首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Integrated petrologic and Sm–Nd isotopic studies in garnet amphibolites along the Salmon River suture zone, western Idaho, delineate two periods of amphibolite grade metamorphism separated by at least 16 million years. In one amphibolite,P–T studies indicate a single stage of metamorphism with final equilibration at 600°C and 8–9 kbar. The Sm–Nd isotopic compositions of plagioclase, apatite, hornblende, and garnet define a precise, 8-point isochron of 128±3 Ma (MSWD=1.2) interpreted as mineral growth at the metamorphic peak. A40Ar/39Ar age for this hornblende indicates cooling through 525°C at 119±2 Ma. In a nearby amphibolite, garnets with a two-stage growth history consist of inclusion-rich cores surrounded by discontinuous, inclusion-free overgrowths. Temporal constraints for core and overgrowth development were derived from Sm–Nd garnet — whole rock pairs in which the garnet fractions consist of varying proportions of inclusion-free to inclusion-bearing fragments. Three garnet fractions with apparent ages of 144, 141, and 136 Ma are thought to represent mixtures between late Jurassic (pre-144 Ma) inherited radiogenic components preserved within garnet cores and early Cretaceous (128 Ma) garnet overgrowths. These observations confirm the resilience of garnet to diffusive exchange of trace elements during polymetamorphism at amphibolite facies conditions. Our geochronologic results show that metamorphism of arc-derived rocks in western Idaho was episodic and significantly older than in arc rocks along the eastern margin of the Wrangellian Superterrane in British Columbia and Alaska. The pre-144 Ma event may be an expression of the late Jurassic amalgamation of marginal oceanic arc-related terranes (e.g., Olds Ferry, Baker, Wallowa) during the initial phases of their collision with North American rocks. Peak metamorphism at 128 Ma reflects tectonic burial along the leading edge of the Wallowa arc terrane during its final penetration and suturing to cratonic North America.  相似文献   

2.
Nd and Sr isotopic data are reported for a granulite terrain in the Proterozoic Arunta Block of Central Australia. Sm-Nd data from a wide range of rock types define a crust formation age of 2,070±125 Ma and provide further evidence for voluminous crustal growth in the Proterozoic. An Nd value of +1.5±0.8 indicates a depleted mantle source for this crustal segment and there is no evidence for a large component of significantly older sialic crust. Field relationships, geochemistry and Rb-Sr data for mafic and felsic granulites indicate that intracrustal differentiation and polyphase deformation were followed by granulite facies metamorphism (Rb depletion) at 1,800 Ma. Rb-Sr data for strongly retrogressed granulites define an age of 1,700 Ma which is interpreted as the time of retrograde biotite growth. Partial melting at the presently exposed crustal level and anatexis at deeper crustal levels were broadly coeval with the retrograde metamorphism. Sm-Nd and Rb-Sr isotopic systematics of minerals indicate that the terrain cooled slowly, did not experience significant uplift until 1,000 Ma and remained at temperatures above 320° C until the late Palaeozoic. The mineral data are consistent with geological relationships and petrological evidence for a prolonged period of isobaric cooling followed by uplift late in the metamorphic evolution of the terrain. The granulite protoliths appear to have formed in a rift which closed within 280 Ma of initial separation. Deformation and granulite facies metamorphism at 1,800 Ma are interpreted to be a consequence of collision between the continental blocks which defined the rift. Regional retrogression and granitoid magmatism at 1,700 Ma are attributed to underthrusting of the granulites by lower grade rocks in the final stages of collision. Subsequent events in the cooling and uplift history appear to have been controlled by the presence of long-lived major faults in the crust and a prolonged history of episodic compression in the continental lithosphere. The results of this study suggest that granulite terrains, in general, cannot be equated with lower continental crust but instead represent assemblages of (mainly) supracrustal rocks which in some instances have been involved in major collision events.Abbreviations Opx orthopyroxene - Cpx clinopyroxene - Plag plagioclase - Hb hornblende - Ox opaque oxide - Bi biotite - Ap apatite - Zir zircon - Gt garnet - 2°CA secondary clinoamphibole - Qtz quartz - Ol olivine - Sp spinel - Se serpentine - Ep epidote - Kf alkali feldspar - Mz monazite - Sph sphene - Sill sillimanite - Rut rutile - Cd cordierite - Sphal sphalerite - Ms muscovite - Act actinolite - Cc calcite - Scap scapolite - Cor corundum - Xen xenotime - Sapph sapphirine - Ged gedrite - All allanite - Clh clinohumite - Dol dolomite - Mt magnetite - Ghn gahnite - Gal galena  相似文献   

3.
The metamorphic evolution of the Western Gneiss Region of Norway (WGR) can be evaluated from examination of eclogites formed as an integral part of the gneiss terrain (ie. in situ). Petrologic data from one of the larger country-rock eclogites within the northwestern part of WGR have been used to construct a P, T, t-path for this crustal volume. Textural relations as well as mineral composition and zonation suggest an early period of amphibolite facies conditions, followed by movement along a very steep positive P/T-gradient towards very high pressure (P25 kb) and moderate temperature (T600° C). Orthopyroxene coexisting with garnet at such conditions was poor in Al (<0.5 wt% Al2O3) and is preserved in the cores of orthopyroxene grains in garnet websterites. The increasing Al-content of orthopyroxene towards garnet, and increasing edenite substitution rimwards in zoned amphiboles, suggest a period of decompression accompanied by heating, towards the metamorphic maximum at T 750° C, P20kb. Garnet zoning reflects a general prograde history, but the reactions that control the zoning are insensitive to pressure changes. Jadeitic pyroxenes may have formed in the gneisses at P-max, but would revert to plagioclase subsequent to the metamorphic maximum, giving rise to the observed mineralogy. Further decompression and cooling continued towards high-rank amphibolite facies conditions. This P, T, t-path reflects crustal thickening to 80–90 km during Caledonian time. The uplift path is qualitatively similar to theoretically derived paths in which uplift is assumed to be controlled by erosion. However, uplift following the metamorphic maximum may have been accelerated by a period of suture progradation.  相似文献   

4.
On the basis of the systematic variation and the appearance and disappearance of some metamorphic minerals in metapelitic assemblages, the metamorphic terrain of Leros can be divided into chlorite, biotite, garnet and staurolite-kyanite zones of progressive regional metamorphism. The matapelites are interbedded with blueschists containing magnesioriebeckite in Fe3+-rich mafic assemblages in the chlorite zone and more normal greenschist and amphibolite facies in higher grade zones. Combining the observed mineral assemblages in pelitic and mafic schists with the available experimental or calculated relevant phase equilibria, one can deduce temperature conditions of metamorphism ranging from about 350° C up to about 700° C and pressures ranging between a minimum value defined by the pressure of the triple point of the Al2SiO5 polymorphs and a possible minimum around 7 kb.The observed metamorphic sequence may be interpreted as the result of progressive transportation of the original sediments and the interbedded mafic rocks from a regime typified by low temperatures and relatively high pressures, to regimes characterized by higher temperature and medium pressures.  相似文献   

5.
北大别木子店石榴辉石岩的麻粒岩相退变质作用   总被引:6,自引:1,他引:5       下载免费PDF全文
张泽明  钟增球 《地球科学》2000,25(3):295-301
详细的岩相学、矿物化学、岩石化学和变质作用温压条件计算表明, 大别变质地体北部角闪二辉麻粒岩是石榴辉石岩在其抬升过程中经历麻粒岩相退变质作用的产物, 峰期变质作用至少是发生在高压榴辉岩相条件下, 而且地温梯度较低.石榴辉石岩的退变质作用p-t轨迹以早期的近等温降压、中期的近等压升温和晚期的降温降压为特征.这一结果表明北大别变质地体的峰期变质作用并非仅达麻粒岩相.   相似文献   

6.
The oxygen isotope compositions of coesite, sanidine, kyanite, clinopyroxene and garnet were measured in an ultra-high pressure-temperature grospydite from the Roberts Victor kimberlite, South Africa. The 18O values (per mil v. SMOW) of each phase and (1 ) are as follows: coesite, 8.62 (0.31); sanidine, 8.31 (0.02); kyanite, 7.98 (0.08); pyroxene, 7.63 (0.11); garnet, 7.53 (0.03). In situ analyses of the coesite with the laser extraction system are 18O=9.35 (0.08), n=4, demonstrating that the coesite is homogeneous. The coesite has partially inverted to polycrystalline quartz and the pyroxene is extensively altered during uplift. The larger scatter for the mineral separate coesite and pyroxene data may be due to partial reequilibration between the decompression-related breakdown products of these two phases. The anomalously high 18O value of the grospydite (18Owholerock=7.7) is consistent with altered oceanic crust as a source rock. Temperature estimates from a linear regression of all the data to three different published calibrations correspond to an equilibrium temperature of 1310±80°C. The calculated isotopic pressure effect is to lower these estimates by about 40°C at 40 kb. The estimated temperature based on Al–Si disorder in sanidine is 1200±100°C and that from Fe–Mg exchange thermometry between garnet and clinopyroxene is 1100±50°C. Given the large errors associated with thermometry at such high temperatures, it is concluded that the xenolith equilibrated that 1200±100°C. Pressure estimates are 45±5 kb, based on dilution of the univariant equilibria albite = jadeite + coesite and 2 kyanite + 3 diopside = grossular + pyrope + 2coesite. Zoning in the outer 20 m of the feldspar from Ab0.8 to Ab16 indicates rapid decompression to 25 kb or less. The isotopic temperature estimates are the highest ever obtained and combined with the high degree of Al–Si disorder in sanidine require rapid cooling from ultra-high temperatures. It is inferred that the xenolith was sampled at the time of equilibration, providing a point on the upper Cretaceous geotherm in the mantle below South Africa.  相似文献   

7.
Experimental data are used to model the transformation rate of polycrystalline aragonite (grain diameter 80 m) to calcite. Optimized values for nucleation and growth rates were obtained by numerically fitting the overall transformation rates from 280° to 380°C and 0.10 MPa to an expression for a grain-boundary-nucleated and interface-controlled transformation. The nucleation rate is 4–5 orders of magnitude faster than for calcite nucleated within aragonite grains, and the growing in rate is slower below 300°C than for calcite growing in aragonite single crystals. The activation enthalpy for growth in polycrystalline aggregate is 247kJ/mol compared to 163 kJ/mol for growth in single crystals. Permanent deformation of the phases limits the elastic strain energy due to the 7% volume change and reduces the coherency of the calcite/aragonite interace. Theoretical expressions are used to extrapolate the data for nucleation and growth to other temperatures, and data from 0.10 to 400 MPa are used to evaluate the effect of pressure on the grain-boundary nucleation rate. Because of permanent deformation of the phases, the effective strain energy for nucleation is 0.55 kJ/mol, which is less than a quarter of the value for purely elastic deformation. These data are used to predict the percent transformation for various P-T-t paths; without heating during uplift partial preservation of aragonite in dry blueschist facies rocks can occur if the calcite stability field is entered at 235° C, and the kinetic data are also consistent with published P-T-t paths which include heating during uplift. The predicted percent transformation is relatively insensitive to variations in the initial grain size of the aragonite, but strongly dependent on the effective strain energy.  相似文献   

8.
The Brixen Quartzphyllite, basement of the Southern Alps (Italy), consists of metasediments which had suffered progressive deformation and low grade metamorphism (p max4 kbar, T max375±25° C) during the Palaeozoic. It has been excavated by pre-Permian erosion, buried again beneath a pile of Permo-mesozoic to Cainozoic sediments (estimated T max150° C), and is now exposed anew due to late Alpine uplift and erosion. The behavior of the K-Ar system of white micas is investigated, taking advantage of the narrow constraints on their thermal history imposed by the geological/stratigraphic reference systems.The six structurally and petrographically differing samples come from a single outcrop, whose position is roughly two kilometers beneath the Permian land-surface. White mica concentrates from five grain size fractions (<2 , 2–6 , 6–20 , 20–60 , 60–75 ) of each sample have been analyzed by the conventional K-Ar method, four selected concentrates additionally by the 40Ar/39Ar stepwise heating technique; furthermore, Ar content and isotopic composition of vein quartz were determined.The conventional ages of the natural grain size fractions (20–60 , 60–75) are in the range 316±8 Ma, which corresponds to the 40Ar/39Ar plateau age of 319.0±5.5 Ma within the error limits. The finer grain size fractions yield significantly lower ages, down to 233 Ma for fractions <2 . Likewise low apparent ages (down to 83 Ma) are obtained for the low temperature 40Ar/39Ar degassing steps.There is no correlation between microstructural generation of white mica prevailing in the sample and apparent age. This favours an interpretation of the 316±8 Ma values as cooling age; progressive deformation and metamorphism must be respectively older and their timing cannot be resolved by these methods. The data preclude any significant influence of a detrital mica component as well as of excess argon.The lower ages found for the fine grain-size fractions (respectively the low-T degassing steps) correspond to a near-surface period (p-T-minimum); the values are geologically meaningless. The effect is interpreted to result from partial Ar loss due to reheating during Mesozoic-Cainozoic reburial. A model based on diffusion parameters derived from the outgassing experiments and Dodson's (1979) equation yields a closure temperature of 284±40 °C for a cooling rate of 18° C/Ma. Furthermore, this model suggests that the observed argon loss of up to 5% may in fact have been induced by reheating to 150 °C for 50 Ma.  相似文献   

9.
This study is an attempt to correlate the graphitization process of carbonaceous matter during metamorphism with metamorphic grade. Graphitization can be parameterized using crystal structure and chemical and isotopic compositions. The extent of graphitization could be characterized mainly by temperature, duration of metamorphism and rock composition. We compared the graphitization trends for two metamorphic terrains, a contact aureole of the Kasuga area and a regional metamorphic terrain of high-temperature/low pressure type of the Ryoke metamorphic terrain in Northern Kiso area, Central Japan, and for two different lithologies (carbonate and pelite), using X-ray diffractogram, DTA-TG analysis, and chemical and stable isotope analyses. During contact metamorphism, graphitization and carbon isotopic exchange reactions proceeded simultaneously in pelitic and carbonate rocks. The decreases in basal spacing d(002) of the carbonaceous matter in carbonate rocks is greatly accelerated at temperatures higher than about 400° C. Furthermore, carbon isotopic ratios of graphite in carbonate rocks also change to 13C-enriched values implying exchange with carbonates. The beginning of this enrichment of 13C in the carbonaceous matter coincides with an abrupt increase of the graphitization processes. Carbon isotopic shifting up to 5 in pelites could be observed as metamorphic temperature increased probably by about 400° C. Carbonaceous matter in pelitic rocks is sometimes a mixture of poorly crystallized organic matter and well-crystallized graphite detritus. DTA-TG analysis is an effective tool for the distinction of detrital graphitic material. Two sources for the original carbon isotopic composition of carbonaceous matter in pelites in the Kasuga contact aureole can be distinguished, about-28 and-24 regardless of the presence of detrital graphite, and were mainly controlled by depositional environment of the sediments. Graphitization in limestones and pelitic rocks in regional metamorphism proceeds further than in a contact aureole. In the low-temperature range, the differences in extent of graphitization between the two metamorphic regions is large. However, at temperatures higher than 600° C, the extent of graphitization in both regions is indistinguishable. The degree of graphitization is different in limestones and pelitic rocks from the Ryoke metamorphic terrain. We demonstrate that the graphitization involves a progressive re-construction process of the crystal structure. The sequence of the first appearance of crystal inter planar spacing correlates with the metamorphic grade and indicates the crystal growth of three-dimensional structured graphite.  相似文献   

10.
The ( 18O values of nine Cretaceous granitic rocks from the low P/T type regional metamorphic zone of Japan are +10.0 to +13.2 relative to SMOW, while ten Cretaceous granitic rocks from the non-metamorphic zone are +7.9 to +9.8. The 18O-enrichment in the former rocks is mainly attributed to oxygen isotopic exchange between the granitic magma and the surrounding metamorphic rocks during regional metamorphism. The assimilation of 18O-rich country rocks is also possible in the cases such as gneissose granite and migmatite.The oxygen isotopic ratios of quartz-biotite pairs in the granitic rocks indicate that they are isotopically in near-equilibrium with each other. The quartz-biotite isotopic equilibrium temperatures estimated for these rocks range from 550° to 670° C. Feldspar is occasionally isotopically in disequilibrium with other minerals. This may be caused by exchange of oxygen isotopes between feldspar and hydrothermal or meteoric water after crystallization.  相似文献   

11.
Garnet-pyroxene skarns were formed 90 m.y. B.P. in the Osgood Mountains at or near contacts of grandiorite with calcareous rocks of the Cambrian Preble Formation. The metasomatic replacement followed contact metamorphic recrystallization of the Preble. The sources, temperature, and variation in H2O/CO2 ratios of the metasomatic fluid are interpreted from 269 analyses of oxygen, carbon, hydrogen, and sulfur isotopes in whole rocks, minerals and inclusion fluids.Skarns formed in three mineralogical stages. Oxygen isotope data indicate that temperatures during the crystallization of garnet, pyroxene and wollastonite (Stage I) were least 550 ° C, and that the metasomatic fluid had an 0.035 in the massive skarns, and 0.12 in vein skarns up to 3 cm thick. Pore fluids in isotopic equilibrium with garnet in calc-silicate metamorphic rocks, on the other hand, had 0.15.The metasomatic fluids of Stage I were derived primarily from the crystallizing magma. The isotopic composition of magmatic water was 18O =+9.0, D= –30 to –45. Oxygen isotope temperatures of greater than 620 ° C were determined for the granodiorite. Isotopic and chemical equilibria between mineral surfaces and the metasomatic fluid were approached simultaneously in parts of the skarn several meters or more apart, while isotopic and chemical disequilibria (i.e. zoning) have been preserved between 20 to 40 m-thick zones in grandite garnet. More Fe-, or andradite-rich garnet crystallized in more H2O-rich C-O-H fluids ( 0.01) than present with grossularite-rich garnet ( 0.035).Stage II was marked by the replacement of garnet and pyroxene by quartz, amphibole, plagioclase, epidote, magnetite, and calcite. Many of the replacement reactions took place over a relatively narrow range in temperature (480–550 ° C), as indicated by 18O fractionations between quartz and amphibole. Meteoric water comprised 20 to 50% of the metasomatic fluid during Stage II.Calcite was formed along with pyrite, minor pyrrhotite, and chalcopyrite during Stage III, although the crystallization of pyrite and calcite had begun earlier, during Stages I and II, respectively. Carbon and sulfur isotope compositions of calcite and pyrite indicate a magmatic source for most of the C and S in the metasomatic fluids of Stage III. By the end of Stage III, meteoric water constituted as much as 100% of the metasomatic fluid. Minerals from grandiorite and skarn do not show large depletions in 18O because the oxygen isotope composition of the metasomatic fluid was buffered by the calcareous wall rocks and the grandiorite.Meteoric water in the vicinity of the Osgood Mountains during the Late Crectaceous (18Ocale. –14.0, D = – 107) was slightly enriched in 18O and D relative to present-day meteoric water (18O = 15.9, D = – 117)  相似文献   

12.
Regionally extensive two-pyroxene granulites in Fiordland, southwest New Zealand, are products of metamorphism of a suite of anhydrous magmas which crystallized two pyroxenes. The granulite protolith (igneous charnockitic rock) synkinematically intruded metasediment and other orthogneiss in an Early Cretaceous subduction-related magmatic arc, and during cooling experienced deformation-induced recrystallization to form granoblastic gneiss. The granulites occur side by side with coeval rocks of amphibolite facies. Mineral zoning and textural relationships in both granulites and amphibolite facies rocks provide evidence of two distinct periods of crystallization: 1) an early high temperature, comparatively low pressure event accompanying magmatic intrusion (andalusite-sillimanite facies series recorded locally in the country rock), followed by 2) high pressure metamorphism under conditions of 650°–700° C at 12–13 kbar. Garnet granulite locally overprinted earlier formed two-pyroxene granulite during the latter event. The pressure increase (6 kbar) between the two events is attributed to crustal thickening by overthrusting, and is equivalent to unloading of a 20 km thick slab over rocks already buried at mid-crustal depths. Both events occurred over a < 20 m.y. interval, between the time of magmatic emplacement of the granulite protolith and uplift-controlled final cooling of the terrain. The Phanerozoic granulites in Fiordland share some petrologic similarities with Precambrian granulite terrains, suggesting that at least some aspects of the former may serve as a useful model for development of the latter.  相似文献   

13.
96 new fission track (FT) apatite and zircon, K/Ar and Rb/Sr biotite and muscovite ages are presented for 19 samples (mainly acid gneisses) from a 40 km traverse through the Lepontine Alps in the Maggia Valley, South Central Switzerland. Plotting measured mineral ages against assumed system closure temperatures yields cooling rates for each sample. The entire profile shows a fairly uniform Late Neogene-Recent mean uplift rate of 0.5 mm/a, confirmed by a gradient of FT apatite age with elevation. Cooling from higher temperatures occurred earlier in the south, where uplift rates of 2.2 mm/a in the Steep Belt (root zone) indicate >9 km Early Miocene uplift of the northern Pennine block. This uplift started before 23 Ma and is interpreted as resulting from a major phase of backthrusting along the Insubric Line, and as dating the formation of the mylonite belt. Estimated cooling rates constrain the timing of Lepontine Mid-Tertiary metamorphism: 3 schematic models are proposed which also consider published Rb/Sr, K/Ar mica and hornblende and U/Pb monazite ages. Slow cooling, differential initial heating and subsequent cooling of different parts of the Central Alps and post-38 Ma cooling with syntectonic metamorphism at 27 Ma are postulated as alternative interpretations of isotopic data and geologic evidence. From extrapolation between K/Ar and Rb/Sr mica ages and apatite FT ages, 240±50° C is proposed as the closure temperature for the retention of fission tracks in zircon.  相似文献   

14.
A combined study of major and trace elements, fluid inclusions and oxygen isotopes has been carried out on garnet pyroxenite from the Raobazhai complex in the North Dabie Terrane (NDT). Well‐preserved compositional zoning with Na decreasing and Ca and Mg increasing from the core to rim of pyroxene in the garnet pyroxenite indicates eclogite facies metamorphism at the peak metamorphic stage and subsequent granulite facies metamorphism during uplift. A PT path with substantial heating (from c. 750 to 900 °C) after the maximum pressure reveals a different uplift history compared with most other eclogites in the South Dabie Terrane (SDT). Fluid inclusion data can be correlated with the metamorphic grade: the fluid regime during the peak metamorphism (eclogite facies) was dominated by N2‐bearing NaCl‐rich solutions, whereas it changed into CO2‐dominated fluids during the granulite facies retrograde metamorphism. At a late retrograde metamorphic stage, probably after amphibolite facies metamorphism, some external low‐salinity fluids were involved. In situ UV‐laser oxygen isotope analysis was undertaken on a 7 mm garnet, and impure pyroxene, amphibole and plagioclase. The nearly homogeneous oxygen isotopic composition (δ18OVSMOW = c. 6.7‰) in the garnet porphyroblast indicates closed fluid system conditions during garnet growth. However, isotopic fractionations between retrograde phases (amphibole and plagioclase) and garnet show an oxygen isotopic disequilibrium, indicating retrograde fluid–rock interactions. Unusual MORB‐like rare earth element (REE) patterns for whole rock of the garnet pyroxenite contrast with most ultra‐high‐pressure (UHP) eclogites in the Dabie‐Sulu area. However, the age‐corrected initial εNd(t) is ? 2.9, which indicates that the protolith of the garnet pyroxenite was derived from an enriched mantle rather than from a MORB source. Combined with the present data of oxygen isotopic compositions and the characteristic N2 content in the fluid inclusions, we suggest that the protolith of the garnet pyroxenite from Raobazhai formed in an enriched mantle fragment, which has been exposed to the surface prior to the Triassic metamorphism.  相似文献   

15.
Further support for the view that mineralization at Mount Isa comprises two separate events is provided by 34S/32S measurement. Isotopic exchange between sulphides in lead-zinc-silver ores appears to have been promoted locally during metamorphism, whereas isotopic disequilibrium persists in the copper ores. These isotopic data are explained by a model in which sedimentary deposition of lead, zinc and silver was succeeded by the post-metamorphic emplacement of copper. Past biological activity is inferred from the occurrence of low concentrations of organic carbon with 13C values ranging from –21 to –26 PDB. Carbonate contents, expressed as carbon, vary from <0.1% to 10.9%. The 13C and 18O values for the carbonates are relatively constant at –4.4±1.1 and –17.6±1.1 PDB respectively. These values are interpreted as reflecting isotopic changes induced in original marine carbonates by isotopic exchange during lower greenschist metamorphism.  相似文献   

16.
U-Pb isotopic analyses of zircons from a distinctive suite of previously undated granulite facies metaplutonic rocks, here termed the Western Fiordland Orthogneiss (WFO), in Fiordland, southwest New Zealand, indicate synkinematic magmatic emplacement between 120 and 130 Ma ago. These rocks were previously interpreted as possibly being of Precambrian age. Initial Pb and Sr ratios are consistent with arc/subduction related magmagenesis with little or no involvement of ancient continental crust. Subsequent high pressure (>12 kb) metamorphism of the WFO may reflect a major collision event involving crustal thickening by overthrusting of a >15 km thick sequence. Metamorphism ceased 116 Ma ago based on206Pb/238U ages of zircon from a retrogressed granulite. U-Pb isotopic analysis of apatite, along with previously published Rb/Sr mineral ages, indicate that final uplift and cooling to <300–400° C was largely completed by 90 Ma. The average uplift rate during this period is inferred to have been in excess of 1 mm/yr.Unmetamorphosed gabbronorites of the Darran Complex in eastern Fiordland, inferred by some investigators to be the granulite protolith, yield concordant U/Pb zircon ages of 137±1 Ma. U-Pb ages of apatite, and previously published K/Ar mineral ages indicate that these rocks experienced a rapid and simple cooling history lasting only a few million years. The high-grade WFO and unmetamorphosed Darran Complex are now separated by a profound structural break. However, the ages and similarities in initial Pb and Sr isotopic ratios suggest that both suites are products of the same Early Cretaceous cycle of subduction-related magmatism. The timing of Early Cretaceous magmatism and metamorphism, collision and resultant crustal thickening, and subsequent great uplift and erosion in Fiordland has important implications for terrane accretion and the evolution of relative plate motions along the New Zealand segment of the Gondwana margin.  相似文献   

17.
The Mount Lofty Ranges comprises interlayered marbles, metapsammites, and metapelites that underwent regional metamorphism during the Delamarian Orogeny at 470–515 Ma. Peak metamorphic conditions increased from lowermost biotite grade (350–400°C) to migmatite grade (700°C) over 50–55 km parallel to the lithological strike of the rocks. With increasing metamorphic grade, 18O values of normal metapelites decrease from 14–16 to as low as 9.0, while 18O values of calcite in normal marbles decrease from 22–24 to as low as 13.2 These isotopic changes are far greater than can be accounted for by devolatilisation, implying widespread fluid-rock interaction. Contact metamorphism appears not to have affected the terrain, suggesting that fluid flow occurred during regional metamorphism. Down-temperature fluid flow from synmetamorphic granite plutons (18O=8.4–8.6) that occur at the highest metamorphic grades is unlikely to explain the resetting of oxygen isotopes because: (a) there is a paucity of skarns at granite-metasediment contacts; (b) the marbles generally do not contain low-XCO2 mineral assemblages; (c) there is insufficient granite to provide the required volumes of water; (d) the marbles and metapelites retain a several permil difference in 18O values, even at high metamorphic grades. The oxygen isotope resetting may be accounted for by along-strike up-temperature fluid flow during regional metamorphism with time-integrated fluid fluxes of up to 5x109 moles/m2 (105 m3/m2). If fluid flow occurred over 105–106 years, estimated intrinsic permeabilities are 10-20 to 10-16m2. Variations in 18O at individual outcrops suggest that time-integrated fluid fluxes and intrinsic permeabilities may locally have varied by at least an order of magnitude. A general increase in XCO2 values of marble assemblages with metamorphic grade is also consistent with the up-temperature fluid-flow model. Fluids in the metapelites may have been derived from these rocks by devolatilisation at low metamorphic grades; however, fluids in the marbles were probably derived in part from the surrounding siliceous rocks. The marble-metapelite boundaries preserve steep gradients in both 18O and XCO2 values, suggesting that across-strike fluid fluxes were much lower than those parallel to strike. Up-temperature fluid flow may also have formed orthoamphibole rocks and caused melting of the metapelites at high grades.This paper is a contribution to IGCP Project 304 Lower Crustal Processes  相似文献   

18.
The Hongan Block (western Dabieshan) exposes a series of HP/UHP metamorphic rocks, with a S-to-N distribution from blueschist–greenschist, kyanite-free, to kyanite- and coesite-bearing eclogites. The available age data are inconclusive that hinder our understanding of the tectonic evolution of the Block. The metamorphic temperatures in the Hongan Block (Tmeta 700 to 500°C) are lower by 50–150°C than that of the Dabie and Sulu terranes. In this work, we undertook new trace element and Sr–Nd–O isotopic analyses on minerals in order to gain more insight into the geochronological problems. The results are as follows: (1) Trace element distribution patterns suggest that garnet and omphacite in many cases are out of chemical equilibrium; and the presence of high-temperature LREE-rich mineral inclusions (e.g., epidote) in garnet and omphacite has contributed to isotope disequilibrium. (2) Sm–Nd isotope analyses yielded no isochron ages for the Hongan eclogites. (3) Rb–Sr isotope analyses gave mixed results; in some cases, coexisting minerals are completely out of isotope equilibrium, and in others, isochron relationship is established, yielding ages from 210 Ma to 225 Ma. The pattern of Rb–Sr isotope disequilibrium appears to be independent of the petrological and O-isotope temperatures. (4) In contrast to the unequilibrated Sm–Nd isotopic systems, oxygen isotopes of the eclogite minerals seem to have attained isotope equilibrium or near-equilibrium. Oxygen isotope temperatures are comparable with petrological temperatures. However, this is an apparent feature due to mass balance constraints. (5) Whole-rock 18O values show a large variation from +10 to –8, suggesting that their protoliths have undergone very different processes of water–rock interaction. In view of the overall geochronological information, we conclude that the HP/UHP metamorphism in the Hongan Block took place in the Triassic at about 220–230 Ma, as observed in the Dabie and Sulu terranes. The significance of published Paleozoic dates (450–300 Ma) for the Xiongdian eclogite is not clear. However, any hypotheses advocating two periods of UHP metamorphic events for the same tectonic unit or in the same locality are not constrained by the geochronological data.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

19.
Garnet in metapelites from the Wölz Complex of the Austroalpine crystalline basement east of the Tauern Window characteristically consists of two growth phases, which preserve a comprehensive record of the geothermal history during polymetamorphism. From numerical modelling of garnet formation, detailed information on the pressure–temperature–time (P–T–t) evolution during prograde metamorphism is obtained. In that respect, the combined influences of chemical fractionation associated with garnet growth, modification of the original growth zoning through intragranular diffusion and the nucleation history on the chemical zoning of garnet as P and T change during growth are considered. The concentric chemical zoning observed in garnet and the homogenous rock matrix, which is devoid of chemical segregation, render the simulation of garnet growth through successive equilibrium states reliable. Whereas the first growth phase of garnet was formed at isobaric conditions of ~3.8 kbar at low heating/cooling rates, the second growth phase grew along a Barrovian P–T path marked with a thermal peak of ~625°C at ~10 kbar and a maximum in P of ~10.4 kbar at ~610°C. For the heating rate during the growth of the second phase of garnet, average rates faster than 50°C Ma?1 are obtained. From geochronological investigations the first growth phase of garnet from the Wölz Complex pertains to the Permian metamorphic event. The second growth phase grew in the course of Eo-Alpine metamorphism during the Cretaceous.  相似文献   

20.
In order to evaluate rates of tectonometamorphic processes, growth rates of garnets from metamorphic rocks of the Tauern Window, Eastern Alps were measured using Rb-Sr isotopes. The garnet growth rates were determined from Rb-Sr isotopic zonation of single garnet crystals and the Rb-Sr isotopic compositions of their associated rock matrices. Garnets were analyzed from the Upper Schieferhülle (USH) and Lower Schieferhülle, (LSH) within the Tauern Window. Two garnets from the USH grew at rates of 0.67 –0.13 +0.19 mm/million years and 0.88 –0.19 +0.34 mm/million years, respectively, indicating an average growth duration of 5.4±1.7 million years. The duration of growth coupled with the amount of rotation recorded by inclusion trails in the USH garnets yields an average shear-strain rate during garnet growth of 2.7 –0.7 +1.2 ×10-14 s-1. Garnet growth in the sample from the USH occurred between 35.4±0.6 and 30±0.8 Ma. The garnet from the LSH grew at a rate of 0.23±0.015 mm/million years between 62±1.5 Ma and 30.2±1.5 Ma. Contemporaneous cessation of garnet growth in both units at 30 Ma is in accord with previous dating of the thermal peak of metamorphism in the Tauern Window. Correlation with previously published pressure-temperature paths for garnets from the USH and LSH yields approximate rates of burial, exhumation and heating during garnet growth. Assuming that theseP — T paths are applicable to the garnets in this study, the contemporaneous exhumation rates recorded by garnet in the USH and LSH were approximately 4 –2 +3 mm/year and 2±1 mm/year, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号