首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dimethylsulfide (DMS), a volatile excretion product of marine phytoplankton, was determined in the water column during the spring phytoplankton bloom on the southeastern Bering Sea shelf. In the same samples, a broad range of variables which characterize the biological processes in this region were measured. DMS was correlated with phytoplankton chlorophyll in the outer shelf and oceanic domains, but not in the middle shelf domain. A very strong correlation between the cell density of the haptophyte Phaeocystis poucheti and the DMS concentration in seawater was found, which suggests that this species accounts for most of the DMS present in the study region. We propose that in P. poucheti and certain other phytoplankton species the excretion of DMS is incidental to the release of acrylic acid which serves to inhibit bacterial attack upon the algae.  相似文献   

2.
The broad (~500 km) southeastern Bering Sea continental shelf contains three fronts; outer (shelf break, ~170-m depth), middle (~100-m depth), and inner (~50-m depth). The shelf break and inner fronts appear to be analogous to similar fronts reported from other mid-latitude continental shelves; extensively studied examples are from the mid-Atlantic bight, off Nova Scotia, and around the British Isles. The middle front may have counterparts on the broad North Sea and East China Sea shelves.One-month current and temperature records from either side of the middle front, ~150 km landward from the shelf break, showed convergence in the layers deeper than 30 m in both the cross-shelf flow field and heat flux. The convergence was ~3 cm s?1, so an average upwelling at ~1 × 10?3cm s?1 and divergence in the surface layer were required to maintain continuity. Variations in the degree of convergence arose primarily from 1 to 5-day fluctuations in sub-tidal flow across the outer shelf domain seaward of the front.Diffusive landward heat flux was dominated by tidal scales. Horizontal eddy conductivities describing the flux were ~1 ? 106 on the landward side and ~5 × 106cm2 s?1 on the seaward side, and were less in the layers above the bottom layer. Advective flux by the mean flow was the same order as diffusive flux, but landward in the bottom layer and seaward in the mid-water column layers, in agreement with deductions from water mass analyses. Frontal effects reduced the net cross-shelf heat flux beneath ~30 m by about 50%. The observation of a flow convergence in the middle of a broad, flat continental shelf poses an important question of dynamics.  相似文献   

3.
During July and August 1981 subsurface intrusion of upwelled nutrient-rich Gulf Stream water was the dominant process affecting temporal and spatial changes in phytoplankton biomass and productivity of the southeastern United States continental shelf between 29 and 32°N latitude. Intruded waters in the study area covered as much as 101 km including virtually all of the middle and outer shelf and approximately 50% of the inner shelf area.Within 2 weeks following a large intrusion event in late July, middle shelf primary production and Chl a reached 3 to 4 gC m d−1 and 75 mg m, respectively. At the peak of the bloom 80% of the water column primary production occurred below the surface mixed-layer, and new primary production (i.e., NO3-supported) exceeded 90% of the total. Chl a-normalized photosynthetic rates were very high as evidenced by high mean assimilation number (15.5 mg C mg Chl a−1 h−1), high mean α (14 mg C mg Chl a−1 Ein−1 m), and no photoinhibition. As a result of the high photosynthetic rates, mean light-utilization index (Ψ) was 2 to 3 times higher than reported for temperature sub-arctic and arctic waters.The results imply a seasonal (June to August) middle shelf production of 150 g C m−1, about 15% higher than previous estimates of annual production on the middle shelf. Intrusions of the scale we observed in 1981 may not occur every summer. However, when such events do occur, they are by far the most important processes controlling summer phytoplankton dynamics of the middle and outer shelf and of the inner shelf in the southern half of the study area.  相似文献   

4.
A general model is presented for the production and fate of phytoplankton during summer in two regions over the continental shelf of the Bering Sea. We propose that both regions of productivity are supported by nutrients transported into the area with the Bering Slope Current and that the fate of the phytodetritus produced is significantly affected by advection. We hypothesize that one system of primary productivity is initiated at the Bering Sea shelf-break front and continues into the northern Bering Sea as part of the modified Bering Shelf water mass. Phytodetritus produced in this system is transported north through Anadyr and Shpanberg Straits and we estimate that in 1987 it supplied 26% of the daily carbon demand of the benthos in the Chirikov Basin. The second region of primary productivity is located in the northern Bering Sea. Nutrients from the Anadyr Current, the northern branch of the bifurcated Bering Slope Current, support a highly productive phytoplankton bloom throughout the summer. Phytodetritus produced in this surface bloom is probably advected into the southern Chukchi Sea and deposited in the sediments.  相似文献   

5.
Gulf Stream frontal disturbances cause nutrient-rich waters to frequently upwell and intrude onto the southeastern United States continental shelf between Cape Canaveral, Florida and Cape Hatteras, North Carolina. Phytoplankton response in upwelled waters was determined with three interdisciplinary studies conducted during April 1979 and 1980, and in summer 1978. The results show that when shelf waters are not stratified, upwelling causes productive phytoplankton (diatom) blooms on the outer shelf. Phytoplankton production averages about 2 g C m−2 d−1 during upwelling events, and ‘new’ production is 50% or more of the total. When shelf waters are stratified, upwelled waters penetrate well onto the shelf as a subsurface intrusion in which phytoplankton production averages about fives times higher than the nutrient-depleted overlying mixed layer. Phytoplankton within the intrusion deplete upwelled NO3 in about 7 to 10 days, at which point no further net increase in phytoplankton biomass occurs.Current meter records show that upwelling occurs roughly 50% of the time on the outer shelf during November to April (shelf not stratified), and we estimate that seasonal primary production in upwelled waters is 175 g C m−2 6 months−1 of which at least 50% is ‘new’ production. More than 90% of outer shelf primary and ‘new’ production occurs during upwelling and thus upwelling is the dominant process affecting primary productivity of the outer shelf. Our seasonal estimates of outer shelf primary and ‘new’ production are, respectively, three and ten times higher than previous estimates that did not account for upwelling.  相似文献   

6.
Surface transects and vertical profiles of total and leachable particulate Fe, Mn, Al and P, along with dissolved and soluble Fe were obtained during August 2003 in the southeastern Bering Sea. High concentrations of leachable particulate Fe were observed in the bottom waters over the Bering Sea shelf with an unusually high percentage of the suspended particulate Fe being leachable. Leachable particulate Fe averaged 81% of total particulate Fe, and existed at elevated concentrations that averaged 23 times greater than dissolved Fe in the isolated cool pool waters over the mid shelf where substantial influence of sedimentary denitrification was apparent. The elevated leachable particulate Fe is suggested to be a result of sedimentary Fe reduction in surficial sediments, diffusion of Fe(II) from the sediments to the bottom waters, and subsequent oxidation and precipitation of reduced Fe in the overlying bottom waters. Eddies and meanders of the Bering Slope Current can mix this Fe-rich water into the Green Belt at the outer shelf-break front. Elevated levels of leachable particulate Fe were observed in surface waters near the Pribilof Islands where enhanced vertical mixing exists. Storm events and/or cooling during fall/winter with the resultant destruction of the thermally stratified two-layer system can also mix the subsurface water into surface waters where the elevated leachable particulate Fe is a substantial source of biologically available Fe.  相似文献   

7.
Observations of surface velocity data from August 2002 to February 2004 were collected by a series of four long-range high-frequency (HF) radars along the coast of New Jersey. The shelf observations of the central Mid-Atlantic Bight (MAB) were compared to historical observations of surface flow characteristics in the area. The time-averaged spatial mean velocity of 4 cm/s in the down-shelf along-shelf direction and 3 cm/s in the offshore across-shelf direction compared very well to historical surface measurements in the study region. However, as the spatial resolution of the data set revealed, this simple measure masked significant spatial variations in the overall and seasonal mean flow structures. Three regions – the south bank of the Hudson Shelf Valley, the southern New Jersey inner shelf (LEO-15) region, and the region offshore of the Delaware Bay mouth (southwest corner) – had mean flows that favor offshore transport of surface water. In terms of temporal variability, maps of the principle axes showed that the across-shelf (minor) axis contribution was not insignificant in the surface layer ranging from 0.3 to 0.9 of along-shelf (major) axis and that there were seasonal differences in orientation and ellipticity. Analysis of the spatial changes in the temporal and spatial correlation scales over the shelf showed that shelf position, in addition to site separation, contributed to the differences in these properties. Furthermore, observations over the Hudson Shelf Valley region suggested that this was a region of transition in which the orientation of along- and across-shelf components begin to change.  相似文献   

8.
The flow of carbon and nitrogen in sediments of the far northern and northern sections of the Great Barrier Reef continental shelf was examined. Most of the organic carbon (81–94%) and total nitrogen (74–92%) depositing to the seabed was mineralized, with burial of carbon (6–19%) and nitrogen (8–20%) being proportionally less on this tropical shelf compared with other non-deltaic shelves. Differences in carbon and nitrogen mineralization among stations related best to water depth and proximity to river basins, with rates of mineralization based on net ∑CO2 production ranging from 17 to 39 ( mean=23) mmol C m−2 d−1. The overall ratio of O2:CO2 flux was 1.3, close to the Redfield ratio, implying that most organic matter mineralized was algal. Sulfate reduction was estimated to account for ≈30% (range: 6–62%), and denitrification for ≈5% (range: 2–13%), of total C mineralization; there was no measurable CH4 production. Discrepancies between ∑CO2 production across the sediment–water interface and sediment incubations suggest that as much as 5 mmol m−2 d−1 (≈25% of ∑CO2 flux) was involved in carbonate mineral formation. Most microbial activity was in the upper 20 cm of sediment. Rates of net NH4+ production ranged from 1.6 to 2.7 mmol N m−2 d−1, with highly variable N2 fixation rates contributing little to total N input. Ammonification and nitrification rates were sufficient to support rapid rates of denitrification (range: 0.1–12.4 mmol N m−2 d−1). On average, nearly 50% of total N input to the shelf sediment was denitrified. The average rates of sedimentation, mineralization, and burial of C and N were greater in the northern section of the shelf than in the far northern section, presumably due to higher rainfall and river discharge, as plankton production was similar between regions. The relative proportion of plankton primary production remineralized at the seafloor was in the range of 30–50% which is at the high end of the range found on other shelves. The highly reactive nature of these sediments is attributed to the deposition of high-quality organic material as well as to the shallowness of the shelf, warm temperatures year-round, and a variety of physical disturbances (cyclones, trawling) fostering physicochemical conditions favorable for maintaining rapid rates of microbial metabolism. The rapid and highly efficient recycling of nutrients on the inner and middle shelf may help to explain why the coral reefs on the outer shelf have remained unscathed from increased sediment delivery since European settlement.  相似文献   

9.
Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea   总被引:13,自引:0,他引:13  
X-ray diffraction (XRD) mineralogical and grain-size analyses indicate that inner continental shelf sediments in the East China Sea (ECS) represent a unique mixing of clays derived from the Yangtze River and silts/sands from small western Taiwanese rivers. Taiwanese (e.g., Choshui) clays (<2 μm) display no smectite but the best illite crystallinity and are only distributed along southeastern Taiwan Strait. Both Yangtze and Taiwanese river clays are illite-dominated, but the poor illite crystallinity and the presence of smectite and kaolinite indicate that Taiwan Strait clays are mainly Yangtze-dominated. In contrast, medium silts (20–35 μm) and very fine sands (63–90 μm) in the Taiwan Strait are characterized by low feldspar/quartz, low K-feldspar/plagioclase and high kaolinite/quartz, indicating their provenance from Taiwanese rivers. Taiwanese silts and sands are introduced primarily by the way of typhoon-derived floods and transported northward by the Taiwan Warm Current during summer–fall months. Yangtze clays, in contrast, are widely dispersed southward about 1000 km to the western Taiwan Strait, transported by the China Coastal Current during winter–spring months. Since most Taiwan Strait samples were collected in May 2006, clay results in this paper might only represent the winter–spring pattern of the dispersal of Yangtze sediments.  相似文献   

10.
Large canyons incise the shelf break of the eastern Bering Sea to be preferred sites of the cross-shelf exchange. The mesoscale eddy activity is particularly strong near the shelf-break canyons. To study the mesoscale dynamics in the Navarin Canyon area of the Bering Sea, the time series of velocities derived from AVISO satellite altimetry between 1993 and 2015, drifters, Argo buoys, and ship-borne data are analyzed. We demonstrate that the strength of anticyclonic eddies along the shelf edge in spring and summer is determined by the wind stress in March–April. The increased southward wind stress in the central Bering Sea forced a supply of low-temperature and low-salinity outer shelf water to the deep basin and formation of the anticyclonic mesoscale circulation seaward of the Navarin Canyon. Enhanced northwestward advection of the Bering Slope Current water leads to increase in an ice-free area in March and April and increased bottom-layer temperature at the outer shelf. The strong (weak) northwestward advection of the eastern Bering Sea waters, determined by eastern winds in spring, creates favorable (unfavorable) conditions for the pollock abundance in the western Navarin Canyon area in summer.  相似文献   

11.
The Kara Sea is one of the arctic marginal seas strongly influenced by fresh water and river suspension. The highly seasonal discharge by the two major rivers Yenisei and Ob induces seasonal changes in hydrography, sea surface temperature, ice cover, primary production and sedimentation. In order to obtain a seasonal pattern of sedimentation in the Kara Sea, sediment traps were deployed near the river mouth of the Yenisei (Yen) as well as in the central Kara Sea (Kara) within the framework of the German–Russian project “Siberian River run-off; SIRRO”. Two and a half years of time-series flux data were obtained between September 2000 and April 2003 and were analyzed for bulk components, amino acids, stable carbon and nitrogen isotopes as well as sterols and fatty acids.Sediment trap data show that much of the annual deposition occurred under ice cover, possibly enhanced by zooplanktonic activity and sediment resuspension. An early bloom of ice-associated algae in April/May occurred in the polynya area and may have been very important to sustain the life cycles of higher organisms after the light limitation of the winter months due to no/low insolation and ice cover. The strong river input dominated the months June–August in the southern part of the Kara Sea. The central Kara Sea had a much shorter productive period starting in August and was less affected by the river plumes. Despite different time-scales of sampling and trapping biases, total annual fluxes from traps were in the same order of magnitude as accumulation rates in surface sediments. Terrestrial organic carbon accumulation decreased from 10.7 to 0.3 g C m−2 a−1 from the riverine source to the central Kara Sea. Parallel to this, preservation of marine organic matter decreased from 10% to 2% of primary productivity which was probably related to decreasing rates of sedimentation.  相似文献   

12.
Despite their harmful effects in the upper atmosphere, anthropogenic chlorofluorocarbons dissolved in seawater are extremely useful for studying ocean circulation and ventilation, particularly in remote locations. Because they behave as a passive tracer in seawater, and their atmospheric concentrations are well-mixed, well-known, and have changed over time, they are ideal for gaining insight into the oceanographic characteristics of the isolated cavities found under Antarctic ice shelves, where direct observations are difficult to obtain. Here we present results from a modeling study of air–sea chlorofluorocarbon exchange and ocean circulation in the Ross Sea, Antarctica. We compare our model estimates of oceanic CFC-12 concentrations along an ice shelf edge transect to field data collected during three cruises spanning 16 yr. Our model produces chlorofluorocarbon concentrations that are quite similar to those measured in the field, both in magnitude and distribution, showing high values near the surface, decreasing with depth, and increasing over time. After validating modeled circulation and air–sea gas exchange through comparison of modeled temperature, salinity, and chlorofluorocarbons with field data, we estimate that the residence time of water in the Ross Ice Shelf cavity is approximately 2.2 yr and that basal melt rates for the ice shelf average 10 cm yr−1. The model predicts a seasonal signature to basal melting, with highest melt rates in the spring and also the fall.  相似文献   

13.
Bacterioplankton productivity, numbers, and cell specific activity were studied in nearshore waters of the southeastern U.S. continental shelf during seasons of maximum freshwater discharge. In April 1984, coastal waters were stratified from normal spring discharge and typical northeastward wind stress. In April 1985, shelf waters were vertically homogeneous due to below normal runoff and southwestward wind stress. In 1984, nearshore bacterial productivity ranged from 7.0 to 14.7 × 106 cells l−1 h−1 and midshelf rates were 40–50% less. In 1985, nearshore productivity ranged from 0.9 to 2.4 × 106 cells 1−1 h−1, and productivity was extremely patchy over the entire shelf. The cell-specific activity (thymidine incorporation per cell) suggests that although productivity was high in 1984, only a fraction of the bacterioplankton was actively growing or incorporating thymidine (0.9–2.9 × 10−21 mol cell−1 h−1). In 1985, a higher percentage of cells appeared to be active and incorporating thymidine (5–13 × 10−21mol cell−1h−1) even though productivity was low. Hydrographic conditions along the southeastern coastline may have had a significant impact on the overall community structure and carbon flow through the microbial food web. When coastal waters were stratified in 1984, bacterial biomass was a significant percentage (35–320%) of the phytoplankton biomass. During vertically homogeneous conditions of 1985, bacterial production and biomass were a small percentage (2–13%) of the phytoplankton production and biomass across the shelf. The interannual variation in the microbial food web was attributed to the interannual variability of the southeastern U.S. hydrology due to changes in freshwater discharge and wind direction and intensity. The ecological implications of these results extend to the potential impact of seasonal microbial food webs on nearshore allochothonous and autochothonous organics before removal from the southeastern U.S. coastline.  相似文献   

14.
We examine multi-year conductivity-temperature-depth (CTD) data to better understand temperature and salinity variability over the central Bering Sea shelf. Particular consideration is given to observations made annually from 2002 to 2007 between August and October, although other seasons and years are also considered. Vertical and horizontal correlation maps show that near-surface and near-bottom salinity anomalies tend to fluctuate in phase across the central shelf, but that temperature anomalies are vertically coherent only in the weakly or unstratified inner-shelf waters. We formulate heat content (HC) and freshwater content (FWC) budgets based on the CTD observations, direct estimates of external fluxes (surface heat fluxes, ice melt, precipitation (P), evaporation (E) and river discharge), and indirect estimates of advective contributions. Ice melt, PE, river discharge, and along-isobath advection are sufficient to account for the mean spring-to-fall increase in FWC, while summer surface heat fluxes are primarily responsible for the mean seasonal increase in HC, although interannual variability in the HC at the end of summer appears related to variability in the along-isobath advection during the summer months. On the other hand, FWC anomalies at the end of summer are significantly correlated with the mean wind direction and cross-isobath Ekman transport averaged over the previous winter. Consistent with the latter finding, salinities exhibit a weak but significant inverse correlation between the coastal and mid-shelf waters. The cross-shelf transport likely has significant effect on nutrient fluxes and other processes important to the functioning of the shelf ecosystem. Both the summer and winter advection fields appear to result from the seasonal mean position and strength of the Aleutian Low. We find that interannual thermal and haline variability over the central Bering Sea shelf are largely uncoupled.  相似文献   

15.
This paper examines the role of atmospheric forcing in modifying the pathways of riverine water on the Laptev Sea shelf, using summer-to-winter hydrographic surveys from 2007 to 2009. Over the two consecutive winter seasons of 2007–2008 and 2008–2009 in the area of the winter coastal polynya, our data clearly link winter surface salinity fields to the previous summer conditions, with substantially different winter salinity patterns preconditioned by summer atmospheric forcing. In the summer of 2007, dominant along-shore westerly winds in the cyclonic regime force the Lena River runoff to flow eastward. In contrast, in the summer of 2008, dominant along-shore easterly winds over the East Siberian Sea and on-shore northerly winds over the Laptev Sea in the anticyclonic regime lock the riverine water in the vicinity of the Lena Delta. Over the coastal polynya area in the southeastern Laptev Sea these patterns precondition a surface salinity difference of 8–16 psu between the winters of 2008 and 2009. Overall, this indicates a residence time of at least half a year for riverine water on the Laptev Sea shelf. Future climate change associated with an enhanced summer cyclonicity over the eastern Arctic may turn more riverine water eastward along the eastern Siberian coast, resulting in weaker vertical density stratification over the Laptev Sea shelf, with possible impact on the efficiency of vertical mixing and polynya dense water production.  相似文献   

16.
We examined the effects of freshwater flow and light availability on phytoplankton biomass and production along the Louisiana continental shelf in the region characterized by persistent spring–summer stratification and widespread summer hypoxia. Data were collected on 7 cruises from 2005 to 2007, and spatially-averaged estimates of phytoplankton and light variables were calculated for the study area using Voronoi polygon normalization. Shelf-wide phytoplankton production ranged from 0.47 to 1.75 mg C m−2 d−1 across the 7 cruises. Shelf-wide average light attenuation (kd) ranged from 0.19–1.01 m−1 and strongly covaried with freshwater discharge from the Mississippi and Atchafalaya Rivers (R2=0.67). Interestingly, we observed that the euphotic zone (as defined by the 1% light depth) extended well below the pycnocline and to the bottom across much of the shelf. Shelf-wide average chlorophyll a (chl a) concentrations ranged from 1.4 to 5.9 mg m−3 and, similar to kd, covaried with river discharge (R2=0.83). Also, chl a concentrations were significantly higher in plume versus non-plume regions of the shelf. When integrated through the water-column, shelf-wide average chl a ranged from 26.3 to 47.6 mg m−2, but did not covary with river discharge, nor were plume versus non-plume averages statistically different. The high integrated chl a in the non-plume waters resulted from frequent sub-pycnocline chl a maxima. Phytoplankton production rates were highest in the vicinity of the Mississippi River bird's foot delta, but as with integrated chl a were not statistically different in plume versus non-plume waters across the rest of the shelf. Based on the vertical distribution of light and chl a, a substantial fraction of phytoplankton production occurred below the pycnocline, averaging from 25% to 50% among cruises. These results suggest that freshwater and nutrient inputs regulate shelf-wide kd and, consequently, the vertical distribution of primary production. The substantial below-pycnocline primary production we observed has not been previously quantified for this region, but has important implications about the formation and persistence of hypoxia on the Louisiana continental shelf.  相似文献   

17.
The energy flux in internal waves generated at the Celtic Sea shelf break was estimated by (i) applying perturbation theory to a week-long dataset from a mooring at 200 m depth, and (ii) using a 2D non-hydrostatic circulation model over the shelf break. The dataset consisted of high resolution time-series of currents and vertical stratification together with two 25-h sets of vertical profiles of the dissipation of turbulent kinetic energy. The observations indicated an average energy flux of 139 W m−1, travelling along the shelf break towards the northwest. The average energy flux across the shelf break at the mooring was only 8 W m−1. However, the waves propagating onshelf transported up to 200 W m−1, but they were only present 51% of the time. A comparison between the divergence of the baroclinic energy flux and observed dissipation within the seasonal thermocline at the mooring showed that the dissipation was at least one order of magnitude larger. Results from a 2D model along a transect perpendicular to the shelf break showed a time-averaged onshelf energy flux of 153–425 W m−1, depending on the magnitude of the barotropic forcing. A divergence zone of the energy flux was found a few kilometre offshore of the location of the observations in the model results, and fluxes on the order of several kW m−1 were present in the deep waters further offshelf from the divergence zone. The modelled fluxes exhibited qualitative agreements with the phase and hourly onshelf magnitudes of the observed energy fluxes. Both the observations and the model results show an intermittent onshelf energy flux of 100–200 W m−1, but these waves could only propagate ∼20–30 km onshore before dissipating. This conclusion was supported by a 25-h dataset sampled some 180 km onto the shelf, where a weak wave energy flux was found going towards the shelf break. We therefore conclude that shelf break generated internal waves are unlikely to be the main source of energy for mixing on the inner part of the shelf.  相似文献   

18.
This study examines seasonal circulation, hydrography, and associated spatial variability over the inner shelf of the northern South China Sea (NSCS) using a nested-grid coastal ocean circulation model. The model external forcing consists of tides, atmospheric forcing, and open boundary conditions based on the global ocean circulation and hydrography reanalysis produced by the Hybrid Coordinate Ocean model. Five numerical experiments are conducted with different combinations of external forcing functions to examine main physical processes affecting the seasonal circulation in the study region. Model results demonstrate that the monthly mean circulation in the study region features the Guangdong Coastal Current (GCC) over coastal waters and the South China Sea Warm Current (SCSWC) in the offshore deep waters. The GCC produced by the model flows nearly southwestward in winter months and northwestward in summer months, which agrees with previous studies. The SCSWC flows roughly northeastward and is well defined in summer months. In winter months, by comparison, the SCSWC is superseded by the southwestward strong wind-driven currents. Analysis of model results in five different experiments demonstrates that the monthly mean circulation over coastal and inner shelf waters of the NSCS can be approximated by barotropic currents forced by the southwestward monsoon winds in winter months. In summer months, by comparison, the monthly mean circulation in the study region is affected significantly by baroclinic dynamics associated with freshwater runoff from the Pearl River and advection of warm and saline waters carried by the SCSWC over the NSCS.  相似文献   

19.
A three-dimensional shelf circulation model is used to examine the effect of seasonal changes in water-column stratification on the tidal circulation over the Scotian Shelf and Gulf of St. Lawrence. The model is driven by tidal forcing specified at the model’s lateral open boundaries in terms of tidal sea surface elevations and depth-averaged currents for five major tidal constituents (M2, N2, S2, K1, and O1). Three numerical experiments are conducted to determine the influence of baroclinic pressure gradients and changes in vertical mixing, both associated with stratification, on the seasonal variation of tidal circulation over the study region. The model is initialized with climatological hydrographic fields and integrated for 16 months in each experiment. Model results from the last 12 months are analyzed to determine the dominant semidiurnal and diurnal tidal components, M2 and K1. Model results suggest that the seasonal variation in the water-column stratification affects the M2 tidal circulation most strongly over the shelf break and over the deep waters off the Scotian Shelf (through the development of baroclinic pressure gradients) and along Northumberland Strait in the Gulf of St. Lawrence (through changes in vertical mixing and bottom stress). For the K1 constituent, the baroclinic pressure gradient and vertical mixing have opposing effects on the tidal circulation over several areas of the study region, while near the bottom, vertical mixing appears to play only a small role in the tidal circulation.  相似文献   

20.
The Ross Sea is an important area for the ventilation of the deep layers of the Southern Ocean (e.g. [Jacobs, S.S., Fairbanks, R.G., Horibe, Y., 1985. Origin and evolution of water masses near the Antarctic continental margin: evidence from H218O/H216O ratios in seawater. In: Jacobs, S.S. (Ed.), Oceanology of the Antarctic Continental Shelf. Antarctic Research Series, vol. 43. pp. 59–85; Orsi, A.H., Johnson, G.C., Bullister, J.L., 1999. Circulation, mixing, and the production of Antarctic bottom water. Progress in Oceanography 109, 43–55]). These processes are driven by the atmospheric forcing which, at high latitude, plays a key role in the formation and thickness of sea ice. In order to investigate the effect of the atmospheric forcing variability at different time scales, we analysed the surface heat budget over the Ross Sea continental shelf and in Terra Nova Bay (TNB) polynya, using analyses for the period 1990–2006 provided by European Centre for Medium-range Weather Forecast (ECMWF). This study was also performed using thermohaline data collected within the activities of Climatic Long-term Interaction for the mass-balance in Antarctica project of the Italian National Programme for Antarctic Research for the summer periods from 1994 until 2001.The annual average of the heat budget over the continental shelf of the Ross Sea estimated in the period 1990–2006 shows an interannual variability ranging between −97 and −123 W m−2. Assuming that the heat loss must be compensated by the sensible heat carried by the Circumpolar Deep Water we estimated its transport (3.1 Sv) and its variability (0.2 Sv). Similarly in the TNB polynya the heat loss reaches its maximum in 2003 (−313 W m−2) and its minimum (−58 W m−2) in 1996. The related production of sea ice and the High Salinity Shelf Water (HSSW) were also estimated. The HSSW production switched from the lowest values during the first 10 years of the investigated period (1990–2000) to the highest values for the remaining period (2001–2006).The thermohaline characteristics of the water column in TNB show a general decrease in salinity with a superimposed variability. Comparison between the estimated HSSW production and the salinity observed within the TNB water column show similar tendency in the last years after 2002, while during the period 1995–1998 the behaviour is different. Our hypothesis concern a possible role of the CDW inflow in the TNB area and our results could be explained by a different contribution of CDW transport and HSSW production to the salt content within the water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号