首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quenching rate kN2 of O(1D) by N2 and the specific recombination rate α1D of O2+ leading to O(1D) are re-examined in light of available laboratory and satellite data. Use of recent experimental values for the O(1D) transition probabilities in a re-analysis of AE-C satellite 6300 Å airglow data results in a value for kN2 of 2.3 × 10?11 cm3s?1 at thermospheric temperatures, in excellent agreement with the laboratory measurements. This implies a value of JO2 = 1.5 × 10?6s?1 for the O2 photodissociation rate in the Schumann-Runge continuum. The specific recombination coefficient α1D = 2.1 × 10?7cm3s?1 is also in agreement with the laboratory value. Implications for the suggested N(2D) + O2 → O(1D) + NO reaction are discussed.  相似文献   

2.
In this paper we confirm an earlier finding that the reaction
constitutes a major source of OI 6300 Å dayglow. The rate coefficient for this reaction is found to be consistent with an auroral result, namely k1 ≈ 6 × 10?12cm3s?1. We correct an error in an earlier publication and demonstrate that reaction (1) is consistent with the laboratory determined quenching rate for the reaction
where k2 = 2.3 × 10?11cm3s?1. Dissociative recombination of O+2 with electrons is found to be a major daytime source in summer above ~220 km.  相似文献   

3.
The photodissociation of water vapour in the mesosphere depends on the absorption of solar radiation in the region (175–200 nm) of the O2 Schumann-Runge band system and also at H-Lyman alpha. The photodissociation products are OH + H, OH + H, O + 2H and H2 + O at Lyman alpha; the percentages for these four channels are 70, 8, 12 and 10%, respectively, but OH + H is the only channel between 175 and 200 nm. Such proportions lead to a production of H atoms corresponding to practically the total photodissociation of H2O, while the production of H2 molecules is only 10% of the H2O photodissociation by Lyman alpha.The photodissociation frequency (s?1) at Lyman alpha can be expressed by a simple formula
JLyαH2O=4.5 ×10?61+0.2F10.7?65100exp[?4.4 ×10?19 N0.917]
where F10.7 cm is the solar radioflux at 10.7 cm and N the total number of O2 molecules (cm?2), and when the following conventional value is accepted for the Lyman alpha solar irradiance at the top of the Earth's atmosphere (Δλ = 3.5 A?) qLyα,∞ = 3 × 1011 photons cm?2 s1?.The photodissociation frequency for the Schumann-Runge band region is also given for mesospheric conditions by a simple formula
JSRB(H2O) = JSRB,∞(H2O) exp [?10?7N0.35]
where JSRB,∞(H2O) = 1.2 × 10?6 and 1.4 × 10?6 s?1 for quiet and active sun conditions, respectively.The precision of both formulae is good, with an uncertainty less than 10%, but their accuracy depends on the accuracy of observational and experimental parameters such as the absolute solar irradiances, the variable transmittance of O2 and the H2O effective absorption cross sections. The various uncertainties are discussed. As an example, the absolute values deduced from the above formulae could be decreased by about 25-20% if the possible minimum values of the solar irradiances were used.  相似文献   

4.
A major loss process for the metastable species, O+(2D), in the thermosphere is quenching by electrons
O+(2D) + e → O+(4S) + e
.To date no laboratory measurement exists for the rate coefficient of this reaction. Thermospheric models involving this process have thus depended on a theoretically calculated value for the rate coefficient and its variation with electron temperature. Earlier studies of the O+(2D) ion based on the Atmosphere Explorer data gathered near solar minimum, could not quantify this process. However, Atmosphere Explorer measurements made during 1978 exhibit electron densities that are significantly enhanced over those occurring in 1974, due to the large increases that have occurred in the solar extreme ultraviolet flux. Under such conditions, for altitudes ? 280 km, the electron quenching process becomes the major loss mechanism for O+(2D), and the chemistry of the N+2 ion, from which the O+(2D) density is deduced, simplifies to well determined processes. We are thus able to use the in situ satellite measurements made during 1978 to derive the electron quenching rate coefficient. The results confirm the absolute magnitude of the theoretical calculation of the rate coefficient, given by the analytical expression k(Te) = 7.8 × 10?8 (Te/300)?0.5cm3s?1. There is an indication of a stronger temperature dependence, but the agreement is within the error of measurement.  相似文献   

5.
Radiative recombination of N and O provides a significant source for auroral emission in the γ and δ bands of NO with selective population of vibrational levels in the A2Σ+ and C2Π states. This mechanism may account for emissions detected near 2150 Å. Models are derived for the auroral ionosphere and include estimates for the concentrations of N and NO. The concentration of NO is estimated to have a value of about 108 cm?1 near 140 km in an IBC III aurora. The corresponding density for N is about 5 × 107cm?3 and the concentration ratio NO+O2+ has a value of about 5.5.  相似文献   

6.
A mechanism has been proposed for uv-accelerated desorption from Fe2+ sites on mineral surfaces that satisfies kinetic constraints determined in the laboratory by Huguenin. The process is an integral step of the photochemical weathering mechanism for producing dust on Mars, and it now appears that it may play primary roles in stabilizing CO2 against dissociation by sunlight and in controlling the oxidation state of the atmosphere. We propose that adsorption occurs at octahedrally coordinated Fe2+ surface sites to form seven-coordinate transition-state complexes. These complexes acquire 16–18 kcal mole?1 of ligand field stabilization energy. During illumination (λ ≤ 0.35 μm), electrons are photoemitted from the surfaced Fe2+, temporarily oxidizing them to Fe3+. Fe3+ has no ligand field stabilization energy, and the complexes lose 16–18 kcal mole?1 of stabilization energy. This is a large fraction of the 19- to 28-kcal mole?1 activation energy for dissociating the complexes, and desorption should proceed spontaneously. The gases that were observed to undergo adsorption-photodesorption include O2, CO2, CO, H2O, N2, and Ar. Photodesorption can drive several catalytic reactions, one of which is the oxidation of CO to CO2. The rate of this reaction should be limited by the supply of CO and O2 to the surface to ~2 × 1012 cm?2 sec?1 (column photodissociation rate of CO2). By including this surface reaction in models of Martian atmospheric CO2 chemistry, CO2 can be stabilized against photodissociation with eddy diffusion coefficients of only 3 × 105?1 × 107 cm2 sec?1 below 40 km, raising to ~ 109 cm2 sec?1 at 140 km. Odd hydrogen is not needed to catalyze the oxidation of CO below 40 km, and odd hydrogen mixing ratios need only to be fH ? 10?10 to depress ozone concentrations below the observed upper limit in equatorial regions. Another catalytic reaction that should be driven by photodesorption on Mars is 20H?(ads)H2O + 12O2(g) + 2e?crystal. This is an important source of atmospheric O2, amounting to 7 × 1013?2 × 1017 O2 molecules cm?2 yr?1, and it could have a significant effect on atmospheric oxidation state.  相似文献   

7.
Previous studies based on radio scintillation measurements of the atmosphere of Venus have identified two regions of small-scale temperature fluctuations located in the vicinity of 45 and 60 km. A global study of the fluctuations near 60 km, which are consistent with wind-shear-generated turbulence, was conducted using the Pioneer Venus measurements. The structure constants of refractive index fluctuations cn2 and temperature fluctuations cT2 increase poleward, peak near 70° latitude, and decrease over the pole; cn2 varies from 2 × 10?15 to 1.5 × 10?14m23 and cT2 from 4 × 10?3 to 7 × 10?2°K2m?23. These results indicate greater turbulent activity at the higher latitudes. In the region near 45 km the refractive index fluctuations and the corresponding temperature fluctuations are substantially lower. Based on the analysis of one representative occultation measurement, cn2 = 2 × 10?16m?23and cT2 = 7.3 × 10?4°K2m?23 in the 45-km region. The fluctuations in this region also appear to be consistent with wind-shear-generated turbulence. The turbulence level is considerably weaker than that at 60 km; the energy dissipation rate ε is 4.9 × 10?5m2sec?3 and the small-scale eddy diffusion coefficient K is 2 × 103 cm2 sec?1.  相似文献   

8.
The cross-section for dissociative photoionization of hydrogen by 584 Å radiation has been measured, yielding a value of 5 × 10?20 cm2. The process can be explained as a transition from the X1 Σg+ ground state to a continuum level of the X2 Σg+ ionized state of H2 The branching ratio for proton (H+) vs molecular ion (H2+) production at this energy is 8 × 10?3. This process is quite likely an important source of protons in the Jovian ionosphere near altitudes where peak ionization rates are found.  相似文献   

9.
10.
The calculated radiative lifetime of the metastable ion is 6.4 × 10?3s. Used in conjunction with the results of measurements by Erdman, Espy and Zipf this sets 1.3 × 10?18 cm2 as the upper limit to the cross section for the formation of N+(5S) in e - N2 collisions at 100eV which leaves the possibility that the process is responsible for the λ2145A? feature in auroras only just open. The cross section for the formation of N+(5S) in e — N collisions is large. However for this process to lead to the observed intensity of λ2145A? relative to λ3914A? the N:N2 abundance ratio would have to be as high as 1.6 × 10?2.  相似文献   

11.
Recent laboratory measurements of the deactivation rate constants for O(1S) have suggested that the dominant production mechanism for the green line in the nightglow is a two-step process. A similar mechanism involving energy transfer from an excited state of molecular oxygen is considered as a potential source of the OI (5577 Å) emission in the aurora. It is shown that the mechanism, O2 + e → O21 + e O21 + O → O2 + O(1S), is consistent with auroral observations; the intermediate excited state has been tentatively identified as the O2(c1?u) state. For the proposed energy transfer mechanism to be the primary source of the auroral green line, the peak electron impact cross-section for O21 production must be approximately 2 × 10?17 cm2.  相似文献   

12.
Results are given of the calculations of the group delay time propagating τ(ω, φ0) of hydromagnetic whistlers, using outer ionospheric models closely resembling actual conditions. The τ(ω, φ0) dependencies were compared with the experimental data of τexp(ω, φ0) obtained from sonagrams. The sonagrams were recorded in the frequency range ? ? (0.5?2.5) Hz at observation points located at geomagnetic latitudes φ0 = (53?66)° and in the vicinity of the geomagnetic poles. This investigation has led us to new and important conclusions.The wave packets (W.P.) forming hydromagnetic whistlers (H.W.) are mainly generated in the plasma regions at L = 3.5?4.0. This is not consistent with ideas already expressed in the literature that their generation region is L ? 3?10. The overwhelming majority of the τexp values differ considerably from the times at which wave packets would, in theory, propagate along the magnetic field lines corresponding to those of the geomagnetic latitudes φ0 of the observation points. The second important fact is that the W.P. frequency ω is less than ΩH everywhere along its propagation trajectory, including the apogee of the magnetic force line (ΩH is the proton gyrofrequency). Proton flux spectra E ? (30?120) keV, responsible for H.W. generation, were determined. Comparison of the Explorer-45 and OGO-3 measurements published in the literature, with our data, showed that the proton flux density energy responsible for the H.W. excitation Np(MV622) ? (5 × 10?3?10?1) Ha2 where Ha is the magnetic field force in the generation region of these W.P. The electron concentration is Na ? (102?103) cm?3. The values given in the literature are Na ? (10?10?103) cm?3. The e data considered also leads to the conclusion that the generating mechanism of the W.P. studied probably always co-exists with the mechanism of their amplification.  相似文献   

13.
A magnetic type mass spectrometer has been flown on two ESRO sounding rockets from ESRANGE (Kiruna 68°N) on February 25 and 26, 1970. The first launch was at sunset (16:33 UT) and the second the next morning, during sunrise (04:47 UT). For both flights the solar zenith angle was approximately 98°. The instrument was measuring simultaneously the neutral gas and positive ion composition and the total ion density. In this paper the results of the ion composition measurements are presented. For both flights the main ion constituents measured between approximately 110–220 km were O+, NO+ and O2+. Only at sunset were N+ and N2+ detected above 200 km. In spite of the identical solar UV-radiation, pronounced sunset/sunrise variations in the positive ion composition were found. The total ion densities at sunrise were between 5×103 and 5 × 104 ions cm?3 and therefore too high to be explained without a night-time ionization by precipitated particles. At sunrise the NO+ and O2+ profiles show a correlated wavelike structure with three pronounced almost equally spaced layers in the E-region. Only the highest layer is present in the O+ profile. Locally enhanced field aligned ionization originated by particle precipitation and an E × B instability are the most likely source for this structure. In the E- and lower F-regions the NO+O2+ ration increased overnight from values around 7 at sunset to 15 at sunrise, correlated with an increase of the local magnetic activity index K from 0+ to 2°. This could be explained if the NO density and magnetic activity are correlated.  相似文献   

14.
The paper gives the results of detailed studies of the frequency spectra Ss(?) of the chain of the wave packets Fs(t) of geomagnetic pulsations PC-1 recorded at the Novolazarevskaya station. The bulk of the energy of Fs(t) is concentrated in the vicinity of the central frequencies ?s0 of spectra—the carrier frequencies of the signals. The velocity V0 ≌ 6.103km s?1 of the flux of protons generating these signals correspond to them. The spectra of the signals have oscillations—“satellites” irregularly distributed in frequency. These satellites, as the authors believe, testify to the presence of the individual groups of protons of low concentration whose velocities vary within 103–104 km s?1.Their energy is only of the order of 10?2–10?3 of the energy of the main proton flux. Clearly pronounced maxima on double and triple frequencies ? = 2?s0and 3?s0 are detected. They show that the generation of pulsations PC-1 is accompanied by the generation on the overtones of wave packets called in this paper “two-fold” and “three-fold” pulsations PC-1. Intensive symmetrical satellites of a modulation character have been discovered on frequencies ?±sK. Frequency differences Δ?sK± = ¦?s0 ? ?sK±¦ = (0.011,0.022 and 0.035) Hz correspond to them. The authors believe that the values of Δ?±sK are resonance frequencies of the magnetospheric cavity in which geomagnetic pulsations PC-1 are generated. It is established that the values of Δ?±sK coincide closely with the carrier frequencies of geomagnetic pulsations PC-3 and PC-4 generated in the magnetosphere. This leads to the conclusion that the resonance oscillations of the magnetospheric cavity are their source. Thus, the generation of geomagnetic pulsations of different types and resonance oscillations in the magnetosphere are integrated into a unified process. The importance of the results obtained and the necessity to check further their trustworthiness and universality, using experimental data gathered in different conditions, is stressed.  相似文献   

15.
In an updating of energy characteristics of lightnings on Venus obtained from Venera-9 and -10 optical observations, the flash energy is given as 8 × 108 J and the mean energy release of lightnings is 1 erg cm?2 s which is 25 times as high as that on the Earth. Lightnings were observed in the cloud layer. The stroke rate in the near-surface atmosphere is less than 5 s?1 over the entire planet if the light energy of the stroke exceeds 4 × 105 J and less than 15 s?1 for (1–4) × 105 J.The average NO production due to lightnings equals 5 × 108 cm?2 s?1, the atomic nitrogen production is equal to 7 × 109 cm?2s?1,the N flux toward the nightside is 3.2 × 109 cm?2s?1, the number densities [N] = 3 × 107cm?3 and [NO] = 1.8 × 106cm?3 at 135 km. Almost all NO molecules in the upper atmosphere vanish interacting with N and the resulting NO flux at 90-80 km equals 5 × 105cm?2s?1, which is negligibly small as compared with lightning production. If the predissociation at 80–90 km is regarded as the single sink of NO, its mixing ratio, fNO, is 4 × 10?8, for the case of a surface sink fNO = 0.8 × 10?9 at 50 km. Excess amounts, fNO ? 4 × 10?8, may exist in the thunderstorm region.  相似文献   

16.
A sounding rocket was flown during the predawn on 17 January, 1976 from Uchinoura, Japan, to measure directly the behaviour of the conjugate photoelectrons at magnetically low latitudes. On board the rocket were an electron energy analyzer, 630 nm airglow photometer, and plasma probes to measure electron density and temperature. The incoming flux of the photoelectrons was measured in the altitude range between 210 and 340 km. The differential flux at the top of the atmosphere was determined to be F = (1.3 ± 0.4) × 1011exp[?E(eV)12] electron · m?2 · sr?1 · s?1 in the energy range 10 ? E ? 50 eV. The emission rate of the 630 nm airglow was observed in the altitude range between 90 and 360 km. The apparent emission rate observed at 80 km was 32 ± 5 R. From a theoretical calculation of the optical excitation rate using the observed electron flux data along with a model distribution of atomic oxygen, it was estimated that more than 65% of the emission could be produced by direct impact of the photoelectrons with atomic oxygen in the thermosphere between 200 and 360 km. Using the observed electron density and the model distribution of oxygen molecules the residual of the emission was ascribed to the excitation of O(1D) through dissociative recombination, O2++eO1 + O7. The direct collisional excitation by ambient electrons is estimated to be negligibly small at the level of observed electron temperature.  相似文献   

17.
T.E. Cravens  A.E.S. Green 《Icarus》1978,33(3):612-623
The intensities of radiation from the inner comas of comets which are composed primarily of water and carbon monoxide have been calculated. Only “airglow” emissions initiated by the absorption of extreme ultraviolet radiation have been considered. The photoionizations of H2O, CO, CO2, and N2 are the most important emission sources, although photoelectron excitation is also considered. Among the emission features for which intensities were calculated are H2O+ (A?2A1?X?2B1), CO+ (first negative), CO (fourth positive), CO (Cameron), CO2+ (B?2?u?X?2IIg), N2 (Vegard-Kaplan), N2+ (first negative), and OI (1304 Å). In the inner coma (collision region) these airglow mechanisms are shown to be possible competitors with the usually assumed resonance scattering and flourescence excitation mechanisms which are appropriate for the outer coma and tail.  相似文献   

18.
19.
S.V. Gavrilov  V.N. Zharkov 《Icarus》1977,32(4):443-449
We calculate the Love numbers kn for n = 2 to 10, and determine the “gravitational noise” from tides. The new values k2 for Jupiter, Saturn, and Uranus yield new estimates for the planetary dissipation functions: QJ ? 2.5 × 104, QS ? 1.4 × 104, QU ? 5 × 103.  相似文献   

20.
Laboratory data shows that the reaction of protons with methane proceeds at thermal ion energies to give both CH3+ and CH4+ ions in the ratio CH3+CH4+ = 1.5 ± 0.3. The overall rate constant for the reaction is 3.8 ± 0.3 × 10?9 cm3/sec. This reaction may lead to the formation of hydrocarbon ions in the lower ionosphere of Jupiter, and the significance of this process for formation of hydrocarbons and HCN in the atmosphere of Jupiter is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号