首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Abstract— Imaging of asteroids Gaspra and Ida and laboratory studies of asteroidal meteorites show that impacts undoubtedly played an important role in the histories of asteroids and resulted in shock metamorphism and the formation of breccias and melt rocks. However, in recent years, impact has also been called upon by numerous authors as the heat source for some of the major geological processes that took place on asteroids, such as global thermal metamorphism of chondrite parent bodies and a variety of melting and igneous events. The latter were proposed to explain the origin of ureilites, aubrites, mesosiderites, the Eagle Station pallasites, acapulcoites, lodranites, and the IAB, IIICD, and HE irons. We considered fundamental observations from terrestrial impact craters, combined with results from laboratory shock experiments and theoretical considerations, to evaluate the efficiency of impact heating and melting of asteroids. Studies of terrestrial impact craters and relevant shock experiments suggest that impact heating of asteroids will produce two types of impact melts: (1) large-scale whole rock melts (total melts, not partial melts) at high shock pressure and (2) localized melts formed at the scale of the mineral constituents (mineral specific or grain boundary melting) at intermediate shock pressures. The localized melts form minuscule amounts of melt that quench and solidify in situ, thus preventing them from pooling into larger melt bodies. Partial melting as defined in petrology has not been observed in natural and experimental shock metamorphism and is thermodynamically impossible in a shock wave-induced transient compression of rocks. The total impact melts produced represent a minuscule portion of the displaced rock volume of the parent crater. Internal differentiation by fractional crystallization is absent in impact melt sheets of craters of sizes that can be tolerated by asteroids, and impact melt rocks are usually clast-laden. Thermal metamorphism of country rocks by impact is extremely minor. Experimental and theoretical considerations suggest that (1) single disruptive impacts cannot raise the average global temperature of strength- or gravity-dominated asteroids by more than a few degrees; (2) cumulative global heating of asteroids by multiple impacts is ineffective for asteroids less than a few hundred kilometers in diameter; (3) small crater size, low gravity, and low impact velocity suggest that impact melt volume in single asteroidal impacts is a very small (0.01–0.1%) fraction of the total displaced crater volume; (4) total impact melt volume formed during the typical lifetime of an asteroid is a small fraction (<0.001) of the volume of impact-generated debris; and (5) much of the impact melt generated on asteroidal targets is ejected from craters with velocities greater than escape velocity and, thus, not retained on the asteroid. The inescapable conclusion from these observations and calculations is that impacts cannot have been the heat source for the origin of the meteorite types listed above, and we must turn to processes other than impact, such as decay of short-lived radionuclides or electromagnetic induction during an early T-tauri phase of the Sun to explain heating and melting of the parent bodies of these meteorites.  相似文献   

2.
We examine the potential contamination of cometary nuclei through impacts from asteroidal origin meteoroids. The paper uses a simple model and has the goal of determining whether asteroidal contamination is potentially significant. We assume a meteoroid power law mass distribution with index values in the range from s=1.83 to s=2.09. We used maximum and minimum models which we believe will bracket the true meteoroid mass distribution. We identify those comets which are expected to be most significantly contaminated, and find values of up to 3.6 kg of asteroidal meteoroid impact per square meter of the cometary surface per orbital revolution. This is less than the expected mass loss per perihelion passage for most comets. Therefore any remnant effects of the contamination will depend on the penetration depth of the meteoroids in the cometary nucleus, and possibly on the distribution of active and inactive areas on cometary nuclei. We present a simple model which suggests that even small meteoroids will embed relatively deeply into a cometary nucleus.  相似文献   

3.
Near-infrared and mid-infrared observations of the site of the 2009 July 19 impact of an unknown object with Jupiter were obtained within days of the event. The observations were used to assess the properties of a particulate debris field, elevated temperatures, and the extent of ammonia gas redistributed from the troposphere into Jupiter’s stratosphere. The impact strongly influenced the atmosphere in a central region, as well as having weaker effects in a separate field to its west, similar to the Comet Shoemaker-Levy 9 (SL9) impact sites in 1994. Temperatures were elevated by as much as 6 K at pressures of about 50-70 mbar in Jupiter’s lower stratosphere near the center of the impact site, but no changes above the noise level (1 K) were observed in the upper stratosphere at atmospheric pressures less than ∼1 mbar. The impact transported at least ∼2 × 1015 g of gas from the troposphere to the stratosphere, an amount less than derived for the SL9 C fragment impact. From thermal heating and mass-transport considerations, the diameter of the impactor was roughly in the range of 200-500 m, assuming a mean density of 2.5 g/cm3. Models with temperature perturbations and ammonia redistribution alone are unable to fit the observed thermal emission; non-gray emission from particulate emission is needed. Mid-infrared spectroscopy of material delivered by the impacting body implies that, in addition to a silicate component, it contains a strong signature that is consistent with silica, distinguishing it from SL9, which contained no evidence for silica. Because no comet has a significant abundance of silica, this result is more consistent with a “rocky” or “asteroidal” origin for the impactor than an “icy” or “cometary” one. This is surprising because the only objects generally considered likely to collide with Jupiter and its satellites are Jupiter-Family Comets, whose populations appear to be orders of magnitude larger than the Jupiter-encountering asteroids. Nonetheless, our conclusion that there is good evidence for at least a major asteroidal component of the impactor composition is also consistent both with constraints on the geometry of the impactor and with results of contemporaneous Hubble Space Telescope observations. If the impact was not simply a statistical fluke, then our conclusion that the impactor contained more rocky material than was the case for the desiccated Comet SL9 implies a larger population of Jupiter-crossing asteroidal bodies than previously estimated, an asteroidal component within the Jupiter-Family Comet population, or compositional differentiation within these bodies.  相似文献   

4.
Abstract— Arguments in favor of the cometary origin of the Tunguska meteorite are adduced along with reasons against the asteroidal hypothesis. A critical analysis is given for the hypotheses by Sekanina (1983) and Chyba et al. (1993). On the basis of the azimuth and inclination of the trajectory of the Tunguska body with plausible values of the geocentric velocity, the semimajor axis of the orbit and its inclination to the ecliptic plane are calculated for this body. It is noted that the theory of the disintegration of large bodies in the atmosphere put forward by Chyba et al. (1993) is crude. Applying more accurate theories (Grigoryan, 1979; Hills and Goda, 1993) as well as taking into account the realistic shape of the body yield for the cometary body lower disruption heights than obtained by Chyba et al. Numerical simulations carried out by Svettsov et al. agree well with the cometary hypothesis and the analytical calculations based on Grigoryan's theory. The asteroidal hypothesis is shown not to be tenable: the complete lack of stony fragments in the region of the catastrophe, cosmochemical data (in particular, the results of an isotope analysis), and some other information contradict this hypothesis. It is shown that stony fragments that would have originated in the explosive disruption of the Tunguska body would not be vaporized by the radiation of the vapor cloud nor as a result of their fall to the Earth's surface.  相似文献   

5.
The orbital evolution of asteroidal fragments with diameters ranging from 10 cm to 20 km, injected into the 3:1 Kirkwood gap at 2.50 A.U., has been investigated using Monte Carlo techniques. It is assumed that this material can become Earth-crossing on a time scale of 106 years, as a result of a chaotic zone discovered by Wisdom, associated with the 3:1 resonance. This phenomenon, as well as close encounter planetary perturbations, the v6 secular resonance, and the ablative effects of the Earth's atmosphere are included in the determination of the orbital characteristics of meteorites impacting the Earth derived by fragmentation of this asteroidal material. It is found that the predicted meteorite orbits closely match those found for observed ordinary chondrites, and the total flux is in approximate agreement with the observed fall rate of ordinary chondrites. About 10% of the predicted impacting bodies are meteorite-size bodies originating directly from the asteroid belt. The remainder are obtained by subsequent fragmentation of larger (~1 m to 20 km diameter) Earth-crossing asteroidal fragments. The largest of these fragments are observable as Apollo-Amor objects. Thus the apparent paradox between the orbital characteristics of observed ordinary chondrites and those predicted from Apollo object sources is reconciled. Both appear to be complementary aspects of the same phenomena. No other asteroidal resonance is found to be satisfactory as a source of ordinary chondrites. These meteorites are therefore most likely to be derived from S asteroids in this limited region of the asteroidal belt, the largest of which are 11 Parthenope, 17 Thetis, and 29 Amphitrite.  相似文献   

6.
Abstract– Micrometeoroids with 100 and 200 μm size dominate the zodiacal cloud dust. Such samples can be studied as micrometeorites, after their passage through the Earth atmosphere, or as microxenoliths, i.e., submillimetric meteorite inclusions. Microxenoliths are samples of the zodiacal cloud dust present in the asteroid Main Belt hundreds of millions years ago. Carbonaceous microxenoliths represent the majority of observed microxenoliths. They have been studied in detail in howardites and H chondrites. We investigate the role of carbonaceous asteroids and Jupiter‐family comets as carbonaceous microxenolith parent bodies. The probability of low velocity collisions of asteroidal and cometary micrometeoroids with selected asteroids is computed, starting from the micrometeoroid steady‐state orbital distributions obtained by dynamical simulations. We selected possible parent bodies of howardites (Vesta) and H chondrites (Hebe, Flora, Eunomia, Koronis, Maria) as target asteroids. Estimates of the asteroidal and cometary micrometeoroid mass between 2 and 4 AU from the Sun are used to compute the micrometeoroid mass influx on each target. The results show that all the target asteroids (except Koronis) receive the same amount (within the uncertainties) of asteroidal and cometary micrometeoroids. Therefore, both these populations should be observed among howardite and H chondrite carbonaceous microxenoliths. However, this is not the case: carbonaceous microxenoliths show differences similar to those existing among different groups of carbonaceous chondrites (e.g., CI, CM, CR) but two sharply distinct populations are not observed. Our results and the observations can be reconciled assuming the existence of a continuum of mineralogical and chemical properties between carbonaceous asteroids and comets.  相似文献   

7.
Abstract— Absolute and relative cratering rates on the terrestrial planets have been calculated using the same asteroidal collision model and Monte Carlo program used for previous studies of the terrestrial meteorite flux, the steady-state number of Apollo-Amor objects, and the orbital distribution of both meteorites and Apollo-Amor objects. The most straightforward result is that projectiles from the asteroid belt appear to provide about one-third the observed present-day production of terrestrial craters larger than 10 km in diameter. When uncertainties in the calculations and observations are included, it cannot be excluded that the entire terrestrial cratering flux is asteroidal. On the other hand, assumption of an additional Apollo-Amor source of extinct comets, in the same quantity permitted by Apollo-Amor observations, provides better agreement with the observed cratering rate. In addition, a significant (e.g., ~30%) terrestrial contribution from active long and short period comets is acceptable within the uncertainties of the assumptions required. The ratios of the cratering rates on the different terrestrial planets are somewhat sensitive to the assumed source. A purely asteroidal source predicts a martian cratering rate per unit area about four times that on Earth, whereas the difference is reduced to about a factor of two for the mixed asteroid-extinct comet source. The opposite effect is found for Mercury. As discussed by previous authors, the predicted lunar cratering rate is significantly higher than that observed. It is not clear whether this is a result of scaling to impacts on a body considerably smaller than Earth, or if it indicates an increase in the cratering flux during the Phanerozoic.  相似文献   

8.
This paper considers the extent to which Martian craters can be explained by considering asteroidal impact. Sections I, II, and III of this paper derive the diameter distribution of hypothetical asteroidal craters on Mars from recent Palomar-Leiden asteroid statistics and show that the observed Martian craters correspond to a bombardment by roughly 100 times the present number of Mars-crossing asteroids. Section IV discusses the early bombardment history of Mars, based on the capture theory of Öpik and probable orbital parameters of early planetesimals. These results show that the visible craters and surface of Mars should not be identified with the initial, accreted surface. A backward extrapolation of the impact rates based on surviving Mars-crossing asteroids can account for the majority of Mars craters over an interval of several aeons, indicating that we see back in time no further than part-way into a period of intense bombardment. An early period of erosion and deposition is thus suggested. Section V presents a comparison with results and terminology of other authors.  相似文献   

9.
Abstract— Impact-induced comminution of planetary surfaces is pervasive throughout the solar system and occurs on submillimeter to global scales, resulting in comminution products that range from fine-grained surface soils, to massive, polymict ejecta deposits, to collisionally fragmented objects. Within this wide range of comminution products, we define regoliths in a narrow sense as materials that were processed by repetitive impacts to dimensional scales comparable to or smaller than that of component minerals of the progenitor rock(s). In this paper, we summarize a wide variety of impact experiments and other observations that were primarily intended to understand the evolution of regoliths on lunar basalt flows, and we discuss some of their implications for asteroidal surfaces. Cratering experiments in both rock and noncohesive materials, combined with photogeologic observations of the lunar surface, demonstrate that craters <500 m in diameter contribute most to the excavation of local bedrock for subsequent processing by micrometeorites. The overall excavation rate and, thus, growth rate of the debris layer decreases with time, because the increasingly thicker fragmental layer will prevent progressively larger projectiles from reaching bedrock. Typical growth rates for a 5 m thick lunar soil layer are initially (~≥3 Ga ago) a few mm/Ma and slowed to <1 mm/Ma at present. The coarse-grained crater ejecta are efficiently comminuted by collisional fragmentation processes, and the mean residence time of a 1 kg rock is typically 10 Ma. The actual comminution of either lithic or monomineralic detritus is highly mineral specific, with feldspar and mesostasis comminuting preferentially over pyroxene and olivine, thus resulting in mechanically fractionated fines, especially at grain sizes <20 μm. Such fractionated fines also participate preferentially in the shock melting of lunar soils, thus giving rise to “agglutinate” melts. As a consequence, agglutinate melts are systematically enriched in feldspar components relative to the bulk composition of their respective host soil(s). Compositionally homogeneous, impact derived glass beads in lunar soils seem to result from micrometeorite impacts on rock surfaces, reflecting lithic regolith components and associated mineral mixtures. Cumulatively, experimental and observational evidence from lunar mare soils suggests that regoliths derive substantially from the comminution of local bedrock; the addition of foreign, exotic components is not necessary to explain the modal and chemical compositions of diverse grain size fractions from typical lunar soils. Regoliths on asteroids are qualitatively different from those of the Moon. The modest impact velocities in the asteroid belt, some 5 km s?1, are barely sufficient to produce impact melts. Also, substantially more crater mass is being displaced on low-gravity asteroids compared to the Moon; collisional processing of surface boulders should therefore be more prominent in producing comminuted asteroid surfaces. These processes combine into asteroidal surface deposits that have suffered modest levels of shock metamorphism compared to the Moon. Impact melting does not seem to be a significant process under these conditions. However, the role of cometary particles encountering asteroid surfaces at presumably higher velocities has not been addressed in the past. Unfortunately, the asteroidal surface processes that seemingly modify the spectral properties of ordinary chondrites to match telescopically obtained spectra of S-type asteroids remain poorly understood at present, despite the extensive experimental and theoretical insights summarized in this report and our fairly mature understanding of lunar surface processes and regolith evolution.  相似文献   

10.
A large number of shock recovery experiments that address the ease of impact melt formation as a function of peak shock pressure lead to the conclusion that impacts at 5 km/sec into fragmental, porous surfaces will produce agglutinate-type glasses; no shock melts are produced at these velocities in dense silicate target rocks. While agglutinitic glasses dominate lunar surface soils, they are virtually absent in gas-rich, brecciated meteorites. This apparent paucity—if not complete lack—of agglutinate-type glasses is also inferred from remote IR-reflectance spectroscopy. The need to identify mechanisms that inhibit agglutinate formation on asteroidal sufaces was recognized previously and was predominantly attributed to lower projectile velocities and different gravitational environments.We will argue in this paper that additional mechanisms may be required. Specifically we propose that spall processes at a target's free surface play a major role in asteroidal surface evolution. At 5 km/sec collision velocity, a target (RT) to projectile (RP radius ratio of RTRP ≈ 100 delineates the boundary between an “infinite half-space” and a “finite”-sized target. In the first case, collisional energy is expended in a pure cratering regime; in the latter, additional displacement of target material in the form of spallation products occurs. The spall volume may exceed the crater volume by an order of magnitude. Therefore fragmental impact deposits on small planetary bodies may be entirely controlled by spall products, rather than crater ejecta. Because tensile failure occurs at <0.2 GPa stress, spall velocities are measured in meters per second (contrary to crater ejecta) and therefore spallation products are efficiently retained even in low gravitational environments. Spall products are also more coarse grained than crater ejecta; they are also highly biased toward petrographically “unshocked” (<0.2 GPa) rocks.Thus asteroidal surface deposits should be more coarse grained and less shocked than lunar ones—consistent with meteorite evidence and remote-sensing observations. Because spall volume exceeds crater ejecta volume, the total growth rate of asteroidal surface deposits is accelerated, leading to relatively short surface residence times of individual meteorite components, another significant difference between lunar and asteroidal surface materials.  相似文献   

11.
Abstract— In late January 2001 the NEAR—Shoemaker spacecraft performed low‐altitude passes over the surface of 433 Eros. Coordinated observations of the asteroid surface were obtained at submeter resolution by the NEAR laser rangefinder and the multispectral imager. This paper presents three independent, coordinated observations of a 90 m pond adjacent to a granular debris flow, including the highest resolution altimetric measurements of ponded deposits on Eros. The ponded deposits appear to have been emplaced by fluid‐like motion of dry asteroidal regolith. A simple model of seismic agitation from impacts is developed to account for pond formation on Eros. The model predicts that ponds should form readily on Eros but not on the Moon, where ponds are not observed. The model also suggests that the absence of observable ponds in the largest craters of Eros, as well as on Phobos and Deimos, may be related to regolith depth.  相似文献   

12.
Abstract— We present data for 259 meteoric fireballs observed with the Canadian camera network, including velocities, heights, orbits, luminosities along each trail, estimates of preatmospheric masses and surviving meteorites (if any) as well as membership in meteor showers. Some 213 of the events comprise an unbiased sample of the 754 fireballs observed in a total of 1.51 × 1010 km2 h of clear-sky observations. The number of fireballs and the amount of clear sky in which they were recorded are given for each day of the year. We find at least 37% of the unbiased sample are members of some 15 recognized meteor showers. Preatmospheric masses, based on an assumed luminous efficiency of 0.04 for velocities >10 km s?1, range from 1 g for some very fast fireballs up to hundreds of kilograms for the largest events. We present plots and equations for the flux, as a function of initial mass, for the entire group of fireballs and for some subgroups: meteorite-dropping objects; meteor shower members; groups that appear to be mainly of asteroidal or cometary origin; and for very fast objects. For masses of a few kilograms, asteroidal objects outnumber cometary ones. Cometary objects attain greater peak brightness than asteroidal ones of equal mass largely due to higher velocity, but also because they fragment more severely. For 66 fireballs, we estimate the meteoroid density using photometric and dynamic masses. Presumed cometary objects have typical densities near 1.0, while asteroidal values show two groups that suggest meteoroids similar to carbonaceous and ordinary chondrites. Our basic data may be used by others for further studies or to reexamine our results using assumptions different from those employed in this paper.  相似文献   

13.
Studies of the internal structure of asteroids, which are crucial for understanding their impact history and for hazard mitigation, appear to be in conflict for the S-type asteroids, Eros, Gaspra, and Ida. Spacecraft images and geophysical data show that they are fractured, coherent bodies, whereas models of catastrophic asteroidal impacts, family and satellite formation, and studies of asteroid spin rates, and other diverse properties of asteroids and planetary craters suggest that such asteroids are gravitationally bound aggregates of rubble. These conflicting views may be reconciled if 10-50 km S-type asteroids formed as rubble piles, but were later consolidated into coherent bodies. Many meteorites are breccias that testify to a long history of impact fragmentation and consolidation by alteration, metamorphism, igneous and impact processes. Ordinary chondrites, which are the best analogs for S asteroids, are commonly breccias. Some may have formed in cratering events, but many appear to have formed during disruption and reaccretion of their parent asteroids. Some breccias were lithified during metamorphism, and a few were lithified by injected impact melt, but most are regolith and fragmental breccias that were lithified by mild or moderate shock, like their lunar analogs. Shock experiments show that porous chondritic powders can be consolidated during mild shock by small amounts of silicate melt that glues grains together, and by friction and pressure welding of silicate and metallic Fe,Ni grains. We suggest that the same processes that converted impact debris into meteorite breccias also consolidated asteroidal rubble. Internal voids would be partly filled with regolith by impact-induced seismic shaking. Consolidation of this material beneath large craters would lithify asteroidal rubble to form a more coherent body. Fractures on Ida that were created by antipodal impacts and are concentrated in and near large craters, and small positive gravity anomalies associated with the Psyche and Himeros craters on Eros, are consistent with this concept. Spin data suggest that smaller asteroids 0.6-6 km in size are unconsolidated rubble piles. C-type asteroids, which are more porous than S-types, and their analogs, the volatile-rich carbonaceous chondrites, were probably not lithified by shock.  相似文献   

14.
Aerosol samples collected on two North Pacific cruises were analyzed for rock-magnetic properties, grain size and <2 μm and 2–20 μm mineralogy. These sedimentological results were compared with isentropic air mass trajectories in order to study the effects of source region and atmospheric transport on the mineral aerosol. The results indicate that there are differences in the aerosol composition and grain size for two broad source regions. Aerosols which originate from west of the Pacific are characterized by abundant, fine-grained aerosol, which has a high coercivity magnetic composition, and is relatively enriched in kaolinite. Aerosols originating from continents to the north and east of the Pacific basin are much less abundant, contain coarse-grained material with a low coercivity magnetic component, and the mineralogy is relatively enriched in plagioclase. Comparison of the mineral aerosol from Asia with atmospheric transport time indicated that the concentration of the mineral aerosol decreases with increasing transport time. The mineral aerosol is compositionally fractionated as it moves away from the continental source region, with a relative decrease in the primary minerals quartz and plagioclase and an increase in the smectite, illite and chlorite concentration with increasing transport time.  相似文献   

15.
G.W. Wetherill 《Icarus》1974,21(1):94-95
Taff (1973) has concluded that asteroidal collisions rates are much lower than those found by previous authors. His calculations are found to be in error as a consequence of inclusion of an extraneous and incorrect factor of ~10?5. The assumption of molecular chaos in the asteroid belt, while not strictly correct, is not an important source of error in calculations of asteroidal collision rates.  相似文献   

16.
《Icarus》1987,70(1):146-152
We measured emissionless infrared diffuse reflectances of some meteorites by using a Fourier transform infrared spectrophotometer to obtain additional information on identification of asteroidal surface materials. Although the spectral features of diffuse reflectances are apparently different from those of transmission spectra, the absorption bands of constituent minerals can be detected. C2 carbonaceous chondrite materials can be distinguished from C3 materials by the depth of their hydration bands around 3 and 6 μm. These hydration bands do not lose contrast by pulverization of the sample. Acid dissolution experiment shows that the 6.8-μm band in the spectra of the Murchison (C2) meteorite is probably due to carbonates. The enstatite meteorite examined (Norton County) shows absorption bands around 10 μm caused by pyroxene unlike the iron meteorite examined (Mundrabilla). Because these latter two meteorite types give similar spectra without strong absorption bands in the UV-Visible-near IR region, middle infrared spectra should be helpful in interpreting asteroidal surface materials when combined with the UV-Visible-near IR spectra.  相似文献   

17.
T.A. Heppenheimer 《Icarus》1975,26(3):367-376
This paper examines two proposed mechanisms whereby asteroidal collisions and close approaches may have given rise to the Kirkwood Gaps. The first hypothesis is that asteroids in near-resonant orbits have markedly increased collision probabilities and so are preferentially destroyed, or suffer decay in population density, within the resonance zones. A simple order-of-magnitude analysis shows that this hypothesis is untenable since it leads to conclusions which are either unrealistic or not in accord with present understanding of asteroidal physics.The second hypothesis is the Brouwer-Jefferys theory that collisions would smooth an asteroidal distribution function, as a function of Jacobi constant, thus forming resonance gaps. This hypothesis is examined by direct numerical integration of 50 asteroid orbits near the 2:1 resonance, with collisions simulated by random variables. No tendency to form a gap was observed.  相似文献   

18.
The theory of diffusion in many-dimensional Hamiltonian system is applied to asteroidal dynamics. The general formulation developed by Chirikov is applied to the Nesvorny-Morbidelli analytic model of three-body (three-orbit) mean-motion resonances (Jupiter-Saturn-asteroid). In particular, we investigate the diffusion along and across the separatrices of the (5, −2, −2) resonance of the (490) Veritas asteroidal family and their relationship to diffusion in semi-major axis and eccentricity. The estimations of diffusion were obtained using the Melnikov integral, a Hadjidemetriou-type sympletic map and numerical integrations for times up to 108 years.  相似文献   

19.
Abstract— Fragments of 24 individual interplanetary dust particles (IDPs) collected in the Earth's stratosphere were obtained from NASA's Johnson Space Center collection and subjected to pulse-heating sequences to extract He and Ne and to learn about the thermal history of the particles. A motivation for the investigation was to see if the procedure would help distinguish between IDPs of asteroidal and cometary origin. The use of a sequence of short-duration heat pulses to perform the extractions is an improvement over the employment of a step-heating sequence, as was used in a previous investigation. The particles studied were fragments of larger parent IDPs, other fragments of which, in coordinated experiments, are undergoing studies of elemental and mineralogical composition in other laboratories. While the present investigation will provide useful temperature history data for the particles, the relatively large size of the parent IDPs (~40 μm in diameter) resulted in high entry deceleration temperatures. This limited the usefulness of the study for distinguishing between particles of asteroidal and cometary origin.  相似文献   

20.
This paper examines the heating of asteroidal parent bodies by electrical induction during early solar evolution and prior to positioning of the sun onto the main sequence. Under the conditions assumed, which include a high initial solar spin rate, interplanetary electric fields of order 1 V/m would have existed in frames of reference comoving with the planets, leading to electrical heating from joule losses in the asteroidal interiors. The mechanism additionally requires the high plasma efflux characteristic of T Tauri objects and the presence of a circumstellar obscuration of the type commonly associated with early stellar objects. The proper combination of circumstellar obscuration, solar spin, solar wind flow, and starting planetary temperatures is shown to lead to asteroidal heating competitive with that found for a class of fossil radioactive species. The time dependence of the solar spin and plasma flow are shaped so as to be consistent with current views on the evolution to T Tauri objects and of the spin down of stars. Calculations also include cases of joint heating by fossil radionuclides and electrical induction, and show a complicated relationship due to the intrinsic nonlinearity of the electrical heating mechanism. Implications regarding the pre-main sequence dynamics of the sun are contained in the hypothesis of electrical heating if the contribution from radionuclides and gravitational accretion can be shown to be insufficient to account for the heating episode. Finally, some consequences of the mechanism applied to planets in the presence of an intense solar wind are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号