首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
浅海声传播和混响的选频衰减   总被引:2,自引:0,他引:2  
在强负跃层浅海的爆炸声实验中,发现当声源和接收器都位于跃层之上时,平均混响强度和某一航向的声传播损失在频率1000-2000Hz之间出现强烈的异常衰减现象,而且很有意思的是发射和接收均无指向性的平均混响强度的异常衰减与该航向声传播损失的异常衰减具有中心频率相同、带宽一致、附加衰减值相近的窄带共振或选频衰减特权.显然,这一异常衰减现象无法用各向异性的机理(内波、海面或海底的有规律起伏等)来解释.根据本文实验所得的传播损失和混响强度的深度结构以及一些间接的证据,我们认为这一选频附加衰减是由分散活动干跃居上部的有鳔鱼(极可能是鱼)所引起的.  相似文献   

2.
Frequency-selective attenuation of sound propagaion and reverberation in shallow waterTXFrequency-selectiveattenuationofsoundp...  相似文献   

3.
基于斯涅耳折射定律,将海水垂向等分成若干层,利用傅里叶步近算法,构建受声速剖面唯一控制的声线传播弯曲模型。将该模型用于模拟研究不同浅海声跃层类型对声线传播弯曲的影响,得出声线波长和轨迹长度按负跃层、无跃层、正跃层的顺序逐渐增加。并利用该模型定量研究跃层深度、跃层强度、跃层厚度三特征参量对声线传播弯曲的影响,得出负跃层强度越大、厚度越大、深度越浅,声线弯曲越大,波长越小。正跃层三特征参量对声线作用相反。  相似文献   

4.
Simulation of the ocean surface mixed layer under the wave breaking   总被引:6,自引:4,他引:2  
A one-dimensional mixed-layer model, including a Mellor-Yamada level 2.5 turbulence closure scheme, was implemented to investigate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic energy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corresponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the temperature gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.  相似文献   

5.
Nonlinear internal waves are a common event on the continental shelf. The waves depress the high-gradient region of the thermocline and thicken the surface mixed layer with consequent effect on acoustic propagation. After the waves have passed, it may take several hours for the thermocline to rise to its prewave level. To examine the effect of the rising thermocline, oceanographic and acoustic data collected during the 2006 Shallow Water Experiment (SW06) are analyzed. Midfrequency acoustic data (1.5–10.5 kHz) taken for several hours at both fixed range (550 m) and along a tow track (0.1–8.1 km) are studied. At the fixed range, the rising thermocline is shown to increase acoustic intensity by approximately 5 dB . Along the tow track, the transmission loss changes 2 dB for a source–receiver pair that straddles the thermocline. Using oceanographic moorings up to 2.2 km away from the acoustic receiver, a model for the rising thermocline is developed. This ocean model is used as input to a broadband acoustic model. Results from the combined model are shown to be in good agreement with experimental observation. The effects on acoustic signals are shown to be observable, significant, and predictable.   相似文献   

6.
The vertical characters of temperature, salinity and density fluctuations in shallow region of the East China Sea are analysed by using 12 CTD short records with 1-hour intervals. The average S,t and p profiles can be divided into three distinctive layers: the thermocline, and the layers above and below it. The fluctuations of t, S and p are basically caused by internal waves, but there are somewhat intrusions or entrainments at the thermocline boundaries. The vertical displacement of the thermocline centre is up to more than 6.35m and the thermocline thickness changes from 3.5 to 8.0 m. Their varature with time are intermittent and rather irregular. The vertical wavenumber spectra of temperature fluctuations have been estimated by using the maximum entropy method, indicating that energy is mainly contained in the low-wavenumber range (<0.13cpm) with two sharp peaks probably corresponding to the first and second modes of internal waves, whose dependence is estimated to be less than β-2. There exist dep  相似文献   

7.
The authors examine the subject of space-time processing and review fundamental environmental effects and their influence on arrays in the deep ocean sound channel. Space-time transforms are reviewed to demonstrate the analogy between spatial and temporal properties to stress the importance of convolution and matched field processing. A criterion is presented by which the resolution of such measurement systems could be calculated. The static source-receiver case is shown to be influenced by the randomness in signal phase due to scattering. Calculations and data are used to show the importance of multipath effects on the relative gain of line array measurement systems and the difficulties encountered for the determination of coherence lengths. Single path coherence lengths were found to be large and predictable using an environmental parameter and the Beran-McCoy mutual coherence functional form. However, multipath effects appeared to be dominant. The temporal fluctuation problem is briefly introduced to stress the fact that for relative source-receiver speeds of 1.5 m/s (3 knots) or greater, the fluctuations are dominated by the changes in the multipath arrivals  相似文献   

8.
An unexplained result of broad-band transmission experiments made more than ten years ago by DeFerrari in the Straits of Florida (center frequency ~500 Hz, bandwidth ~100 Hz, water depth ~200-m, range ~20 km) is that the measured pulse response functions failed to show the expected multipath replicas of the transmitted pulse and instead were smeared into a single broad cluster (duration ~50-~350 ms) in which the unresolved multipaths fluctuated rapidly in geophysical time (coherence time ≪12 min) leaving only a relatively stable envelope that is useful for oceanographic inversion. It is demonstrated here that the effects of internal waves on sound pulse propagation in the Straits of Florida can explain these observed results, and it is suggested that similar instabilities of acoustic multipaths due to internal waves are to be expected in other shallow-water propagation conditions. The demonstration is based on numerical simulations with the broad-band UMPE acoustic model that includes multiple forward scattering from volume inhomogeneities induced by internal wave fluctuations that are described by a broad spectrum of excitation. The simulated temporal variability, stability, and coherence of acoustic pulse arrivals are displayed on geophysical time scales from seconds to many hours and are qualitatively in agreement with the measured data in the Straits of Florida  相似文献   

9.
本文基于海洋大气近地层相似理论和一维Kolmogorov 谱函数, 建立考虑各向同性和各向异性湍流效应的蒸发波导模型, 并基于相对误差理论, 将数值模拟的大气修正折射率与根据试验采集数据计算得到的修正折射率进行对比分析。研究结果表明: 湍流效应对蒸发波导模型的预测结果有影响, 且考虑各向异性湍流效应的蒸发波导模型预测精度更高。因此在构建蒸发波导模型时, 需要考虑各向异性湍流对大气折射率的扰动影响, 才能得到更准确的大气修正折射率廓线。通过引入各向异性大气湍流理论, 能够有效提升蒸发波导模型的适用性, 为后续反演大气波导提供较好的模型基础。  相似文献   

10.
深海脉冲传播多途效应显著,直达波受海洋环境影响较大。基于南海某海域深水试验数据,采用Butterworth带通滤波器识别目标信号,进而分析近、中、远距离处VLA接收到的信号特征,并根据射线理论解释多途效应、直达波特征规律。结果表明:近距离目标信号可分为直达波及两次海底反射波;中距离可分为直达波与三次海底反射波;远距离目标信号弱,反射波特征不明显。其中,直达波声强显著低于第一次海底反射波,受夏季海面波导的影响,近表层深度处的直达波强度最大;50~200m深度层在强跃层控制下,声线向下弯曲,直达波信号随深度增加逐渐减弱;随传播距离增加,直达波逐渐减弱消失。  相似文献   

11.
海洋是多尺度强迫-耗散系统,机械能主要在大尺度输入,在小尺度耗散。在大、中尺度运动的能量向小尺度湍流传递过程中,内波扮演着重要角色。内波的生成和破碎可打破海洋动力平衡,而在陆架区,内波(主要是内孤立波)的浅化演变与耗散则是驱动湍流混合的关键过程。通过长期的理论、观测与数值模拟研究,目前已认识到内波浅化过程中主要发生如下演变:波形调制、极性转变、裂变、破碎与耗散。相较于直接发生破碎,浅化演变过程中的裂变及其引发的剪切不稳定和对流不稳定是内孤立波在陆架区的主要耗散机制,显著调制陆架区的跃层混合。从能量串级的角度讲,内孤立波浅化裂变为动力不稳定的高频内波是潮能串级的重要通道。本文简要回顾南海北部陆架区内波的研究历史,并着重总结内波在陆架区演变与耗散机制的研究进展。  相似文献   

12.
Measurements of the three-dimensional (3-D) structure of a sound-speed field in the ocean with the spatial and temporal resolution required for prediction of acoustic fields are extremely demanding in terms of experimental assets, and they are rarely available in practice. In this study, a simple analytic technique is developed within the ray approximation to quantify the uncertainty in acoustic travel time and propagation direction that results from an incomplete knowledge or purely statistical characterization of sound-speed variability in the horizontal plane. Variation of frequency of an acoustic wave emitted by a narrowband source due to a temporal variation of environmental parameters is considered for deterministic and random media. In a random medium with locally statistically homogeneous, time-dependent 3-D fluctuations of the sound speed, calculation of the signal frequency and bearing angle variances as well as the travel-time bias due to horizontal refraction is approximately reduced to integration of respective statistical parameters of the environmental fluctuations along a ray in a background, range-dependent, deterministic medium. The technique is applied to acoustic transmissions in a coastal ocean, where tidally generated nonlinear internal waves are the prevailing source of sound-speed fluctuations, and in a deep ocean, where the fluctuations are primarily due to spatially diffuse internal waves with the Garrett–Munk spectrum. The significance of 3-D and four-dimensional (4-D) acoustic effects in deep and shallow water is discussed.  相似文献   

13.
The conditions under which the interaction between internal waves and the rough bottom topography may be the reason for synchronous fluctuations of pressure at the bottom have been studied. Disturbances of the depth are assumed to be small compared with the mean depth of the ocean, and the Väisälä-Brunt frequency is constant. It is shown that synchronous fluctuations of pressure exist with a frequency equal to that of internal waves. The amplitude of pulsations can be approximately an order lower than the amplitude of fluctuations generated by standing surface waves. However, local maxima can exist in the low-frequency minimum of the spectrum of microseisms (in the range of 20–1000 s).Translated by Mikhail M. Trufanov.  相似文献   

14.
Three years of temperature data along two transects extending to 90 m depth, at Palau, Micronesia, show twice-a-day thermocline vertical displacements of commonly 50–100 m, and on one occasion 270 m. The internal wave occurred at a number of frequencies. There were a number of spectral peaks at diurnal and semi-diurnal frequencies, as well as intermediate and sub-inertial frequencies, less so at the inertial frequency. At Palau the waves generally did not travel around the island because there was no coherence between internal waves on either side of the island. The internal waves at a site 30 km offshore were out-of-phase with those on the island slopes, suggesting that the waves were generated on the island slope and then radiated away. Palau Island was thus a source of internal wave energy for the surrounding ocean. A numerical model suggests that the tidal and low-frequency currents flowing around the island form internal waves with maximum wave amplitude on the island slope and that these waves radiate away from the island. The model also suggests that the headland at the southern tip of Palau prevents the internal waves to rotate around the island. The large temperature fluctuations (commonly daily fluctuations ≈10 °C, peaking at 20 °C) appear responsible for generating a thermal stress responsible for a biologically depauperate biological community on the island slopes at depths between 60 and 120 m depth.  相似文献   

15.
A singular perturbation analysis based on the WKB technique to study the hydrodynamic performance of periodic ocean waves that are incident on an open parabolic channel of constant depth is proposed. We derive a linear model to predict the propagation of the long ocean waves into the channel. In this manner, the spatial distribution for the surface elevation of the ocean waves inside the channel as a function of two dimensionless parameters, namely, a kinematical parameter, κ and a geometrical parameter ε, is governed by a second-order ordinary differential equation. The kinematical parameter κ denotes the ratio of the potential head, due to gravity, to the kinetic head of the ocean waves along the longitudinal axis of the parabolic channel. Meanwhile, ε is a dimensionless geometrical parameter that represents a characteristic ratio of the parabolic channel. Using matching conditions, simple expressions for the reflection and transmission coefficients are obtained.  相似文献   

16.
The results of field measurements of velocity pulsations in the near-bottom layer generated by internal waves (IW) propagating in the thermocline close to the bottom are reported. It is shown that the power of velocity pulsations in the frequency range 0.5–6 Hz can vary more than 1000 times during the passage of various phases of IW. As a result of the interaction with the bottom, internal waves are transformed into solitary soliton-type waves and these transformations are followed by intense turbulence generated in the near-bottom layer.Translated by M. M. Trufanov.  相似文献   

17.
本研究基于中国科学院沈阳自动化研究所自主研发的水下滑翔机在热带东太平洋观测获取的连续剖面温盐数据,并通过与多套不同数据的比测,证实国产水下滑翔机观测的温盐数据准确可靠,未来可大范围应用于深海大洋。观测结果首次发现该海域北太平洋中央水(NPCW)(50~100 m)的60~80 m层分布着中间层低盐水,分析认为该低盐水来源于水团下方的加利福尼亚流系水(CCS),中间层低盐水形成的动力机制主要受跃层附近的内波控制,并与内波强度密切相关,同时受上层(20~60 m)障碍层的影响,该中间层低盐水仅仅出现在60~80 m。本研究发现内波与障碍层能够通过影响动能与热能的传输进而促进水团新结构的形成,相关成果丰富了内波与障碍层对上层海洋响应的研究,具有重要的科学价值。  相似文献   

18.
A three-dimensional nonhydrostatic numerical model is used to study the generation of internal waves by the barotropic tidal flow over a steep two-dimensional ridge in an ocean with strong upper-ocean stratification. The process is examined by varying topographic width, amplitude of the barotropic tide, and stratification at three ridge heights. The results show that a large amount of energy is converted from the barotropic tide to the baroclinic wave when the slope parameter, defined as the ratio of the maximum ridge slope to the maximum wave slope, is greater than 1. The energy flux of internal waves can be normalized by the vertical integral of the buoyancy frequency over the ridge depths and the kinetic energy of the barotropic tides in the water column. A relationship between the normalized energy flux and the slope parameter is derived. The normalized energy flux reaches a constant value independent of the slope parameter when the slope parameter is greater than 1.5. It is inferred that internal wave generation is most efficient at the presence of strong upper-ocean stratification over a steep, tall ridge. In the Luzon Strait, the strength of the shallow thermocline and the location of the Kuroshio front could affect generation of internal solitary waves in the northern South China Sea.  相似文献   

19.
Computer simulations are carried out to study the feasibility of an adaptive equalizer applied to an hydroacoustic data-transmission channel. The channel is examined with a comprehensive acoustical model to acquire worst-case examples of the ocean acoustic transmission channel. The equalizer performance is investigated by simulations with a computer-generated channel response. Equalizer behavior in a mobile time-variant environment is also studied by use of a simplified, time-discrete multipath channel model. A stochastic gradient lattice equalizer is simulated for a channel which varies due to movement of the transmitter platform. The equalizer was able to track a velocity of up to 0.4 m/s for a favorable transmission geometry, using a transmitter beamwidth of 10°. The results demonstrate the feasibility of coherent modulation schemes for medium-distance ocean acoustic telemetry. It was found that small beamwidths are imperative in maintaining signal coherence and in facilitating adaptive equalization. In particular, narrow-beam transducers will reduce equalizer complexity as well as the frequency spread  相似文献   

20.
Dynamical properties of short-period temperature fluctuations are studied. Water temperature was measured continuously at several depths at the following stations: at 38°29.5′N, 141°35.8′E (100 m depth) on the continental shelf off Miyagi Prefecture in the summer of 1967, at 35°01.8′N, 139°0.8.5′E (100 m depth) in Sagami Bay in the summer of 1968, and at 32°32.2′N, 129°53.7′E (74 m depth) in Tachibana Bay in the summer of 1970. These measurements were made with a thermistor array laid down from the R. V.Tanseimaru (Ocean Research Institute, University of Tokyo) which was fixed with bow and stern anchors. Significant temperature fluctuations found at the first and the third stations are thought to be due to first mode internal waves having amplitude 3 to 5 m and period 5 to 20 minutes. The wave length of the waves is estimated to be 25 m to 400 m from the observed density structure. At the second station, we found second-mode internal waves. The period, amplitude and wave length of the waves are about 30 minutes, 1.3 m and 600 m, respectively. In all cases, the spectral density of the temperature fluctuations decreases with increase in frequency. However, the decrease obey neither the ?3 power law nor the ?5/3 power law. Coherences in the temperature fluctuations between two depths of measurement in the seasonal thermocline are significantly high in the range of frequencies lower than the local Brunt-Väisälä frequency, but are low in the higher frequency range. At the first and the third stations, the difference in the level of coherences between the lower frequencies and the higher frequencies are large. Phase differences between two depths in the thermocline are small in the lower frequency range. This suggests that the first-mode internal waves are predominant over higher-mode internal waves and over other disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号