首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This study analyses regional drought characteristics (frequency, severity, and persistence) of meteorological droughts occurred in the northwestern parts falling under arid and semiarid regions of India with mean annual rainfall ranging between 100 and 900 mm. A drought is defined as a season or a year with rainfall less than 75% of corresponding mean at a place. Long-term monthly rainfall records (1901–2013) of 90 districts of north-west India located in the states of Punjab, Haryana, Rajasthan and Gujarat are used in the analysis. The percentage departure of seasonal rainfall from long-term average rainfall has been used for identification of onset, termination, and quantification of drought severity. The average frequency varied from once every 3–4 years. The westerly districts have an average drought return period of 3 years, while districts lying toward the east had droughts once every 4 years. Only four of the 90 districts in the study area experienced droughts once every 5 years. Persistent droughts of 2, 3, and 4 year duration occurred widely. Severe droughts occurred in the years 1904, 1905, 1911, 1918, 1931, 1939, 1985, 1986, 1987, 1993, and 2002, with an average frequency of severe drought events of one in 10 years. The analysis presented in this paper improves understanding of the regional drought characteristics and will inform drought mitigations and strategies in these arid and semiarid areas.  相似文献   

2.
The return periods and occurrence probabilities related to medium and large earthquakes (M w 4.0–7.0) in four seismic zones in northeast India and adjoining region (20°–32°N and 87°–100°E) have been estimated with the help of well-known extreme value theory using three methods given by Gumbel (1958), Knopoff and Kagan (1977) and Bury (1999). In the present analysis, the return periods, the most probable maximum magnitude in a specified time period and probabilities of occurrences of earthquakes of magnitude M ≥ 4.0 have been computed using a homogeneous and complete earthquake catalogue prepared for the period between 1897 and 2007. The analysis indicates that the most probable largest annual earthquakes are close to 4.6, 5.1, 5.2, 5.5 and 5.8 in the four seismic zones, namely, the Shillong Plateau Zone, the Eastern Syntaxis Zone, the Himalayan Thrusts Zone, the Arakan-Yoma subduction zone and the whole region, respectively. The most probable largest earthquakes that may occur within different time periods have been also estimated and reported. The study reveals that the estimated mean return periods for the earthquake of magnitude M w 6.5 are about 6–7 years, 9–10 years, 59–78 years, 72–115 years and 88–127 years in the whole region, the Arakan-Yoma subduction zone, the Himalayan Thrusts Zone, the Shillong Plateau Zone and the Eastern Syntaxis Zone, respectively. The study indicates that Arakan-Yoma subduction zone has the lowest mean return periods and high occurrence probability for the same earthquake magnitude in comparison to the other zones. The differences in the hazard parameters from zone to zone reveal the high crustal heterogeneity and seismotectonics complexity in northeast India and adjoining regions.  相似文献   

3.
In the high-permeability, semiarid carbonate aquifer in the Sierra de Gádor Mountains (southeastern Spain), some local springs draining shallow perched aquifers were of assistance in assessing applicability of the atmospheric chloride mass balance (CMB) for quantifying total yearly recharge (R T) by rainfall. Two contrasting hydrological years (October through September) were selected to evaluate the influence of climate on recharge: the average rainfall year 2003–2004, and the unusually dry 2004–2005. Results at small catchment scale were calibrated with estimated daily stand-scale R T obtained by means of a soil water balance (SWB) of rainfall, using the actual evapotranspiration measured by the eddy covariance (EC) technique. R T ranged from 0.35 to 0.40 of rainfall in the year, with less than a 5% difference between the CMB and SWB methods in 2003–2004. R T varied from less than 0.05 of rainfall at mid-elevation to 0.20 at high elevation in 2004–2005, with a similar difference between the methods. Diffuse recharge (R D) by rainfall was quantified from daily soil water content field data to split R T into R D and the expected concentrated recharge (R C) at catchment scale in both hydrological years. R D was 0.16 of rainfall in 2003–2004 and 0.01 in 2004–2005. Under common 1- to 3-day rainfall events, the hydraulic effect of R D is delayed from 1 day to 1 week, while R C is not delayed. This study shows that the CMB method is a suitable tool for yearly values complementing and extending the more widely used SWB in ungauged mountain carbonate aquifers with negligible runoff. The slight difference between R T rates at small catchment and stand scales enables results to be validated and provides new estimates to parameterize R T with rainfall depth after checking the weight of diffuse and concentrated mechanisms on R T during moderate rainfall periods and episodes of marked climatic aridity.  相似文献   

4.
Drought is one of the most harmful natural hazards in Gansu Province in Northwest China. The changes of precipitation affect the severity of drought. In order to recognize the trend of precipitation and understand the effect of rainfall change on water resources management and drought severity, Mann–Kendall test was used. Standardized Precipitation Index (SPI) was calculated to reconstruct the drought at different time scales and analyze the frequency of drought occurrence in the recent 50 years. The results show that the SPI is applicable in Gansu Province. The number of severe droughts differs among regions: it is more obvious as a 3-month drought in the Yellow River Basin and the Yangtze River Basin than in the Inland River Basin, and other droughts at 6-, 9-, and 12-month time scales have the same effect in the three regions. Mann–Kendall test results show that there is an upward trend in the summer periods and a downward trend in the autumn-winter-spring intervals ranging from 10.5 mm/10 years to −37.4 mm/10 years, which affect the local water resources management, droughts mitigation, and agriculture decision making. This situation poses challenges for future study.  相似文献   

5.
Droughts are complex natural hazards that, to a varying degree, affect some parts of the world every year. The range of drought impacts is related to drought occurring in different stages of the hydrological cycle and usually different types of droughts such as meteorological, agricultural, hydrological, and socio-economical are the most distinguished types. Hydrological drought includes streamflow and groundwater droughts. In this paper, streamflow drought was analyzed using the method of truncation level (at 70 % level) by daily discharges at 54 stations in southwestern Iran. Frequency analysis was carried out for annual maximum series of drought deficit volume and duration. 35 factors such as physiographic, climatic, geologic and vegetation were studied to carry out the regional analysis. According to conclusions of factor analysis, the six most effective factors include watershed area, the sum rain from December to February, the percentage of area with NDVI <0.1, the percentage of convex area, drainage density and the minimum of watershed elevation, explained 89.2 % of variance. The homogenous regions were determined by cluster analysis and discriminate function analysis. The suitable multivariate regression models were ascertained and evaluated for hydrological drought deficit volume with 2 years return period. The significance level of models was 0.01. The conclusion showed that the watershed area is the most effective factor that has a high correlation with drought deficit volume. Moreover, drought duration was not a suitable index for regional analysis.  相似文献   

6.
Trends of pre-monsoon, monsoon and post-monsoon rainfall pattern were studied on decadal basis over different homogeneous monsoon regions in India for the period 1871–2008. It is attempted to understand the relation of monsoon rainfall with the global teleconnections of El Niño and La Niña, for which the correlation analysis has been carried out with Darwin pressure and Niño 3.4 sea surface temperature (Niño 3.4 SST). The correlation analysis inferred that the significant correlations were observed when monsoon rainfall is related to ENSO indices on decadal scale than on annual ones. The study also found that the north-west region is more affected by the moderate El Niño years compared to strong El Niño years. The regions Central North-East and North-East could not make any difference among weak, moderate and strong La Niña events. The authors also have carried out the extreme value analysis over different homogeneous monsoon regions of India as well as for whole India. The results show that the return values of rainfall are increasing with the return periods for the forthcoming 10, 20, 50 and 100 years. The heterogeneity in number of threshold years that were recorded for the extreme rainfall over north-east (humid climatic type) and north-west (arid climatic type) described the climate variability. The results of the present study may be useful for the policy makers in understanding the rainfall exceedance in different return periods for planning the risk management strategies.  相似文献   

7.

The rainfall erosivity (R-factor in USLE) is the long-term average of the sum of the product of rainfall kinetic energy and its maximum 30-min intensity. Therefore, at most 30-min time intervals pluviograph records are required to calculate R-factor. But, such high-resolution data are scarce in many parts of the world and require lengthy processing period. In this study, R-factor was correlated with daily, monthly and annual rainfall, and its spatial variability in Eastern Ghats Highland of east India was mapped. The result showed that power regression models predicted satisfactorily the daily, monthly and annual R-factor, of which annual R-factor model performed best (model efficiency 0.93). Mean monsoon season R-factor was 15.6 and 10.0 times higher than the pre- and post-monsoon season R-factor, and thus remained highly critical with respect to erosion. Annual R-factor values ranged from 3040 to 10,127 MJ mm ha?1 h?1 year?1, with standard deviation of 1981 MJ mm ha?1 h?1 year?1. Rainfall intensity was positively correlated with erosivity density, and numerical value of rainfall intensity was almost double of the erosivity density value. The combination of rainfall and erosivity density was used to identify flood, erosion and landslide-prone areas. The developed iso-erosivity, erosivity density and risk maps can be opted as a tool for policy makers to take suitable measures against natural hazards in Eastern Ghats Highland of east India and elsewhere with similar rainfall characteristics.

  相似文献   

8.
COVID-19 pandemic has forced to lockdown entire India starting from 24th March 2020 to 14th April 2020 (first phase), extended up to 3rd May 2020 (second phase), and further extended up to 17th May 2020 (third phase) with limited relaxation in non-hotspot areas. This strict lockdown has severely curtailed human activity across India. Here, aerosol concentrations of particular matters (PM) i.e., PM10, PM2.5, carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), ammonia (NH3) and ozone (O3), and associated temperature fluctuation in four megacities (Delhi, Mumbai, Kolkata, and Chennai) from different regions of India were investigated. In this pandemic period, air temperature of Delhi, Kolkata, Mumbai and Chennai has decreased about 3 °C, 2.5 °C, 2 °C and 2 °C respectively. Compared to previous years and pre-lockdown period, air pollutants level and aerosol concentration (?41.91%, ?37.13%, ?54.94% and ?46.79% respectively for Delhi, Mumbai, Kolkata and Chennai) in these four megacities has improved drastically during this lockdown period. Emission of PM2.5 has experienced the highest decrease in these megacities, which directly shows the positive impact of restricted vehicular movement. Restricted emissions produce encouraging results in terms of urban air quality and temperature, which may encourage policymakers to consider it in terms of environmental sustainability.  相似文献   

9.
In the shallow microtidal Patos Lagoon estuary, southern Brazil (32° 07′ S–52° 06′ W), chlorophyll a (Chl a) variability was studied at different time scales during the last 25 years (hourly–daily sampling in 1984/1985; weekly sampling in 1986 and from 1988 to 1990; monthly sampling from 1993 to 2008). Phytoplankton biomass variation seems to be most influenced by hydrology, which is primarily driven by meteorological factors like wind, rainfall, and evaporation. However, it was observed that the hydrological driving forces play different roles at different time scales. For instance, short-term Chl a variability is mainly controlled by winds, while long-term changes are related to the freshwater input by rainfall. Significant correlation was found between the total amount of rain in the year and the mean annual value of Chl a, though this relationship was linear until 1,500 mm of rain per year. After this threshold, mean annual Chl a values dropped significantly, probably due to a washout of the produced biomass from the estuary. Similarly, low rainfall levels and drought years lead to small phytoplankton biomass due to scarcity of nutrient, mainly silicate, or a possible inhibitory effect generated by high ammonium concentration. In this sense, large-scale Chl a variability would be related to the El Ni?o-Southern Oscillation climatic anomaly, which influences the rainfall levels in Southern Brazil, though sampling periodicity has also great influence on this relationship. No Chl a or nutrient enrichment was observed in the estuarine region along the last years, indicating that this estuary is not subject to an eutrophication process. In contrast, signals of an ongoing oligotrophication are observed, possibly a remote effect of the eutrophication in the Northern area of the lagoon where the phytoplankton nutrients uptake may act as a biological filter mechanism.  相似文献   

10.
Based on the daily precipitation data of 38 weather stations in the Huai River Basin from 1961 to 2010, this study used SPI index, P-III curve to determine the flood/drought years, under what situations for droughts and floods easily happen, and to analyze the evolution law of flood and drought during inter-annual and intra-annual based on the characteristic of monthly precipitation. The results showed that: (1) annual rainfall of the Huai River Basin presented decreasing trend, maximum rainfall appeared from June to August, and multi-year average precipitation increased gradually from north to south; (2) the variation of monthly precipitation during flood years was more severe than other typical years, and precipitation in drought years showed nearly 50 % decline compared with normal years; (3) high rainfall of flood years was mainly caused by the increase in rainfall in flood season, and the strategy of flood control and drought relief was “short-term flood prevention and long-term drought relief”; (4) while precipitation of most months in drought year was reduced, the relevant strategies “annual basin-wide of long-term drought prevention” should be carried out; (5) combination events of floods and droughts occurred frequently. Persistent drought dominated in spring and summer while droughts and floods that happened alternately were mainly in summer and autumn.  相似文献   

11.
Some statistical properties of the summer monsoon seasonal rainfall for India during the last 100 years (1881–1980) are presented. The most recent decade of 1971–1980 shows the lowest value of standard-decadal average monsoon rainfall (86.40 cm) and is also characterised by the second highest value of coefficient of variation in monsoon rainfall (12.4 %). The combined last two standard-decadal period of 1961–1980 was the period of the largest coefficient of variation and the lowest average monsoon rainfall for India. The possible influence of global climatic variability on the performance of the monsoon is also examined. Analyses of correlation coefficient show that a statistically significant positive relationship with a time-lag of about six months exists between monsoon rainfall and northern hemispheric surface air temperature. A cooler northern hemisphere during January/February leads to a poor monsoon. All the major drought years during the last 3 decades had much cooler January/February periods over the northern hemisphere—1972 having the coldest January/February with a temperature departure of −0.94°C and the most disastrous monsoon failure.  相似文献   

12.
Drought frequency, duration, and severity and its impact on pasture productivity in the four main vegetation zones of Mongolia were analyzed using meteorological, soil moisture, and vegetation data during the growing season (April–August) of 1965–2010. Meteorological and pasture drought characteristics were explored using the Standardized Precipitation Index (SPI), the soil moisture anomalies percentile index (W p), and Palmer Drought Severity Index (PDSI) on 1-month timescale. Generally, 35–37 (15–16 %) by SPI for meteorological drought while 27–29 (12–13 %) by W p, and 16–21 (7–9 %) by PDSI for pasture drought with different durations were identified over the four vegetation zones during the study period. Most of these droughts (80 % by SPI and 50–60 % by both W p and PDSI) observed during the entire events occurred on a 1-month duration with moderate intensity. Drought frequencies were not significantly (p > 0.05) different within the four zones. The frequency of the short-term meteorological droughts was observed relatively greater than pasture droughts; however, pasture droughts were more persistent and severe than meteorological droughts. The three indices show that the frequency and severity of droughts have slightly increased over the 46 years with significant (p < 0.05) dry conditions during the last decade of 2001–2010 in the four zones (except in the high mountain). The results showed the W p was more highly significantly correlated with the precipitation anomalies (r = 0.68) and pasture production (r = 0.55) than PDSI (r = 0.51, p < 0.05 and r = 0.38, p < 0.10, respectively). A statistical model, based on pasture production and the W p, suggested that the consecutive drought months contribution during the growing season was 30 % (p < 0.05) and that pasture production was more sensitive to the occurrence of droughts during June–August (R 2 = 0.32, p < 0.05) as seen in 2000–2002 and 2007. We concluded that a greater severity and frequency of growing-season droughts, during the last decade of 2001–2010, have driven a reduction in pasture production in Mongolia.  相似文献   

13.
The H2O content of wadsleyite were measured in a wide pressure (13–20 GPa) and temperature range (1,200–1,900°C) using FTIR method. We confirmed significant decrease of the H2O content of wadsleyite with increasing temperature and reported first systematic data for temperature interval of 1,400–1,900°C. Wadsleyite contains 0.37–0.55 wt% H2O at 1,600°C, which may be close to its water storage capacity along average mantle geotherm in the transition zone. Accordingly, water storage capacity of the average mantle in the transition zone may be estimated as 0.2–0.3 wt% H2O. The H2O contents of wadsleyite at 1,800–1,900°C are 0.22–0.39 wt%, indicating that it can store significant amount of water even under the hot mantle environments. Temperature dependence of the H2O content of wadsleyite can be described by exponential equation C\textH2 \textO = 6 3 7.0 7 \texte - 0.00 4 8T , C_{{{\text{H}}_{2} {\text{O}}}} = 6 3 7.0 7 {\text{e}}^{ - 0.00 4 8T} , where T is in °C. This equation is valid for temperature range 1,200–2,100°C with the coefficient of determination R 2 = 0.954. Temperature dependence of H2O partition coefficient between wadsleyite and forsterite (D wd/fo) is complex. According to our data apparent Dwd/fo decreases with increasing temperature from D wd/fo = 4–5 at 1,200°C, reaches a minimum of D wd/fo = 2.0 at 1,400–1,500°C, and then again increases to D wd/fo = 4–6 at 1,700–1,900°C.  相似文献   

14.
王颖  许洁  李文杰 《水文》2014,34(4):86-91
2013年夏季干旱给宁波市带来了极大的损失。本文利用全市63个国家基本雨量站资料,采用连续无雨日法和降水量距平法评估此次干旱的干旱等级,并提出了回归分析的改进方法。通过与历史同期旱情进行对比分析,认为宁波市2013年夏季干旱为近60年比较严重的年份之一,频率分析达到30年一遇。  相似文献   

15.
Monthly variations of lightning activity over typical land and oceanic regions of India were examined using satellite data (OTD) for a 5-year period (1995–1999). It is noted that the nature of variation between surface air maximum temperature (T max), thunderstorm days (Thn), and lightning flash count over ER and WR showed remarkable correspondence and sensitivity with each other on monthly time scale. As we move out of winter season and enter the monsoon season, via pre-monsoon season, the WR undergoes cooling relative to the ER in the range 0.1–1.2°C. As a result, WR experiences reduction of thunder days and lowering in flash count. This decrease in T max, Thn, and flash count over WR may also be associated with relatively small values of T θw and CAPE in comparison with similar values over ER during the monsoon season. Our observation of associated reduction in Thn and lightning count per 1°C cooling in surface air maximum temperature suggests reduction of ∼3.5 thunderstorms per station and 73 flashes. Comparison of lightning flashes between pairs of coastal, oceanic, arid-zone, hilly, and island stations reveals distinct relationship between climate regime and intensity of lightning activity. We may conclude the results of this study by saying that the overhead lightning activity is a clear reflection of the status of the underlying ground-earth properties. A close and continuous monitoring of lightning activity may be considered as a need of present day scientific studies.  相似文献   

16.
A regional time and magnitude predictable model has been applied to estimate the recurrence intervals for large earthquakes in the vicinity of 8 October 2005 Kashmir Himalaya earthquake (25°–40°N and 65°–85°E), which includes India, Pakistan, Afghanistan, Hindukush, Pamirs, Mangolia and Tien-Shan. This region has been divided into 17 seismogenic sources on the basis of certain seismotectonics and geomorphological criteria. A complete earthquake catalogue (historical and instrumental) of magnitude Ms ≥ 5.5 during the period 1853–2005 has been used in the analysis. According to this model, the magnitude of preceding earthquake governs the time of occurrence and magnitude of future mainshock in the sequence. The interevent time between successive mainshocks with magnitude equal to or greater than a minimum magnitude threshold were considered and used for long-term earthquake prediction in each of seismogenic sources. The interevent times and magnitudes of mainshocks have been used to determine the following predictive relations: logT t = 0.05 M min + 0.09 M p − 0.01 log M 0 + 01.14; and M f = 0.21 M min − 0.01 M p + 0.03 log M 0 + 7.21 where, T t is the interevent time of successive mainshocks, M min is minimum magnitude threshold considered, M p is magnitude of preceding mainshock, M f is magnitude of following mainshock and M 0 is the seismic moment released per year in each seismogenic source. It was found that the magnitude of following mainshock (M f) does not depend on the interevent time (T t), which indicates the ability to predict the time of occurrence of future mainshock. A negative correlation between magnitude of following mainshock (M f) and preceding mainshock (M p) indicates that the larger earthquake is followed by smaller one and vice versa. The above equations have been used for the seismic hazard assessment in the considered region. Based on the model applicability in the studied region and taking into account the occurrence time and magnitude of last mainshock in each seismogenic source, the time-dependent conditional probabilities (PC) for the occurrence of next shallow large mainshocks (Ms ≥ 6.5), during next 20 years as well as the expected magnitudes have been estimated.  相似文献   

17.
Middle-Upper Proterozoic and Lower Paleozoic carbonate formations in northern China are well developed with an accumulative thickness of 6000–1400 m. Both seepages and oils have been found in the outcrops and drilling wells. The maturity of organic matter in these carbonate formations in obviously lower than that in southern China, as viewed from reflectance (R°), H/C (atomic ratio), the amount and distribution of hydrocarbons,T max°C and so on.T max°C may be used as a principal index for determining the maturity of organic matter in carbonate rock-covered areas. According to the results of themeasurement ofT max°C andR° for natural samples and simulating experiments on bitumens from carbonate rocks, the limitation values for oil and gas have been estimated at 455°C (R°=1.35) and 476°C(R°=2.25), respectively. On this basis, the map of organic matter maturity for the Middle-Upper Proterozoic, Ordovician, Cambrian and Carboniferous of northern China has been compiled. It has been proposed that prospects of both oil and gas are expected, with oil and condensate dominant in the Ordovician, and condensate and dry gas in the Middle-Upper Proterozoic. The Cambrian is intermediate between them.  相似文献   

18.
According to records of 17 meteorological stations distributed in the study area, climate change of the middle Inner Mongolia in northern China was analyzed in this paper. Based on SPOT VGT data, combined with field investigation, local vegetation change was detected in the last 10 years. The results show that annual mean air temperature obviously rose, while precipitation slightly decreased in fluctuation in the study area during the last 50 years. Air temperature increasing rates are +0.318°C 10 year−1 during 1960-2009 and +0.423°C 10 year−1 during 1980–2009, while precipitation decreasing rates are −2.91 mm 10 year−1 during 1960–2009. There were five different dry or wet periods from the 1960s to the 2000s in order, and the wetter 1990s and the drier 2000s changed dramatically in the study area. Local climate totally tend to warm–dry conditions during the last 50 years. According to coefficient of variation (Cv) of yearly growing-season cumulative NDVI value and yearly NDVI maximum in pixel scale, vegetation had experienced huge temporal and spatial variation during the last 10 years. Recently, frequent droughts and dust storms seriously affected local agriculture and grazing activities, and resulted in heavy economic loss, especially over the drought period of 1999–2001. Faced with those drought disasters accompanied with strong dust storms, the local authorities proposed the enclosing-transferring strategy and made great efforts to adapt overt climate change and improve environment, including making selective emigration, decreasing livestock numbers, fencing grasslands and building forage production bases with irrigation instruments and actively adjusting industry structure. However, some effects and potential problems of this adaptation strategy still need to be comprehensively assessed further in longer time scales and aimed at different sub-regions.  相似文献   

19.
This study investigates the distribution of modern pollen assemblages in the Qinghai-Tibetan Plateau, China, based on surface soil samples collected at 1202 sites along an altitudinal gradient of 10–5500 m asl, where mean annual precipitation (MAP) ranges from 12 to 1840 mm and mean annual temperature (MAT) from ?7 to 21.5 °C. A total of 153 pollen taxa were found with relative abundances greater than 1% in at least two samples. Canonical correspondence analysis (CCA) was used to determine the main environmental variables influencing pollen distributions. The results reveal that MAP is the most significant dominant variable. However, MAT, altitude (ALT), July temperature (MT7), and relative humidity (HHH) are also significant variables that clearly follow the gradients in the CCA ordination, suggesting that pollen assemblages probably not only reflect a single climatic parameter, but also a variety of other climatic inter-related parameters.Transfer functions, based on locally weighted weighted averaging (LWWA), were developed for MAP (R2-boot = 0.89, RMSEP = 109 mm), MAT (R2-boot = 0.78, RMSEP = 2.3 °C), ALT (R2-boot = 0.73, RMSEP = 597 m), HHH (R2-boot = 0.82, RMSEP = 4.5%), and July mean precipitation (MP7) (R2-boot = 0.87, RMSEP = 23 mm). Overall, our results confirm that pollen can provide reliable estimates of the primary climatic parameters. The application of the LWWA model to the fossil records of Chen Co Lake allowed quantitative inferences to be made about Holocene climatic changes in the southern Tibetan Plateau, suggesting that LWWA is a robust calibration method for quantitative palaeo-environmental reconstruction based on pollen data in the regions.  相似文献   

20.
Features of the equatorial electrojet are studied at Sao Luiz (2.6°S, 44.2°W, inclination −0.25°) in eastern Brazil and Sikasso (11.3°N, 5.7°W, inclination 0.1°) in the western African sector. The stations are situated on either side of the lowest magnetic field intensity in the region of rapid changes in the declination. The daily variations of ΔX at the two stations are almost similar with the peak around noon with maximum values during equinoxes and minimum values during J-solstices. Daily variations of ΔY differ with the maximum deviation of about −35 nT around noon at Sao Luiz and much smaller value of about −10 nT around 14 h LT for Sikasso. The direction of the H vector varies from 15°W of north at 08 h to more than 30°W of north at 17 h for Sao Luiz and from 14°E of north to 25°W of north at 18 h for Sikasso. The plot of the deviations in ΔX and ΔY at different hours for the two stations shows the points along narrow ellipses with major axis aligned along 22°W of north for Sao Luiz and along 3°W of north for Sikasso as compared to declination of 20°W for Sao Luiz and 6°W for Sikasso. The deviations in ΔX at the two stations are fairly well correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号