首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The crystal chemistry and the elastic behavior under isothermal conditions up to 9 GPa of a natural, and extremely rare, 3T-phlogopite from Traversella (Valchiusella, Turin, Western Alps) [(K0.99Na0.05Ba0.01)(Mg2.60Al0.20Fe 0.21 2+ )[Si2.71Al1.29O10](OH)2, space group P3112, with a = 5.3167(4), c = 30.440(2) Å, and V = 745.16(9) ų] have been investigated by electron microprobe analysis in wavelength dispersion mode, single-crystal X-ray diffraction at 100 K, and in situ high-pressure synchrotron radiation powder diffraction (at room temperature) with a diamond anvil cell. The single-crystal refinement confirms the general structure features expected for trioctahedral micas, with the inter-layer site partially occupied by potassium and sodium, iron almost homogeneously distributed over the three independent octahedral sites, and the average bond distances of the two unique tetrahedra suggesting a disordered Si/Al-distribution (i.e., 〈T1-O〉 ~ 1.658 and 〈T2-O〉 ~ 1.656 Å). The location of the H-site confirms the orientation of the O–H vector nearly perpendicular to (0001). The refinement converged with R 1(F) = 0.0382, 846 unique reflections with F O > 4σ(F O) and 61 refined parameters, and not significant residuals in the final difference-Fourier map of the electron density (+0.77/?0.37 e ?3). The high-pressure experiments showed no phase transition within the pressure range investigated. The PV data were fitted with a Murnaghan (M-EoS) and a third-order Birch-Murnaghan equation of state (BM-EoS), yielding: (1) M-EoS, V 0 = 747.0(3) Å3, K T0 = 44.5(24) GPa, and K′ = 8.0(9); (2) BM-EoS, V 0 = 747.0(3) Å3, K T0 = 42.8(29) GPa, and K′ = 9.9(17). A comparison between the elastic behavior in response to pressure observed in 1M- and 3T-phlogopite is made.  相似文献   

2.
Three isotypic crystals, SiO2 (α-cristobalite), ε-Zn(OH)2 (wülfingite), and Be(OH)2 (β-behoite), with topologically identical frameworks of corner-connected tetrahedra, undergo displacive compression-driven phase transitions at similar pressures (1.5–2.0 GPa), but each transition is characterized by a different mechanism resulting in different structural modifications. In this study, we report the crystal structure of the high-pressure γ-phase of beryllium hydroxide and compare it with the high-pressure structures of the other two minerals. In Be(OH)2, the transition from the ambient β-behoite phase with the orthorhombic space group P212121 and ambient unit cell parameters a = 4.5403(4) Å, b = 4.6253(5) Å, c = 7.0599(7) Å, to the high-pressure orthorhombic γ-polymorph with space group Fdd2 and unit cell parameters (at 5.3(1) GPa) a = 5.738(2) Å, b = 6.260(3) Å, c = 7.200(4) Å takes place between 1.7 and 3.6 GPa. This transition is essentially second order, is accompanied by a negligible volume discontinuity, and exhibits both displacive and reversible character. The mechanism of the phase transition results in a change to the hydrogen bond connectivities and rotation of the BeO4 tetrahedra.  相似文献   

3.
In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic studies of orthorhombic CaFe2O4-type β-CaCr2O4 chromite were carried out up to 16.2 and 32.0 GPa at room temperature using multi-anvil apparatus and diamond anvil cell, respectively. No phase transition was observed in this study. Fitting a third-order Birch–Murnaghan equation of state to the P–V data yields a zero-pressure volume of V 0 = 286.8(1) Å3, an isothermal bulk modulus of K 0 = 183(5) GPa and the first pressure derivative of isothermal bulk modulus K 0′ = 4.1(8). Analyses of axial compressibilities show anisotropic elasticity for β-CaCr2O4 since the a-axis is more compressible than the b- and c-axis. Based on the obtained and previous results, the compressibility of several CaFe2O4-type phases was compared. The high-pressure Raman spectra of β-CaCr2O4 were analyzed to determine the pressure dependences and mode Grüneisen parameters of Raman-active bands. The thermal Grüneisen parameter of β-CaCr2O4 is determined to be 0.93(2), which is smaller than those of CaFe2O4-type CaAl2O4 and MgAl2O4.  相似文献   

4.
Pyroxenes of general stoichiometry Mg(Ge x Si1?x )O3 were encountered in attempts to synthesise Ge-substituted talcs at 0.2 GPa, 650–700 °C. Orthopyroxenes (Pbca) of compositions x = 0.21, 0.30, and 0.34 were identified, and also a P21/c clinopyroxene of composition x = 0.63, and C2/c clinopyroxenes of compositions x = 0.91 and 1. End-member clinoenstatite MgSiO3-P21/c synthesised at 16 GPa, 1300 °C and transformed from C2/c was also included in the study. Crystal structure refinements using single-crystal XRD data showed that unit-cell parameters vary linearly with Si–Ge for the Pbca and P21/c pyroxenes, both of which have two symmetrically non-equivalent tetrahedral chains. Refinement of Si–Ge occupancies at tetrahedral sites showed that the two chains of all primitive pyroxenes have very different compositions, with XGe(TB) ? XGe(TA). This difference arises from the greater flexibility of the B-chain to rotate in response to tetrahedral expansion due to increasing Ge content. The TA-M2 shared polyhedral edge imposes significant constraints on the flexibility of the A-chain, which can accommodate much less Ge than the B-chain. Linear trends of cell parameters, site occupancies, and structural parameters for the primitive pyroxenes, when extrapolated to published data for MgGeO3Pbca, extend across the entire Si–Ge join.  相似文献   

5.

CNDO/2 MO calculations on H12Si5O16 clusters modeling silicate tetrahedral linkage in the silica polymorphs show total energy minima at bent SiOSi angles and a correlation between the Si-O bond lengths, d(Si-O), used in the calculation and the minimum energy value of the SiOSi angle. Calculations on hydrogen saturated Si5O16 clusters isolated from the structures of low quartz, low cristobalite and coesite which were adjusted by DLS methods so that all d(Si-O) equal 1.61 Å and all L OSiO equal 109.47° yield Mulliken bond overlap populations, n(Si-O), and Si-O two-center energies, E(Si-O), which correlate with observed bond lengths; shorter bonds involve larger n(Si-O) values and more negative E(Si-O) values.

  相似文献   

6.
A Cs-bearing polyphase aggregate with composition (in wt%): 76(1)CsAlSi5O12 + 7(1)CsAlSi2O6 + 17(1)amorphous, was obtained from a clinoptilolite-rich epiclastic rock after a beneficiation process of the starting material (aimed to increase the fraction of zeolite to 90 wt%), cation exchange and then thermal treatment. CsAlSi5O12 is an open-framework compound with CAS topology; CsAlSi2O6 is a pollucite-like material with ANA topology. The thermal stability of this polyphase material was investigated by in situ high-T X-ray powder diffraction, the combined PT effects by a series of runs with a single-stage piston cylinder apparatus, and its chemical stability following the “availability test” (“AVA test”) protocol. A series of additional investigations were performed by WDS–electron microprobe analysis in order to describe the PT-induced modification of the material texture, and to chemically characterize the starting material and the run products. The “AVA tests” of the polyphase aggregate show an extremely modest release of Cs+: 0.05 mg/g. In response to applied temperature and at room P, CsAlSi5O12 experiences an unquenchable and displacive Ama2-to-Amam phase transition at about 770 K, and the Amam polymorph is stable in its crystalline form up to 1600 K; a crystalline-to-amorphous phase transition occurs between 1600 and 1650 K. In response to the applied P = 0.5 GPa, the crystalline-to-amorphous transition of CsAlSi5O12 occurs between 1670 and 1770 K. This leads to a positive Clapeyron slope (i.e., dP/dT > 0) of the crystalline-to-amorphous transition. When the polyphase aggregate is subjected at P = 0.5 GPa and T > 1770 K, CsAlSi5O12 melts and only CsAlSi2O6 (pollucite-like; dominant) and Cs-rich glass (subordinate) are observed in the quenched sample. Based on its thermo-elastic behavior, PT phase stability fields, and Cs+ retention capacity, CsAlSi5O12 is a possible candidate for use in the immobilization of radioactive isotopes of Cs, or as potential solid hosts for 137Cs γ-radiation source in sterilization applications. More in general, even the CsAlSi5O12-rich aggregate obtained by a clinoptilolite-rich epiclastic rock appears to be suitable for this type of utilizations.  相似文献   

7.
Single crystals of C–Na2Si2O5 have been synthesized from the hydrothermal recrystallization of a glass. The title compound is monoclinic, space group P21/c with Z= 8 and unit-cell parameters a= 4.8521 (4)Å, b=23.9793(16)Å, c=8.1410(6)Å, β=90.15(1)° and V=947.2(2)Å3. The structure has been determined by direct methods and belongs to the group of phyllosilicates. It is based on layers of tetrahedra with elliptically six-membered rings in chair conformation. The sequence of directedness within a single ring is UDUDUD. The sheets are parallel to (010) with linking sodium cations in five- and sixfold coordination. Concerning the shape and the conformation of the rings, C–Na2Si2O5 is closely related to β-Na2Si2O5. However, both structures differ in the stacking sequences of the layers. A possible explanation for the frequently observed polysynthetic twinning of phase C is presented. In the 29Si MAS-NMR spectrum of C–Na2Si2O5 four well-resolved lines of equal intensity are observed at ?86.0, ?86.3, ?87.4, and ?88.2?ppm. The narrow range of isotropic chemical shifts reflects the great similarity of the environments of the different Si sites. This lack of pronounced differences in geometry renders a reliable assignment of the resonance lines to the individual sites on the basis of known empiric correlations and geometrical features impossible.  相似文献   

8.
Observing permanent seals with different physical and mechanical characteristics under various conditions in the field is almost impossible. In conjunction with the development of high-speed computer algorithms, numerical simulation has become one of the major means to study the dynamics of such problems. Therefore, this study covers only the numerical approach to analyze the stability of underground seals. In this regard, the purpose of this study is to provide an insight to the design of underground seals by numerically analyzing their behaviors under different static and dynamic explosion overpressures using a geo-technical commercial software FLAC3D. For this purpose, a series of numerical models were constructed for a typical seal in an underground gallery with different properties such as seal thickness, seal dimensions, gallery geometry, and strength of the seal material to investigate the stability of seals exposed to various static and dynamic explosion overpressures. A total of 896 numerical analyses (512 static and 384 dynamic) were performed and evaluated. Regarding the gallery geometry, it was found that seals constructed in trapeze-shaped galleries are more stable than those constructed in horseshoe-shaped galleries having the same dimensions. Moreover, the results showed that the seal stability increases with the increasing seal thickness rather than the strength of the seal material. The statistical analyses suggest that there is a very strong exponential relationship between the seal thickness and the maximum displacement measured at the midpoints of the outer surfaces of the seals. The coefficients of determination values obtained are in the range of 0.92–0.93 and 0.92–0.95 for static and dynamic analyses, respectively. We proposed formulas which use the longer dimension of the seal (W max ), maximum allowable displacement on the seal (D max ), explosion overpressure applied onto the seal (P exp ), and compressive strength of the seal material (σ c and σ cd for static and dynamic conditions, respectively) to predict the minimum required seal thickness (T s ) for static and dynamic conditions. The proposed formulas enable calculating the necessary seal thickness easily if the explosion overpressure (or hydrostatic pressure) is known or approximated.  相似文献   

9.
A single-crystal sample of galenobismutite was subjected to hydrostatic pressures in the range of 0.0001 and 9 GPa at room temperature using the diamond-anvil cell technique. A series of X-ray diffraction intensities were collected at ten distinct pressures using a CCD equipped 4-circle diffractometer. The crystal structure was refined to R1(|F0| > 4σ) values of approximately 0.05 at all pressures. By fitting a third-order Birch-Murnaghan equation of state to the unit-cell volumes V 0 = 700.6(2) Å3, K 0 = 43.9(7) GPa and dK/dP = 6.9(3) could be determined for the lattice compression. Both types of cations in galenobismutite have stereochemically active lone electron pairs, which distort the cation polyhedra at room pressure. The cation eccentricities decrease at higher pressure but are still pronounced at 9 GPa. Galenobismutite is isotypic with CaFe2O4 (CF) but moves away from the idealised CF-type structure during compression. Instead of the two octahedral cation sites and one bi-capped trigonal-prismatic site, PbBi2S4 attains a new high-pressure structure characterised by one octahedral site and two mono-capped trigonal-prismatic sites. Analyses of the crystal structure at high pressure confirm the preference of Bi for the octahedral site and the smaller one of the two trigonal-prismatic sites.  相似文献   

10.
Raman spectra of Mg2GeO4-olivine were obtained from ambient pressure up to 34 GPa at ambient temperature. Under quasi-hydrostatic pressure conditions, the following modifications in the Raman spectra occur as pressure increases: 1) near 11 GPa, two sharp extra bands appear in the 600–700 cm?1 frequency range, and increase in intensity with respect to the olivine bands; 2) above 22 GPa, these two bands become very intense, and the number, position and relative intensity of the other vibrational bands drastically change; 3) the intensity of sharp bands progressively decreases above 25 GPa. The transformation occurs at lower pressures under non-hydrostatic conditions. During decompression to atmospheric pressure, the high-pressure phase partially reverts to olivine. These observations can be interpreted as the progressive metastable transformation from the olivine structure to a crystalline phase with four-fold coordinated Ge, in which the GeO4 tetrahedra are polymerized. We propose that the metastable high-pressure phase is a structurally disordered spinelloid close to the hypothethical ω- or ?*-phase, and forms by a shear mechanism assisted by the development of a dynamical instability in the olivine structure. Implications for the transformations undergone by olivines under far-from-equilibrium conditions (e.g. in subducting lithospheric slabs and in shocks) are discussed.  相似文献   

11.
A theoretically substantiated technique has been elaborated for the precise determination of minor contents of smectite layers in the dioctahedral mixed-layer structures with a disordered alternation of K-bearing micaceous and ethylene glycol-saturated smectite layers. It is shown that observed positions of the possible mixed-layer mica–smectite structures in the d(003)obsd(007)obs or 2θ(003)obs–2θ(007)obs diagrams are distributed along a set of parallel straight lines. Data points of each straight line correspond to the mixed-layer structures with one and the same content of smectite layers. A complete matching of theoretical model was recorded in the positions of d(003)obsd(007)obs and 2θ(003)obs–2θ(007)obs pairs of the basal reflections determined in diffractograms simulated for 160 two-component mixed-layer mica–smectite structures differing in the thickness of alternating layers and their relative content. We studied samples of the dioctahedral K-bearing micas of the glauconite, illite, and aluminoceladonite composition with different thickness of micaceous layers. Positions of the mixed-layer structures of the studied samples on the 2θ(003)obs–2θ(007)obs and d(003)obsd(007)obs plots make it possible to visually determine the content of smectite layers in each structure accurate to 0.5%. The content of smectite layers in the studied samples varied from 2 to 15%. We obtained equations relating the thickness of smectite and micaceous layers for a specified content of smectite layers. They make it possible to determine the thickness correlation between specified mica and smectite layers. Analogous equations can be used to calculate the Wsm value in each sample for specified experimental values of d(001)mc and d(001)sm and d(003)obs or d(007)obs. The Wsm values coincide within an error limit of 0.2% with those based on the visual estimates in plots.  相似文献   

12.
For petrological calculations, including geothermobarometry and the calculation of phase diagrams (for example, PT petrogenetic grids and pseudosections), it is necessary to be able to express the activity–composition (ax) relations of minerals, melt and fluid in multicomponent systems. Although the symmetric formalism—a macroscopic regular model approach to ax relations—is an easy-to-formulate, general way of doing this, the energetic relationships are a symmetric function of composition. We allow asymmetric energetics to be accommodated via a simple extension to the symmetric formalism which turns it into a macroscopic van Laar formulation. We term this the asymmetric formalism (ASF). In the symmetric formalism, the ax relations are specified by an interaction energy for each of the constituent binaries amongst the independent set of end members used to represent the phase. In the asymmetric formalism, there is additionally a "size parameter" for each of the end members in the independent set, with size parameter differences between end members accounting for asymmetry. In the case of fluid mixtures, for example, H2O–CO2, the volumes of the end members as a function of pressure and temperature serve as the size parameters, providing an excellent fit to the ax relations. In the case of minerals and silicate liquid, the size parameters are empirical parameters to be determined along with the interaction energies as part of the calibration of the ax relations. In this way, we determine the ax relations for feldspars in the systems KAlSi3O8–NaAlSi3O8 and KAlSi3O8–NaAlSi3O8–CaAl2Si2O8, for carbonates in the system CaCO3–MgCO3, for melt in the melting relationships involving forsterite, protoenstatite and cristobalite in the system Mg2SiO4–SiO2, as well as for fluids in the system H2O–CO2. In each case the ax relations allow the corresponding, experimentally determined phase diagrams to be reproduced faithfully. The asymmetric formalism provides a powerful and flexible way of handling ax relations of complex phases in multicomponent systems for petrological calculations.  相似文献   

13.
Fine-granular (<0.1 mm) flattened colorless transparent crystals of ivsite form white aggregates. The empirical formula (Na2.793Cu0.056)2.849HS2.016O8 is close to the ideal Na3H(SO4)2. The structure was refined up to R = 0.040. Ivsite has a monoclinic symmetry, P21/c, a = 8.655(1) Å, b = 9.652(1) Å, c = 9.147(1) Å, β = 108.76(1)°, V = 723.61(1) Å3, Z = 4. Na atoms occur at six- and seven-fold sites (NaO6 and NaO7); S atoms, in isolated SO4 tetrahedrons; these polyhedrons form a three-dimensional framework. The diagnostic lines of powder diffraction patterns (d[Å]–Ihkl) are 4.010–53–12-1, 3.949–87–012, 3.768–100–210, 3.610–21–20-2, 3.022–22–031, 2.891–42–22-2, 2.764–49–31-1, and 2.732–70–13-1.  相似文献   

14.
Omphacite is an important mineral component of eclogite. Single-crystal synchrotron X-ray diffraction data on natural (Ca, Na) (Mg, Fe, Al)Si2O6 omphacite have been collected at the Advanced Photon Source beamlines 13-BM-C and 13-ID-D up to 47 GPa at ambient temperature. Unit cell parameter and crystal structure refinements were carried out to constrain the isothermal equation of state and compression mechanism. The third-order Birch–Murnaghan equation of state (BM3) fit of all data gives V 0 = 423.9(3) Å3, K T0 = 116(2) GPa and K T0′ = 4.3(2). These elastic parameters are consistent with the general trend of the diopside–jadeite join. The eight-coordinated polyhedra (M2 and M21) are the most compressible and contribute to majority of the unit cell compression, while the SiO4 tetrahedra (Si1 and Si2) behave as rigid structural units and are the most incompressible. Axial compressibilities are determined by fitting linearized BM3 equation of state to pressure dependences of unit cell parameters. Throughout the investigated pressure range, the b-axis is more compressible than the c-axis. The axial compressibility of the a-axis is the largest among the three axes at 0 GPa, yet it quickly drops to the smallest at pressures above 5 GPa, which is explained by the rotation of the stiffest major compression axis toward the a-axis with the increase in pressure.  相似文献   

15.
The Al-rich region of the CaO-MgO-Al2O3-SiO2 system was experimentally studied at pressures of 1.0–2.8 GPa and temperatures of 1300–1535°C. The slopes of the lines of the monovariant reactions An + Sp = Cpx + Cor + (Ga) and L = Cpx + Ga + Cor + Sp and the compositions of the phases involved in these reactions are determined. The results are utilized in the topological analysis of the aluminous region of the CaO-MgO-Al2O3-SiO2 system. On this basis, the principal structure of the phase diagram is analyzed, and a phase diagram is constructed for the junction region of the quaternary system and the CaO-Al2O3-SiO2 ternary system. A continuous series of the monovariant eutectic: L = Cpx + Opx + Fo + An, L = Cpx + Opx + An + Sp, L = Cpx + (Ga) + An + Sp, L = Cpx + Cor + (Ga) + An, L = An + Ga + Cpx + Ky and L = Ga + Cpx + Ky + Qz is examined within the pressure range from atmospheric to 3.0 GPa and higher. Analogous “telescoped” eutectic series are of fundamental character for interpreting the evolution of magmatic melts. A physicochemical model is suggested for the evolution of magmatic melts that produce rocks of the calc-alkaline series, with this model underlain by the fact that a change in the composition of magmatic melt at a pressure decrease should correspond to the minimum melting temperatures, i.e., to melts in the fundamental series of eutectic reactions. The comparison of our physicochemical model and rocks of the calc-alkaline series shows that the compositions of rocks of the calc-alkaline series are close to the compositions determined for the eutectic equilibria, and the mineralogical composition of xenoliths and megacrysts in volcanic and dike varieties of the rocks are similar to the subsolidus phases of the established fundamental eutectic system.  相似文献   

16.
Stable isotope data of precipitation (δ18Op and deuterium excess), drip water (δ18Od), and modern calcite precipitates (δ18Oc and δ13Cc) from Yongxing Cave, central China, are presented, with monthly sampling intervals from June 2013 to September 2016. Moderate correlations between the monthly variation of δ18Op values (from ??11.5 to ??0.7‰) and precipitation amount (r = ??0.59, n?=?34, p?<?0.01) and deuterium excess (r?=?0.39, n?=?31, p?<?0.01) imply a combined effect of changes in precipitation amount and atmospheric circulation. At five drip sites, the δ18Od values have a much smaller variability (from ??9.1 to ??7.5‰), without seasonal signals, probably a consequence of the mixing in the karst reservoir with a deep aquifer. The mean δ18Od value (??8.4‰) for all drip waters is significantly more negative than the mean δ18Op value (??6.9‰) weighted by precipitation amount, but close to the wet season (May to September) mean value (??8.3‰), suggesting that a threshold of precipitation amount must be exceeded to provide recharge. Calculation based on the equilibrium fractionation factor indicates that the δ18Oc values are not in isotopic equilibrium with their corresponding drip waters, with a range of disequilibrium effects from 0.4 to 1.4‰. The δ18Oc and δ13Cc values generally increase progressively away from the locus of precipitation on glass plates. The disequilibrium effects in the cave are likely caused by progressive calcite precipitation and CO2 degassing related to a high gradient of CO2 concentration between drip waters and cave air. Our study provides an important reference to interpret δ18Oc records from the monsoon region of China.  相似文献   

17.
Single-crystal study of the structure (R = 0.0268) was performed for garyansellite from Rapid Creek, Yukon, Canada. The mineral is orthorhombic, Pbna, a = 9.44738(18), b = 9.85976(19), c = 8.14154(18) Å, V = 758.38(3) Å3, Z = 4. An idealized formula of garyansellite is Mg2Fe3+(PO4)2(OH) · 2H2O. Structurally the mineral is close to other members of the phosphoferrite–reddingite group. The structure contains layers of chains of M(2)O4(OH)(H2O) octahedra which share edges to form dimers and connected by common edges with isolated from each other M(1)O4(H2O)2 octahedra. The neighboring chains are connected to the layer through the common vertices of M(2) octahedra and octaahedral layers are linked through PO4 tetrahedra.  相似文献   

18.
A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch–Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus (K 0,T0), 206 ± 4 GPa; its pressure derivative K0,T , 4.4 ± 0.8; (?K 0,T /?T) = ?0.037 ± 0.006 GPa K?1; a = 2.98 ± 0.14 × 10?5 K?1 and b = 0.47 ± 0.28 × 10?8 K?2, where α 0,T  = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α 0,T0 was determined to be 2.95 × 10?5 K?1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α 0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137–148, 1946) widely used in many physical and geological databases. Fitting the Mie–Grüneisen–Debye EoS with the present ambient and high-pressure data yielded the following parameters: K 0,T0 = 205 ± 3 GPa, K0,T  = 4.0, Grüneisen parameter (γ 0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with \({\text{d}}P/{\text{d}}T = - 0.014\) GPa/K) was found to be consistent with experimental data.  相似文献   

19.
The influence of oxygen fugacity (fO2) and temperature on the valence and structural state of iron was experimentally studied in glasses quenched from natural aluminosilicate melts of granite and pantellerite compositions exposed to various T-fO2 conditions (1100–1420°C and 10?12–10?0.68 bar) at a total pressure of 1 atm. The quenched glasses were investigated by Mössbauer spectroscopy. It was shown that the effect of oxygen fugacity on the redox state of iron at 1320–1420°C can be described by the equation log(Fe3+/Fe2+) = k log(fO2) + q, where k and q are constants depending on melt composition and temperature. The Fe3+/Fe2+ ratio decreases with decreasing fO2 (T = const) and increasing temperature (fO2 = const). The structural state of Fe3+ depends on the degree of iron oxidation. With increasing Fe3+/Fe2+ ≥ 1, the dominant coordination of Fe3+ changes from octahedral to tetrahedral. Ferrous iron ions occur in octahedral (and/or five-coordinated) sites independent of Fe3+/Fe2+.  相似文献   

20.
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号