondura and Poas and other three in the Talamanca Ridge: Puriscal, Los Santos and Pejibaye.A seismic hazard map for the Metropolitan Area of San José has been elaborated, based on local tectonic and seismic information. The area for the hazard computation covers an area of 20×15 km2 and includes the zone where the most population and socioeconomic activities are concentrated. The computation analysis are based on areas zones and faults, each one characterized by recurrence parameters, geometry, minimum and maximum magnitude and source depth. A recent local spectral attenuation model, which includes relations for shallow crustal sources and subduction zone earthquakes, has been applied in this study. The seismic hazard results are presented in terms of contour plots of estimated peak ground acceleration (PGA) for bedrock conditions for return period of 50, 100 and 500 years. In the Central Park of San Jose City the following PGA values were found: 0.29g for 50 years, 0.36g for 100 years, and 0.53g for 500 years.  相似文献   

17.
We argue that the study of long-range interaction between seismic sources in the peri-Adriatic regions may significantly contribute to estimating seismic hazard in Italy. This hypothesis is supported by the reconstruction of the geodynamic and tectonic settings in the Central Mediterranean region, the space–time distribution of major past earthquakes, and the quantification of post-seismic relaxation. The most significant evidence of long-distance interaction is recognized for the Southern Apennines, whose major earthquakes have almost regularly followed within a few years the largest events in the Montenegro-Albania zone since 1850. Statistical analyses of the post-1850 earthquake catalogues give a probability of about 10% that a major event in the Southern Apennines is not preceded by the occurrence of a strong event in the Southern Dinarides–Albanides within 3–5 years. Conversely, the probability of false alarms is relevant (50% within 3 years, 33% within 5 years). Northward, the tectonic setting and some patterns of regularity seen in major events suggest that the seismic activation of the main transtensional decoupling shear zones in the Central Apennines should influence the probability of major earthquakes in the Northern Apennines.  相似文献   

18.
Recent earthquakes such as the MJMA 7.2 Hyogo-ken Nambu earthquake and the M 7.4 Kocaeli earthquake demonstrate once again the need to include detailed soil investigation into hazard evaluation, that is the need of microzonation. Seismic hazard assessment evaluated at a regional scale generally does not consider soil effects but only in a limited way using an attenuation law that can be ‘soft soil’ or ‘rock’. However, the relevant role of seismic hazard in the assessment of seismic coefficients for the definition of the actions in seismic codes must be properly considered. That is to say, the level of protection of buildings is proportional to a definite level of hazard (generally considered to be the ground motion with 10% probability of exceedence in 50 years). When a microzonation is performed, this criterion cannot be ignored, therefore, a clear linkage must be established between hazard (regional scale) and microzonation. The crucial point is represented by the reference motion (or input motion) to be used for site effects analysis, that must be compatible with the regional seismic hazard. In this paper, three different approaches for reference motion evaluation are analysed: probabilistic; stochastic; and deterministic. Through the case history of Fabriano microzonation the three approaches are compared. It is shown that each approach presents advantages and disadvantages with respect to the others. For example, the probabilistic approach (the reference motion is directly derived from the expected response spectra for a given return period) is linked with hazard, but produces an overestimation in short periods range, while the deterministic approach correctly simulates the wave propagation, but it ends with a kind of conditional probability. Until now, clear criteria to choose the right approach do not appear to exist and the expert experience is of fundamental importance.  相似文献   

19.
The occurrence of the Algiers earthquake (M 6.8) of May 21, 2003, has motivated the necessity to reassess the probabilistic seismic hazard of northern Algeria. The fact that this destructive earthquake took place in an area where there was no evidence of previous significant earthquakes, neither instrumental nor historical, strongly encourages us to review the seismic hazard map of this region. Recently, the probabilistic seismic hazard of northern Algeria was computed using the spatially smoothed seismicity methodology. The catalog used in the previous computation was updated for this review, and not only includes information until June 2003, but also considers a recent re-evaluation of several historical earthquakes. In this paper, the same methodology and seismicity models are utilized in an effort to compare this methodology against an improved and updated seismic catalog. The largest mean peak ground acceleration (PGA) values are obtained in northernmost Algeria, specifically in the central area of the Tell Atlas. These values are of the order of 0.48 g for a return period of 475 years. In the City of Algiers, the capital of Algeria, and approximately 50 km from the reported epicenter of this latest destructive earthquake, a new mean PGA value of 0.23 g is obtained for the same return period. This value is 0.07 g greater than that obtained in the previous computation. In general, we receive greater seismic hazard results in the surrounding area of Algiers, especially to the southwest. The main reason is not this recent earthquake by itself, but the significant increase in the mmax magnitude in the seismic source where the city and the epicenter are included.  相似文献   

20.
Frequency analysis of the Sumatra-Andaman earthquake of 2004, one of the most significant and best-recorded earthquakes, is based on spectral seismograms obtained from their broadband seismograms. The Sumatra-Andaman earthquake is found to have a wide-range frequency content of P-wave radiation during the rupturing process. On the basis of stacking spectral seismograms we distinguished four time events of the rupturing process of a total length of about 540 s. The frequency, f max, is the highest for the first event (0.163 Hz in time interval 0–88 s), lowest for the second — which is the strongest (0.075 Hz in time interval 88–204 s). For third and fourth events frequencies are similar (0.089 and 0.082 Hz in time intervals 204–452 and 452–537 s, respectively). The frequency also shows an azimuthal dependence (±0.02 Hz). Azimuths for which the frequency, f max, has maximum and minimum values are 203–222° and 23–42°, respectively. These observations are discussed in relation to previously published papers on this topic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号