首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Santa Ana volcano in western El Salvador, Central America, had a phreatic eruption at 8:05 am (local time) on October 1, 2005, 101 years after its last eruption. However, during the last one hundred years this volcano has presented periods of quiet degassing with fumarolic activity and an acidic lake within its crater. This paper presents results of frequent measurements of SO2 degassing using the MiniDOAS (Differential Optical Absorption Spectroscopy) system and a comparison with the volcanic seismicity prior to the eruption, during, and after the eruption. Vehicle measurements of SO2 flux were taken every hour during the first nine days of the eruption and daily after that. The period of time reported here is from August to December, 2005. Three periods of degassing are distinguished: pre-eruptive, eruptive, and post-eruptive periods. The intense activity at Santa Ana volcano started in July 2005. During the pre-eruptive period up to 4306 and 5154 ton/day of SO2 flux were recorded on October 24 and September 9, 2005, respectively. These values were of the same order of magnitude as the recorded values just after the October 1st eruption (2925 ton/day at 10:01 am). Hourly measurements of SO2 flux taken during the first nine days after the main eruptive event indicate that explosions are preceded by an increase in SO2 flux and that this parameter reaches a peak after the explosion took place. This behavior suggests that increasing accumulation of exsolved magmatic gases occurs within the magmatic chamber before the explosions, increasing the pressure until the point of explosion. A correlation between SO2 fluxes and RSAM (Real Time Seismic Amplitude Measurements) is observed during the complete sampling period. Periodic fluctuations in the SO2 and RSAM values during the entire study period are observed. One possible mechanism explaining these fluctuations it that convective circulation within the magmatic chamber can bring fresh magma periodically to shallow levels, allowing increasing degasification and then decreasing degasification as the batch of magma lowers its gas content, becomes denser, and sinks to give space to a new magma pulse. These results illustrate that the measurements of SO2 flux can provide important warning signals for incoming explosive activity in active volcanoes.  相似文献   

2.
The continuous measurement of molecular hydrogen (H2) emissions from passively degassing volcanoes has recently been made possible using a new generation of low-cost electrochemical sensors. We have used such sensors to measure H2, along with SO2, H2O and CO2, in the gas and aerosol plume emitted from the phonolite lava lake at Erebus volcano, Antarctica. The measurements were made at the crater rim between December 2010 and January 2011. Combined with measurements of the long-term SO2 emission rate for Erebus, they indicate a characteristic H2 flux of 0.03?kg s–1 (2.8?Mg? day–1). The observed H2 content in the plume is consistent with previous estimates of redox conditions in the lava lake inferred from mineral compositions and the observed CO2/CO ratio in the gas plume (~0.9 log units below the quartz–fayalite–magnetite buffer). These measurements suggest that H2 does not combust at the surface of the lake, and that H2 is kinetically inert in the gas/aerosol plume, retaining the signature of the high-temperature chemical equilibrium reached in the lava lake. We also observe a cyclical variation in the H2/SO2 ratio with a period of ~10?min. These cycles correspond to oscillatory patterns of surface motion of the lava lake that have been interpreted as signs of a pulsatory magma supply at the top of the magmatic conduit.  相似文献   

3.
Radionuclide activities (210Pb, 210Bi, 210Po) were investigated in Mount Etna plume from 1983 to 1995. At SE crater the long-term observation (12 years) of the 210Po/210Pb ratio shows that it can behave as a degassing vent not directly related to the main magma reservoir depending on the magma level inside the volcano. Since 1992, the simultaneous determination of radionuclides and sulfur in the main plume results in new constraints on the degassing model of Lambert et al. (Earth Planet. Sci. Lett., 76 (1986) 185). The 210Po/SO2 and 210Pb/SO2 ratios enable us to identify two sources of 210Po in the plume: one is magmatic, correlated with SO2, the other one is an additional component issued from the decay of 210Pb in the shallow degassing cell, and depends directly on the residence time of the gases before their emission. Estimations of the volume of degassing magma, the residence time of the gases and the proportion of undegassed magma renewing the shallow degassing cell are given for the period 1992–1995. During the 1992 eruption, the rate of degassing magma volume is estimated to have been as high as 5×106 m3/day, and the volume of the shallow degassing magma reservoir about 0.5 km3. In 1994 and 1995 the rate of non-erupted degassing magma volume was estimated to have been about 0.18 km3/year. During the entire 1983–1995 period, only 15–20% of the degassed magma was erupted.  相似文献   

4.
This paper presents the results of 7 years (Aug. 1999–Oct. 2006) of SO2 gas measurements during the ongoing eruption of Tungurahua volcano, Ecuador. From 2004 onwards, the operation of scanning spectrometers has furnished high temporal resolution measurements of SO2 flux, enabling this dataset to be correlated with other datasets, including seismicity. The emission rate of SO2 during this period ranges from less than 100 to 35,000 tonnes/day (t d− 1) with a mean daily emission rate of 1458 t d− 1 and a standard deviation of ± 2026 t d− 1. Average daily emissions during inferred explosive phases are about 1.75 times greater than during passive degassing intervals. The total amount of sulfur emitted since 1999 is estimated as at least 1.91 Mt, mostly injected into the troposphere and carried westwards from the volcano. Our observations suggest that the rate of passive degassing at Tungurahua requires SO2 exsolution of an andesitic magma volume that is two orders of magnitude larger than expected for the amount of erupted magma. Two possible, and not mutually exclusive, mechanisms are considered here to explain this excess degassing: gas flow through a permeable stagnant-magma-filled conduit and gas escape from convective magma overturning in the conduit. We have found that real-time gas monitoring contributes significantly to better eruption forecasting at Tungurahua, because it has provided improved understanding of underlying physical mechanisms of magma ascent and eruption.  相似文献   

5.
Popocatépetl volcano in central Mexico has been erupting explosively and effusively for almost 4 years. SO2 emission rates from this volcano have been the largest ever measured using a COSPEC. Pre-eruptive average SO2 emission rates (2–3 kt/d) were similar to the emission rates measured during the first part of the eruption (up to August 1995) in contrast with the effusive–explosive periods (March 1996–January 1998) during which SO2 emission rates were higher by a factor of four (9–13 kt/d). Based on a chronology of the eruption and the average SO2 emission rates per period, the total SO2 emissions (up to 1 January 1998) are estimated to be about 9 Mt, roughly half as much as the SO2 emissions from Mount Pinatubo in a shorter period. Popocatépetl volcano is thus considered as a high-emission rate, passively degassing eruptive volcano. SO2 emission rates and SO2 emissions are used here to make a mass balance of the erupted magma and related gases. Identified excess SO2 is explained in terms of continuous degassing of unerupted magma and magma mixing. Fluctuations in SO2 emission rate may be a result of convection and crystallization in the chamber or the conduits, cleaning and sealing of the plumbing system, and/or SO2 scrubbing by the hydrothermal system.  相似文献   

6.
On 27 February 2007, a new eruption occurred on Stromboli which lasted until 2 April. It was characterized by effusive activity on the Sciara del Fuoco and by a paroxysmal event (15 March). This crisis represented an opportunity for us to refine the model that had been developed previously (2002–2003 eruption) and to improve our understanding of the relationship between the magmatic dynamics of the volcano and the geochemical variations in the fluids. In particular, the evaluation of the dynamic equilibrium between the volatiles (CO2 and SO2) released from the magma and the corresponding fluids discharged from the summit area allowed us to evaluate the level of criticality of the volcanic activity. One of the major accomplishments of this study is a 4-year database of summit soil CO2 flux on the basis of which we define the thresholds (low–medium–high) for this parameter that are empirically based on the natural volcanological evolution of Stromboli. The SO2 fluxes of the degassing plume and the CO2 fluxes emitted from the soil at Pizzo Sopra la Fossa are also presented. It is noteworthy that geochemical signals of volcanic unrest have been clearly identified before, during and after the effusive activity. These signals were found almost simultaneously in the degassing plume (SO2 flux) and in soil degassing (CO2 flux) at the summit, although the two degassing processes are shown to be clearly different. The interpretation of the results will be useful for future volcanic surveillance at Stromboli.  相似文献   

7.
Excessive degassing of Izu-Oshima volcano: magma convection in a conduit   总被引:2,自引:0,他引:2  
Excess degassing of magmatic H2O and SO2 was observed at Izu-Oshima volcano during its latest degassing activity from January 1988 to March 1990. The minimum production rate for degassed magma was calculated to be about 1×104 kg/s using emission rates of magmatic H2O and SO2, and H2O and S contents of the magma. The minimum total volume of magma degassed during the 27-month period is estimated to be 2.6×108 m3. This volume is 20 times larger than that of the magma ejected during the 1986 summit eruption. Convective transport of magma through a conduit is proposed as the mechanism that causes degassing from a magma reservoir at several kilometers depth. The magma transport rate is quantitatively evaluated based on two fluid-dynamic models: Poiseuille flow in a concentric double-walled pipe, and ascent of non-degassed magma spheres through a conduit filled with degassed magma. This process is further tested for an andesitic volcano and is concluded to be a common process for volcanoes that discharge excess volatiles.  相似文献   

8.
 Measurements of CO2 fluxes from open-vent volcanos are rare, yet may offer special capabilities for monitoring volcanos and forecasting activity. The measured fluxes of CO2 and SO2 from Mount St. Helens decreased from July through November 1980, but the record includes variations of CO2/SO2 in the emitted gas and episodes of greatly increased fluxes of CO2. We propose that the CO2 flux variations reflect two gas components: (a) a component whose flux decreased in proportion to 1/ √t with a CO2/SO2 mass ratio of 1.7, and (b) a residual flux of CO2 consisting of short-lived, large peaks with a CO2/SO2 mass ratio of 15. We propose two hypotheses: (a) the 1/ √t dependence was generated by crystallization in a deep magma body at rates governed by diffusion-limited heat transfer, and (b) the gas component with the higher CO2/SO2 was released from ascending magma, which replenished the same magma body. The separation of the total CO2 flux into contributions from known processes permits quantitative inferences about the replenishment and crystallization rates of open-system magma bodies beneath volcanos. The flux separations obtained by using two gas sources with distinct CO2/SO2 ratios and a peak minus background approach to obtain the CO2 contributions from an intermittent source and a continuously emitting source are similar. The flux separation results support the hypothesis that the second component was generated by episodic magma ascent and replenishment of the magma body. The diffusion-limited crystallization hypothesis is supported by the decay of minimum CO2 and SO2 fluxes with 1/ √t after 1 July 1980. We infer that the magma body at Mount St. Helens was replenished at an average rate (2.8×106 m3 d–1) which varied by less than 5% during July, August, and September 1980. The magma body volume (2.4–3.0 km3) in early 1982 was estimated by integrating a crystallization rate function inferred from CO2 fluxes to maximum times (20±4 years) estimated from the increase of sample crystallinity with time. These new volcanic gas flux separation methods and the existence of relations among the CO2 flux, crystallization rates, and magma body replenishment rates yield new information about the dynamics of an open-vent, replenished magma body. Received: 15 February 1995 / Accepted: 30 March 1996  相似文献   

9.
Continuous monitoring of soil CO2 dynamic concentration (which is proportional to the CO2 flux through the soil) was carried out at a peripheral site of Mt. Etna during the period November 1997–September 2000 using an automated station. The acquired data were compared with SO2 flux from the summit craters measured two to three times a week during the same period. The high frequency of data acquisition with both methods allowed us to analyze in detail the time variations of both parameters. Anomalous high values of soil CO2 dynamic concentration always preceded periods of increased flux of plume SO2, and these in turn were followed by periods of summit eruptions. The variations were modeled in terms of gas efflux increase due to magma ascent to shallow depth and its consequent depressurization and degassing. This model is supported by data from other geophysical and volcanological parameters. The rates of increase both of soil CO2 dynamic concentration and of plume SO2 flux are interpreted to be positively correlated both to the velocity of magma ascent within the volcano and to lava effusion rate once magma is erupted at the surface. Low rates of the increase were recorded before the nine-month-long 1999 subterminal eruption. Higher rates of increase were observed before the violent summit eruption of September-November 1999, and the highest rates were observed during shorter and very frequent spike-like anomalies that preceded the sequence of short-lived but very violent summit eruptions that started in late January 2000 and continued until late June of the same year. Furthermore, the time interval between the peaks of CO2 and SO2 in a single sequence of gas anomalies is likely to be controlled by magma ascent velocity.Editorial responsibility: H. Shinohara  相似文献   

10.
A tripod-mounted correlation spectrometer was used to measure SO2 emissions from Pu`u `O`o vent, mid-ERZ, Kilauea, Hawaii between Episodes 33 and 34 (June 13 to July 6, 1985). In 24 repose days, 906 measurements were collected, averaging 38 determinations/day. Measurements reflect 13% of the total 576 hours of the repose and 42% of the bright daylight hours. The average SO2 emission for the 24-day repose interval is 167±83 t/d, a total of 4000 tonnes emitted for the entire repose. The large standard deviation reflects the puffing character of the plume. The overall rate of SO2 degassing gently decreased with a zero-intercept of 44–58 days and was interrupted by two positive peaks. The data are consistent with the gas emanating from a cylindrical conduit of 50 meter diameter and a length of 1700 meters which degasses about 50% of its SO2 during 24 days. This is in support of the Pu'u `O`o model of Greenland et al. (1987). 36 hours before the onset of Episode 34 (July 5–6, 1985), elevated SO2 emissions were detected while the magma column was extremely active ultimately spilling over during dome fountaining. A mid-repose anomaly of SO2 emission (June 21–22, 1985) occurs two days before a sudden increase in the rate of summit inflation (on June 24, 1985), suggesting magma was simultaneously being injected in both the ERZ and summit reservoir until July 24 when it was channelled only to the summit reservoir. This implies degassing magma is sensitive to perturbations within the rift zone conduit system and may at times reflect these disturbances. Periods of 7–45 min are detected in the daily SO2 emissions, which possibly reflect timing of convective overturn in the cylindrical magma body. If the 33–34 repose interval is considered representative of other repose periods, the ERZ reposes of Jan 1983–Jan 1986 ERZ activity, contributed 1.6 × 105 tonnes of SO2 to the atmosphere. Including summit fuming from non-eruptive fumaroles (2.7 × 105 tonnes SO2); 28% of the total SO2 budget from Kilauea between Jan 1983 to Jan 1986 was contributed by quiescent degassing, and the remainder was released during explosive fountaining episodes.  相似文献   

11.
Here we report measurements of the chemical composition and flux of gas emitted from the central lava lake at Erta 'Ale volcano (Ethiopia) made on 15 October 2005. We determined an average SO2 flux of ∼ 0.69 ± 0.17 kg s− 1 using zenith sky ultraviolet spectroscopy of the plume, and molar proportions of magmatic H2O, CO2, SO2, CO, HCl and HF gases to be 93.58, 3.66, 2.47, 0.06, 0.19 and 0.04%, respectively, by open-path Fourier transform infrared (FTIR) spectrometry. Together, these data imply fluxes of 7.3, 0.7, 0.008, 0.03 and 0.004 kg s− 1 for H2O, CO2, CO, HCl and HF, respectively. These are the first FTIR spectroscopic observations at Erta 'Ale, and are also some of the very few gas measurements made at the volcano since the early 1970s (Gerlach, T.M., 1980b. Investigation of volcanic gas analyses and magma outgassing from Erta 'Ale lava lake, Afar, Ethiopia. Journal of Volcanology and Geothermal Research, 7(3–4): 415–441). We identify significant increases in the proportion of H2O in the plume with respect to both CO2 and SO2 across this 30-year interval, which we attribute to the depletion of volatiles in magma that sourced effusive eruptions during the early 1970s and/or to fractional magma degassing between the two active pit craters located in the summit caldera.  相似文献   

12.
Gas emissions from Erebus volcano, Antarctica, were measured by open-path Fourier transform infrared spectroscopy to understand degassing of its magmatic system. Two degassing phonolite lava lakes were present in the summit crater during observation in December 2004. We report analyses of H2O, CO2, CO, SO2, HF, HCl and OCS, (in order of molar abundance) in the plumes. Variations in the proportions of these species strongly reflect the dynamics of degassing, and sourcing of gas from different depths in the magmatic network. The highest observed ratios of CO2 and H2O are consistent with gas extracted from the melt at a depth of up to ∼ 2 km below the lava lakes. Magma degassing above this depth contributes to a higher H2O/CO2 proportion in the airborne plume. The ratio therefore reflects the balance of deeper vs. shallower contributions of volatiles and, possibly, a combination of closed- and open-system degassing. We observe a strong contrast in HF content in emissions from the two lava lakes, which we attribute to differing levels of magma ascent and/or cooling and crystallization of the magma supply. Fluxes of all gas species were determined using independent SO2 flux determinations and measured gas ratios. In the case of CO2 and water, ∼ 1 and ∼ 0.4 m3 s− 1, respectively, of parental basanite magma are required to sustain the calculated output. The discrepancy between the two figures is readily explained by sequestration of part of the magma supply at depth such that it only partially degasses its complement of water.  相似文献   

13.
This paper presents the first remote measurements of La Soufrière gas emissions since the fumarolic and seismic reactivation in 1992. The chemical composition of the plumes has been measured from May 2003 to September 2004 using an Open Path Fourier Transform InfraRed (OP-FTIR) spectrometer, up to 15 m downwind the South Crater. HCl is clearly detected (concentration between 2.4 and 12 ppmv) whereas SO2 and H2S generally remain below the detection limit of the OP-FTIR. Direct measurements of SO2 and H2S near the South Crater with a Lancom III analyzer show a fast decrease of their concentrations with the distance. Calculated Cl / S mass ratios are high: from 9.4 ± 1.7 at 15 m from the vent to 2.8 ± 0.6 at 140 m. The enrichment in HCl of the gas emitted at La Soufrière, observed since 1998, corresponds to the degassing of a magma enriched in Cl and depleted in S. This result agrees with isotopic measurements which suggest a magmatic origin of the gases. Readjustments inside the volcanic system may have taken place during the seismic activity beginning in 1992 and enhance the transfer of magmatic gases to the summit.  相似文献   

14.
Cook Inlet volcanoes that experienced an eruption between 1989 and 2006 had mean gas emission rates that were roughly an order of magnitude higher than at volcanoes where unrest stalled. For the six events studied, mean emission rates for eruptions were ∼13,000 t/d CO2 and 5200 t/d SO2, but only ∼1200 t/d CO2 and 500 t/d SO2 for non-eruptive events (‘failed eruptions’). Statistical analysis suggests degassing thresholds for eruption on the order of 1500 and 1000 t/d for CO2 and SO2, respectively. Emission rates greater than 4000 and 2000 t/d for CO2 and SO2, respectively, almost exclusively resulted during eruptive events (the only exception being two measurements at Fourpeaked). While this analysis could suggest that unerupted magmas have lower pre-eruptive volatile contents, we favor the explanations that either the amount of magma feeding actual eruptions is larger than that driving failed eruptions, or that magmas from failed eruptions experience less decompression such that the majority of H2O remains dissolved and thus insufficient permeability is produced to release the trapped volatile phase (or both). In the majority of unrest and eruption sequences, increases in CO2 emission relative to SO2 emission were observed early in the sequence. With time, all events converged to a common molar value of C/S between 0.5 and 2. These geochemical trends argue for roughly similar decompression histories until shallow levels are reached beneath the edifice (i.e., from 20–35 to ∼4–6 km) and perhaps roughly similar initial volatile contents in all cases. Early elevated CO2 levels that we find at these high-latitude, andesitic arc volcanoes have also been observed at mid-latitude, relatively snow-free, basaltic volcanoes such as Stromboli and Etna. Typically such patterns are attributed to injection and decompression of deep (CO2-rich) magma into a shallower chamber and open system degassing prior to eruption. Here we argue that the C/S trends probably represent tapping of vapor-saturated regions with high C/S, and then gradual degassing of remaining dissolved volatiles as the magma progresses toward the surface. At these volcanoes, however, C/S is often accentuated due to early preferential scrubbing of sulfur gases. The range of equilibrium degassing is consistent with the bulk degassing of a magma with initial CO2 and S of 0.6 and 0.2 wt.%, respectively, similar to what has been suggested for primitive Redoubt magmas.  相似文献   

15.
The variations in sulfur dioxide (SO2) emission from the Summit Craters of Mt. Etna were determined, with particular reference to the period 1993–1995. Vehicle-based weekly measurements of SO2 flux, using a correlation spectrometer (COSPEC), suggest new input of magma into the main feeder system of the volcano between 1993 and 1995. Minimal flux values (<1000 t/day) preceded the two eruptive events in the period 1987–1995. Only approximately 9.5% of the magma that contributed the SO2 emission was erupted during the same period. Received: 3 November 1997 / Accepted: 21 September 1998  相似文献   

16.
The 2004 andesitic block-lava extrusion at Volcán de Colima, México was accompanied and followed by numerous seismic signals associated with rockfalls, pyroclastic flows and explosive events. We analyze temporal variations in the number of rockfalls and explosions, the seismic signal duration of rockfalls and the energy of the explosion and compare this with both the rate of magma discharge and SO2 emission. Characteristics of seismic signals and SO2 emission are compared with those observed during the 1998–1999 Volcán de Colima block-lava extrusion. For both eruptions, the explosive activity was low during the lava extrusion and increased after its termination. The variation in the daily number and the total duration of rockfall seismic signals gives a good reflection of the development of the lava emission process. An increase in magmatic degassing (SO2 flux) was observed some days before the onset of lava extrusion. The degassing strongly decreased some days before the peak in the rate of the 1998–1999 lava emission but reached its peak together with the peak in the rate of the 2004 lava emission. These features of seismic activity and SO2 emission demonstrate that they are good tools for monitoring the extrusion process.  相似文献   

17.
We present daily measurements of sulfur dioxide (SO2) emissions from active volcanoes in Ecuador and southern Colombia between September 2004 and September 2006, derived from the Ozone Monitoring Instrument (OMI) on NASA's EOS/Aura satellite. OMI is an ultraviolet/visible spectrometer with an unprecedented combination of spatial and spectral resolution, and global coverage, that permits daily measurements of passive volcanic degassing from space. We use non-interactive processing methods to automatically extract daily SO2 burdens and information on SO2 sources from the OMI datastream. Maps of monthly average SO2 vertical columns retrieved by OMI over Ecuador and S. Colombia are also used to illustrate variations in regional SO2 loading and to pinpoint sources. The dense concentration of active volcanoes in Ecuador provides a stringent test of OMI's ability to distinguish SO2 from multiple emitting sources. Our analysis reveals that Tungurahua, Reventador and Galeras were responsible for the bulk of the SO2 emissions in the region in the timeframe of our study, with no significant SO2 discharge detected from Sangay. At Galeras and Reventador, we conclude that OMI can detect variations in SO2 release related to cycles of conduit sealing and degassing, which are a critical factor in hazard assessment. The OMI SO2 data for Reventador are the most extensive sequence of degassing measurements available for this remote volcano, which dominated regional SO2 production in June–August 2005. At Tungurahua, the OMI measurements span the waning stage of one eruptive cycle and the beginning of another, and we observe increasing SO2 burdens in the months prior to explosive eruptions of the volcano in July and August 2006. Cumulative SO2 loadings measured by OMI yield a total of ~ 1.16 Tg SO2 emitted by volcanoes on mainland Ecuador/S. Colombia between September 2004 and September 2006; as much as 95% of this SO2 may originate from non-eruptive degassing. Approximate apportionment of the total SO2 loading indicates that ~ 40% originated from Tungurahua, with ~ 30% supplied by both Reventador and Galeras. These measurements of volcanic SO2 degassing in Ecuador confirm OMI's potential as an effective, economical and risk-free tool for daily monitoring of SO2 emissions from hazardous volcanoes.  相似文献   

18.
A new method for measuring H2S mass flux from the ground, based on the digital analysis of the interference colours produced by the sulphidation of copper passive samplers (CPS), is proposed and discussed in this article. CPS sulphidation has a wide range of linear responses to H2S doses and can be used together the accumulation chamber method to estimate gas fluxes from natural degassing areas. These are often characterized by the presence of vent centred degassing areas (VCDAs), which are recognizable from the absence or rarefaction of vegetation due to high acid gas concentrations in the soil pores and in the air at ground level. A reference emission curve, accounting for the advective and diffusive components of the flux, can be modelled and used to estimate the total H2S mass released from each VCDA. The application of this method can be supported by remote sensing analysis that helps identify VCDAs in the field in perivolcanic H2S degassing areas.As an illustrative application, H2S gas fluxes from the ground were measured in spring 2007 at the Zolforata di Pomezia degassing area (ZPDA, Alban Hills, Central Italy) using an accumulation chamber internally equipped with CPS. H2S peak fluxes were measured over the vents after remote sensing assisted identification of the VCDAs. Further measurements were carried out in two ponds and one artificial channel bordering the study area. The total atmospheric flux released at the ZPDA, estimated to be about 1207.6 kg day? 1, was calculated as the summation of the fluxes from all the H2S sources, the background flux being negligible.  相似文献   

19.
On December 1, 2007, the solar absorption infrared spectra of the Popocatépetl volcanic plume was recorded during an eruptive event and complementarily on November 17, 2008, the passive quiescent degassing was measured from the same site. A portable FTIR spectrometer with a scanning mirror for fast tracking of the sun provided the flexibility, quality, and simplicity needed for field deployment. Slant columns of the gases SO2, HCl, HF, and SiF4 were retrieved and strong differences could be observed when comparing gas ratios in both time periods. During the explosive eruption, the SO2/HCl ratio was three times greater and the HF/HCl ratio was slightly smaller than during passive degassing.While the ratios among SO2, HCl, HF, and SiF4 describe the chemical composition of the volcanic gas mixture, the SiF4/HF ratio provides information about the equilibrium temperatures of the stored gases which in this study were calculated at 150° and 185 °C for the explosive and quiescent degassing episodes, respectively. We conclude that cooling of lava domes in the crater precedes Vulcanian explosions as suggested by Schaaf et al (2005). Based on SO2 flux (Grutter et al., 2008) and measurements and data from the November 2008 event, the average fluxes for HCl, HF, SiF4, and F through quiescent degassing are estimated to be 204, 22.7, 9.8, and 31.7 tons/day, respectively. These values are similar to those reported by Love et al. (1998) more than 10 yrs ago.  相似文献   

20.
A series of 707 measurements at Masaya in 2005, 2006, and 2007 reveals that SO2 emissions 15km downwind of the active vent appear to be ~33% to ~50% less than those measured only 5km from the vent. Measurements from this and previous studies indicate that dry deposition of sulfur from the plume and conversion of SO2 to sulfate aerosols within the plume each may amount to a maximum of 10% loss, and are not sufficient to account for the larger apparent loss measured. However, the SO2 measurement site 15km downwind is located on a ridge over which local trade winds, and the entrained plume, accelerate. Greater wind speeds cause localized dilution of the plume along the axis of propagation. The lower concentrations of SO2 measured on the ridge therefore lead to calculations of lower fluxes when calculated at the same plume speed as measurements from only 5km downwind, and is responsible for the apparent loss of SO2. Due to the importance of SO2 emission rates with respect to hazard mitigation, petrologic studies, and sulfur budget calculations, measured fluxes of SO2 must be as accurate as possible. Future campaigns to measure SO2 flux at Masaya and similar volcanoes will require individual plume speed measurements to be taken at each flux measurement site to compensate for dilution and subsequent calculation of lower fluxes. This study highlights the importance of a comprehensive understanding of a volcano’s interaction with its surroundings, especially for low, boundary layer volcanoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号