首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hillslopes are thought to poorly record tectonic signals in threshold landscapes. Numerous previous studies of steep landscapes suggest that large changes in long‐term erosion rate lead to little change in mean hillslope angle, measured at coarse resolution. New LiDAR‐derived topography data enables a finer examination of threshold hillslopes. Here we quantify hillslope response to tectonic forcing in a threshold landscape. To do so, we use an extensive cosmogenic beryllium‐10 (10Be)‐based dataset of catchment‐averaged erosion rates combined with a 500 km2 LiDAR‐derived 1 m digital elevation model to exploit a gradient of tectonic forcing and topographic relief in the San Gabriel Mountains, California. We also calibrate a new method of quantifying rock exposure from LiDAR‐derived slope measurements using high‐resolution panoramic photographs. Two distinct trends in hillslope behavior emerge: below catchment‐mean slopes of 30°, modal slopes increase with mean slopes, slope distribution skewness decreases with increasing mean slope, and bedrock exposure is limited; above mean slopes of 30°, our rock exposure index increases strongly with mean slope, and the prevalence of angle‐of‐repose debris wedges keeps modal slopes near 37°, resulting in a positive relationship between slope distribution skewness and mean slope. We find that both mean slopes and rock exposure increase with erosion rate up to 1 mm/a, in contrast to previous work based on coarser topographic data. We also find that as erosion rates increase, the extent of the fluvial network decreases, while colluvial channels extend downstream, keeping the total drainage density similar across the range. Our results reveal important textural details lost in 10 or 30 m resolution digital elevation models of steep landscapes, and highlight the need for process‐based studies of threshold hillslopes and colluvial channels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Nature can provide analogues for post‐mining landscapes in terms of landscape stability and also in terms of the rehabilitated structure ‘blending in’ with the surrounding undisturbed landscape. In soil‐mantled landscapes, hillslopes typically have a characteristic pro?le that has a convex upper hillslope pro?le with a concave pro?le lower down the slope. In this paper hillslope characteristic form is derived using the area–slope relationship from pre‐mining topography at two sites in Western Australia. Using this relationship, concave hillslope pro?les are constructed and compared to linear hillslopes in terms of sediment loss using the SIBERIA erosion model. It is found that concave hillslopes can reduce sediment loss by up to ?ve times that of linear slopes. Concave slopes can therefore provide an alternative method for the construction of post‐mining landscapes. An understanding of landscape geomorphological properties and the use of erosion models can greatly assist in the design of post‐mining landscapes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Solar radiation-controlled microclimatic variation has been considered a major force on hillslope evolution via feedback among geomorphology, vegetation, soil and hydrology. In this study, we investigate the influence of solar radiation on hillslope dynamics on Santa Catalina Island, CA by comparing hillslope morphology and frequency–magnitude relationships of shallow landslides, rills and gullies on slopes receiving low annual solar radiation (LSR) and high annual solar radiation (HSR), which were found equivalent to north- and south-facing slopes, respectively. LSR slopes on Santa Catalina Island were found more vegetated compared to HSR slopes. LiDAR elevation-derived hillslope morphology showed LSR slopes steeper, rougher and more concave than HSR slopes. Similarly, frequency–magnitude plots showed larger relative frequency of high-magnitude shallow landslides, rills and gullies on LSR slopes, and low-magnitude shallow landslides, rills and gullies on HSR slopes. We argue that the morphology, mass movement and erosion characteristics of LSR and HSR slopes reflect the process–response of microclimate-controlled variation in type and density of vegetation cover, soil physical properties – including moisture, texture, structure, infiltration and erodibility – and surface and subsurface hydrology. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
Soil erosion is one of the most severe land degradation processes in the Mediterranean region. Although badlands occupy a relatively small fraction of the Mediterranean area, their erosion rates are very high. Many studies have investigated to what extent vegetation controls soil erosion rates. This study, however, deals with the impact of erosion on vegetation establishment. In semi‐arid badlands of the Mediterranean, soil water availability constitutes the main limiting factor for vegetation development. As a consequence, south‐facing slopes are typically less vegetated due to a very large water stress. However, these findings do not necessarily apply to humid badlands. The main objective of this paper is to determine the topographic thresholds for plant colonization in relation to slope aspect and to assess the spatial patterns of vegetation cover and species richness. We surveyed 179 plots on highly eroded badland slopes in the Central Pyrenees. We defined four aspect classes subdivided into slope angle classes. Colonization success was expressed in terms of vegetation cover and species richness. Slope angle thresholds for plant colonization were identified for each slope aspect class by means of binary logistic regressions. The results show that a critical slope angle exists below which plants colonize the badland slopes. Below this critical slope angle, plant cover and species richness increase with a decreasing slope angle. The largest critical slope angles in humid badlands are observed on south‐facing slopes, which contrasts with the results obtained in semi‐arid badlands. North‐facing slopes however are characterized by a reduced overall vegetation cover and species richness, and lower topographic threshold values. The possible underlying processes responsible for this slope‐aspect discrepancy in vegetation characteristics are discussed in terms of environmental variables that control regolith development, weathering and erosion processes. Moreover, possible restoration strategies through the use of vegetation in highly degraded environments are highlighted. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Wildfire denudes vegetation and impacts chemical and physical soil properties, which can alter hillslope erosion rates. Post‐wildfire erosion can also contribute disproportionately to long‐term erosion rates and landscape evolution. Post‐fire hillslope erosion rates remain difficult to predict and document at the hillslope scale. Here we use 210Pbaex (lead‐210 mineral‐adsorbed excess) inventories to describe net sediment erosion on steep, convex hillslopes in three basins (unburned, moderately and severely burned) in mountainous central Idaho. We analyzed nearly 300 soil samples for 210Pbaex content with alpha spectrometry and related net sediment erosion to burn severity, aspect, gradient, curvature and distance from ridgetop. We also tested our data against models for advective, linear and non‐linear diffusive erosion. Statistically lower net soil losses on north‐ versus south‐facing unburned hillslopes suggest that greater vegetative cover and soil cohesion on north‐facing slopes decrease erosion. On burned hillslopes, erosion differences between aspects were less apparent and net erosion was more variable, indicating that vegetation influences erosion magnitude and fire drives erosion variability. We estimated net soil losses throughout the length of unburned hillslopes, including through a footslope transition to concave form. In contrast, on burned hillslopes, the subtle shift from convex to concave form was associated with deposition of a post‐fire erosion pulse. Such overall patterns of erosion and deposition are consistent with predictions from a non‐linear diffusion equation. This finding also suggests that concave sections of overall convex hillslopes affect post‐disturbance soil erosion and deposition. Despite these patterns, no strong relationships were evident between local net soil losses and gradient, curvature, distance from ridgetop, or erosion predicted with advection or diffusion equations. The observed relationship between gradient and erosion is therefore likely more complex or stochastic than often described theoretically, especially over relatively short timescales (60–100 years). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The aim of this study was to investigate how the spatial distribution of grass influenced run-off and erosion from a hillslope with loess and cinnamon soils in the rocky area of Northern China. We set up a trial to test the two soils with different treatments, including bare soil (BS), grass strips on the upper (UGS) and lower (DGS) parts of the slope, grass cover over the entire slope (GS), and a grass carpet on the lower part of the slope (GC), under simulated rainfall conditions. The results showed that the run-off coefficients for the loess and cinnamon soils decreased by between 4% and 20% and by between 2% and 37%, respectively, when covered with grass. Grass spatial distribution had little effect on the run-off, but more effect on erosion than vegetation coverage degree. The most effective location of grass cover for decreasing hillslope erosion was at the foot, and the high efficiency was mainly due to controlling of rill formation and sediment deposition. The soil loss from GS, DGS, and GC on the loess and cinnamon soils was between 77% and 93% less and 55% and 80% less, respectively, compared with the loss from BS. However, the soil characteristics had little effect on soil erosion for well-vegetated slopes. The results highlight the importance of vegetation re-establishment at the foot of hillslope in controlling soil erosion.  相似文献   

7.
A one‐dimensional uncoupled model governed by this research is a physics‐based modelling of the rainfall‐runoff induced erosion process. The presented model is composed of three parts of a three‐dimensional (3D) hillslope geometry, a nonlinear storage (kinematic wave) model for hillslope hydrological response, and an unsteady physically based surface erosion model. The 3D hillslope geometry model allows describing of the hillslope morphology by defining their plan shape and profile curvature. By changing these two topographic parameters, nine basic hillslope types are derived. The modelling of hillslope hydrological response is based on a flow continuity equation as the relation of discharge and flow depth is passed on kinematic wave approximation. The erosion model is based on a mass conservation equation for unsteady flow. The model assumes that suspended sediment does not affect flow dynamics. The model also accounts for the effect of flow depth plus loose soil depth on soil detachment. The presented model was run for two different precipitations, slope content, and length, and results were plotted for sediment detachment/deposition rate. Based on the obtained results, in hillslopes with convex and straight profile curvatures, sediment detachment only occurred in the whole length of the hillslope. However, in concave ones, sediment detachment and deposition only occurred together in hillslope. The hillslopes with straight profiles and convergent plans have the highest rate of detachment. Also, results show that most detachment rates occur in convex profile curvatures, which are about 15 times more than in straight profiles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Hillslopes have complex three‐dimensional shapes that are characterized by their plan shape, profile curvature of surface and bedrock, and soil depth. To investigate the stability of complex hillslopes (with different slope curvatures and plan shapes), we combine the hillslope‐storage Boussinesq (HSB) model with the infinite slope stability method. The HSB model is based on the continuity and Darcy equations expressed in terms of storage along the hillslope. Solutions of the HSB equation account explicitly for plan shape by introducing the hillslope width function and for profile curvature through the bedrock slope angle and the hillslope soil depth function. The presented model is composed of three parts: a topography model conceptualizing three‐dimensional soil mantled landscapes, a dynamic hydrology model for shallow subsurface flow and water table depth (HSB model) and an infinite slope stability method based on the Mohr–Coulomb failure law. The resulting hillslope‐storage Boussinesq stability model (HSB‐SM) is able to simulate rain‐induced shallow landsliding on hillslopes with non‐constant bedrock slope and non‐parallel plan shape. We apply the model to nine characteristic hillslope types with three different profile curvatures (concave, straight, convex) and three different plan shapes (convergent, parallel, divergent). In the presented model, the unsaturated storage has been calculated based on the unit head gradient assumption. To relax this assumption and to investigate the effect of neglecting the variations of unsaturated storage on the assessment of slope stability in the transient case, we also combine a coupled model of saturated and unsaturated storage and the infinite slope stability method. The results show that the variations of the unsaturated zone storage do not play a critical role in hillslope stability. Therefore, it can be concluded that the presented dynamic slope stability model (HSB‐SM) can be used safely for slope stability analysis on complex hillslopes. Our results show that after a certain period of rainfall the convergent hillslopes with concave and straight profiles become unstable more quickly than others, whilst divergent convex hillslopes remain stable (even after intense rainfall). In addition, the relation between subsurface flow and hillslope stability has been investigated. Our analyses show that the minimum safety factor (FS) occurs when the rate of subsurface flow is a maximum. In fact, by increasing the subsurface flow, stability decreases for all hillslope shapes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Infrequent, high‐magnitude events cause a disproportionate amount of sediment transport on steep hillslopes, but few quantitative data are available that capture these processes. Here we study the influence of wildfire and hillslope aspect on soil erosion in Fourmile Canyon, Colorado. This region experienced the Fourmile Fire of 2010, strong summer convective storms in 2011 and 2012, and extreme flooding in September 2013. We sampled soils shortly after these events and use fallout radionuclides to trace erosion on polar‐ and equatorial‐facing burned slopes and on a polar‐facing unburned slope. Because these radionuclides are concentrated in the upper decimeter of soil, soil inventories are sensitive to erosion by surface runoff. The polar‐facing burned slope had significantly lower cesium‐137 (137Cs) and lead‐210 (210Pb) inventories (p < 0.05) than either the polar‐facing unburned slope or equatorial‐facing burned slope. Local slope magnitude does not appear to control the erosional response to wildfire, as relatively gently sloping (~20%) polar‐facing positions were severely eroded in the most intensively burned area. Field evidence and soil profile analyses indicate up to 4 cm of local soil erosion on the polar‐facing burned slope, but radionuclide mass balance indicates that much of this was trapped nearby. Using a 137Cs‐based erosion model, we find that the burned polar‐facing slope had a net mean sediment loss of 2 mm (~1 kg m?2) over a one to three year period, which is one to two orders of magnitude higher than longer‐term erosion rates reported for this region. In this part of the Colorado Front Range, strong hillslope asymmetry controls soil moisture and vegetation; polar‐facing slopes support significantly denser pine and fir stands, which fuels more intense wildfires. We conclude that polar‐facing slopes experience the most severe surface erosion following wildfires in this region, indicating that landscape‐scale aridity can control the geomorphic response of hillslopes to wildfires. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
Concentrated flow is often the dominant source of water erosion following disturbance on rangelands. Because of the lack of studies that explain the hydraulics of concentrated flow on rangelands, cropland‐based equations have typically been used for rangeland hydrology and erosion modeling, leading to less accurate predictions due to different soil and vegetation cover characteristics. This study investigates the hydraulics of concentrated flow using unconfined field experimental data over diverse rangeland landscapes within the Great Basin Region, United States. The results imply that the overall hydraulics of concentrated flow on rangelands differ significantly from those of cropland rills. Concentrated flow hydraulics on rangelands are largely controlled by the amount of cover or bare soil and hillslope angle. New predictive equations for concentrated flow velocity (R2 = 0·47), hydraulic friction (R2 = 0·52), and width (R2 = 0·4) representing a diverse set of rangeland environments were developed. The resulting equations are applicable across a wide span of ecological sites, soils, slopes, and vegetation and ground cover conditions and can be used by physically‐based rangeland hydrology and erosion models to estimate rangeland concentrated flow hydraulic parameters. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   

11.
The analysis of the positive feedback between landslides and erosion requires determination of the precise temporal and spatial relations between events of colluvium delivery and fluvial erosion. In our study we use decennial datasets on the occurrence of landsliding and erosion achieved through dendrochronological methods. Four sites covering areas of landslide slopes and adjacent valley floors with stream channels were studied. Landsliding on slopes was dated from the tree‐ring eccentricity developed in stems tilted due to bedrock instability. Erosion in channels was dated using the wood anatomy of roots exposed by erosion of the soil cover. Analysis of the temporal relations between dated landsliding, erosion and precipitation record has revealed that two types of repeating sequences can be observed: (1) rainfall → landsliding → erosion; (2) rainfall → erosion → landsliding. These sequences are an indication of the occurrence of slope‐channel positive feedback in the sites studied. In the first type, landsliding triggered by rainfall delivers colluvia into the valley floor and causes its narrowing, which in turn causes increased erosion. In the second type erosion triggered by rainfall disturbs the slope equilibrium and causes landsliding. Landsliding and erosion, once triggered by precipitation, can occur alternately in years with average precipitation and reinforce one another. Bidirectional coupling between landsliding and channel erosion was shown notably through the effects of channel shifting and forced sinuosity and by increased erosion of the slopes opposite the active landslides. Observations also suggest that the repetition of sequences described over longer periods of time can lead to a general widening of the valley floor at the expense of slopes and to a gradual change of the valley cross‐profile from narrow, V‐shaped into a wide flat‐bottomed. Thus landsliding–erosion coupling/positive feedback was recognized as an important factor shaping hillslope–valley topography of the mid‐mountain areas studied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The management of reclaimed slopes derived from industrial and civil activities (e.g. surface mining and road construction) requires the development of practical stability analysis approaches that integrate the processes and mechanisms that rule the dynamics of these ubiquitous emerging ecosystems. This work describes a new modelling approach focused on stability analysis of water‐limited reclaimed slopes, where interactive relationships between rill erosion and vegetation regulate ecosystem stability. Our framework reproduces two main groups of possible trends along the temporal evolution of reclaimed slopes: successful trends, characterized by widespread vegetation development and the effective control of rill erosion processes; and gullying trends, characterized by the progressive loss of vegetation and a sharp logistic increase in erosion rates. Furthermore, this analytical approach allows the determination of threshold values for the state variables (i.e. vegetation cover and rill erosion) that drive the system's stability, facilitating the identification of critical situations that require specific human intervention (e.g. revegetation or, in very problematic cases, revegetation combined with rill network destruction) to ensure the long‐term sustainability of the restored ecosystem. The application of our threshold analysis framework in Mediterranean‐dry reclaimed slopes derived from surface coal mining (the Teruel coalfield in central‐eastern Spain) showed a good field‐based performance. Therefore, we believe that this model is a valuable contribution for the management of water‐limited reclaimed systems, including those associated with rill erosion, as it provides a tool for the evaluation of restoration success and can play an important role in decision‐making during ecosystem restoration in severely disturbed landscapes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Soil erosion plays an important role in plant colonization of semi‐arid degraded areas. In this study, we aimed at deepening our knowledge of the mechanisms that control plant colonization on semi‐arid eroded slopes in east Spain by (i) determining topographic thresholds for plant colonization, (ii) identifying the soil properties limiting plant establishment and (iii) assessing whether colonizing species have specific plant traits to cope with these limitations. Slope angle and aspect were surrogates of erosion rate and water availability, respectively. Since soil erosion and water availability can limit plant establishment and both can interact in the landscape, we analysed variations in colonization success (vegetation cover and species number) with slope angle on 156 slopes, as a function of slope aspect. After determining slope angle thresholds for plant colonization, soil was sampled near the threshold values for soil analysis [nitrogen, phosphorous, calcium carbonate (CaCO3), water holding capacity]. Plant traits expressing the plant colonizing capacity were analysed both in the pool of species colonizing the steep slopes just below the threshold and in the pool of species inhabiting gentler slopes and absent from the slopes just below the threshold. Results show that the slope angle threshold for plant colonization decreased from north to south. For the vegetation cover, threshold values were 63°, 50°, 46°, 41° for the north, east, west and south slope aspect classes, respectively, and 65°, 53°, 49° and 45° for the species richness and the same aspect classes. No differences existed in soil properties at slope angle threshold values among slope aspects and between slope positions (just below and above the threshold) within slope aspect classes. This suggests that variations between slope aspect classes in the slope angle threshold result from differences in the colonizing capacity of plants which is controlled by water availability. Long‐distance dispersal and mucilage production were preferably associated with the pool of colonizing species. These results are discussed in the perspective of a more efficient ecological restoration of degraded semi‐arid ecosystems where soil erosion acts as an ecological filter for plant establishment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Past variations in climate and tectonics have led to spatially and temporally varying erosion rates across many landscapes. In this contribution I examine methods for detecting and quantifying the nature and timing of transience in eroding landscapes. At a single location, cosmogenic nuclides can detect the instantaneous removal of material or acceleration of erosion rates over millennial timescales using paired nuclides. Detection is possible only if one of the nuclides has a significantly shorter half‐life than the other. Currently, the only practical way of doing this is to use cosmogenic in situ carbon‐14 (14C) alongside a longer lived nuclide, such as beryllium‐10 (10Be). Hillslope information can complement or be used in lieu of cosmogenic information: in soil mantled landscapes, increased erosion rates can be detected for millennia after the increase by comparing relief and ridgetop curvature. This technique will work as long as the final erosion rate is greater than twice the initial rate. On a landscape scale, transience may be detected based upon disequilibria in channel profiles or ridgetops, but transience can be sensitive to the nature of transient forcing. Where forcing is periodic, landscapes display differing behavior if forcing is driven by changes in base level lowering rates versus changes in the efficiency of either channel or hillslope erosion (e.g. driven by climate change). Oscillations in base level lowering lead to basin averaged erosion rates that reflect a long term average erosion rate despite strong spatial heterogeneity in local erosion rates. This averaging is reflected in 10Be concentrations in stream sediments. Changes in hillslope sediment transport coefficients can lead to large fluctuations in basin averaged erosion rates, which again are reflected in 10Be concentrations. The variability of erosion rates in landscapes where both the sediment transport and channel erodibility coefficients vary is dominated by changes to the hillslope transport coefficient. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A general trend of decreasing soil loss rates with increasing vegetation cover fraction is widely accepted. Field observations and experimental work, however, show that the form of the cover‐erosion function can vary considerably, in particular for low cover conditions that prevail on arid and semiarid hillslopes. In this paper the structured spatial distribution of the vegetation cover and associated soil attributes is proposed as one of the possible causes of variation in cover–erosion relationships, in particular in dryland environments where patchy vegetation covers are common. A simulation approach was used to test the hypothesis that hillslope discharge and soil loss could be affected by variation in the spatial correlation structure of coupled vegetation cover and soil patterns alone. The Limburg Soil Erosion Model (LISEM) was parameterized and verified for a small catchment with discontinuous vegetation cover at Rambla Honda, SE Spain. Using the same parameter sets LISEM was subsequently used to simulate water and sediment fluxes on 1 ha hypothetical hillslopes with simulated spatial distributions of vegetation and soil parameters. Storms of constant rainfall intensity in the range of 30–70 mm h?1 and 10–30 min duration were applied. To quantify the effect of the spatial correlation structure of the vegetation and soil patterns, predicted discharge and soil loss rates from hillslopes with spatially structured distributions of vegetation and soil parameters were compared with those from hillslopes with spatially uniform distributions. The results showed that the spatial organization of bare and vegetated surfaces alone can have a substantial impact on predicted storm discharge and erosion. In general, water and sediment yields from hillslopes with spatially structured distributions of vegetation and soil parameters were greater than from identical hillslopes with spatially uniform distributions. Within a storm the effect of spatially structured vegetation and soil patterns was observed to be highly dynamic, and to depend on rainfall intensity and slope gradient. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
We investigated the role of different hillslope units with different topographic characteristics on runoff generation processes based on field observations at two types of hillslopes (0·1 ha): a valley‐head (a convergent hillslope) and a side slope (a planar hillslope), as well as at three small catchments having two types of slopes with different drainage areas ranging from 1·9 to 49·7 ha in the Tanakami Mountains, central Japan. We found that the contribution of the hillslope unit type to small catchment runoff varied with the magnitude of rainfall. When the total amount of rainfall for a single storm event was < 35 mm, runoff in the small catchment was predominantly generated from the side slope. As the amount of rainfall increased (>35 mm), the valley‐head also began to contribute to the catchment runoff, adding to runoff from the side slope. Although the direct runoff from the valley‐head was greater than that from the side slope, the contribution from the side slope was quantitatively greater than that from the valley‐head due to the proportionally larger area occupied by the side slope in the small catchment. The storm runoff responses of the small catchments reflected the change in the runoff components of each hillslope unit as the amount of rainfall increased and rainfall patterns changed. However, similar runoff responses were found for the small catchments with different areas. The similarity of the runoff responses is attributable to overlay effects of different hillslope units and the similar composition ratios of the valley‐head and side slope in the catchments. This study suggests that the relative roles of the valley‐head and side slope are important in runoff generation and solute transport as the catchment size increases from a hillslope/headwater to a small catchment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Many numerical landform evolution models assume that soil erosion by flowing water is either purely detachment‐limited (i.e. erosion rate is related to the shear stress, power, or velocity of the flow) or purely transport‐limited (i.e. erosion/deposition rate is related to the divergence of shear stress, power, or velocity). This paper reviews available data on the relative importance of detachment‐limited versus transport‐limited erosion by flowing water on soil‐mantled hillslopes and low‐order valleys. Field measurements indicate that fluvial and slope‐wash modification of soil‐mantled landscapes is best represented by a combination of transport‐limited and detachment‐limited conditions with the relative importance of each approximately equal to the ratio of sand and rock fragments to silt and clay in the eroding soil. Available data also indicate that detachment/entrainment thresholds are highly variable in space and time in many landscapes, with local threshold values dependent on vegetation cover, rock‐fragment armoring, surface roughness, soil texture and cohesion. This heterogeneity is significant for determining the form of the fluvial/slope‐wash erosion or transport law because spatial and/or temporal variations in detachment/entrainment thresholds can effectively increase the nonlinearity of the relationship between sediment transport and stream power. Results from landform evolution modeling also suggest that, aside from the presence of distributary channel networks and autogenic cut‐and‐fill cycles in non‐steady‐state transport‐limited landscapes, it is difficult to infer the relative importance of transport‐limited versus detachment‐limited conditions using topography alone. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Erosion rates and processes define how mountainous landscapes evolve. This study determines the range of erosion rates in a semi‐arid landscape over decadal time spans and defines the dominant processes controlling variability in erosion rates. The varying topography and climatic regimes of the Xiying Basin (Qilian Shan Mountains, China) enables us to examine the relative roles of sheet wash versus rainsplash and the influence of vegetation on soil erosion and deposition. Soil erosion rates since 1954 were determined using 137Cs along 21 transects at four sites with varying gradient, rainfall, and vegetation cover. The mean 137Cs derived soil erosion rate ~0.42 mm/a was consistent with the catchment level erosion rate derived from total sediment yield for a 44 year record. However, there is considerable variability in 137Cs erosion rates both between transects and along transects, perhaps reflecting variation not only in the effectiveness of individual processes but also in their relative roles. We compare the 137Cs‐derived erosion rates with 1‐D models for sediment flux that incorporate sheet wash and rainsplash processes, testing them over a previously untested 60 year timescale. The variability in 137Cs erosion rates along transects is best replicated by sheet wash dominated simulations, suggesting that this is the dominant erosion process in this semi‐arid landscape. The functional form of the sheetwash model can also explain our observations that 137Cs erosion rates decrease with upslope length (i.e. distance down slope) while its variability increases. However, sparsely vegetated sites, located in slightly drier locations, have higher erosion rates, and are not as accurately modeled as densely vegetated sites, suggesting that patchiness of vegetation introduces fine scale variability in erosion rates on these slopes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
While it is well recognized that vegetation can affect erosion, sediment yield and, over longer timescales, landform evolution, the nature of this interaction and how it should be modeled is not obvious and may depend on the study site. In order to develop quantitative insight into the magnitude and nature of the influence of vegetation on catchment erosion, we build a landscape evolution model to simulate erosion in badlands, then calibrate and evaluate it against sediment yield data for two catchments with contrasting vegetation cover. The model couples hillslope gravitational transport and stream alluvium transport. Results indicate that hillslope transport processes depend strongly on the vegetation cover, whereas stream transport processes do not seem to be affected by the presence of vegetation. The model performance in prediction is found to be higher for the denuded catchment than for the reforested one. Moreover, we find that vegetation acts on erosion mostly by reducing soil erodibility rather than by reducing surface runoff. Finally, the methodology we propose can be a useful tool to evaluate the efficiency of previous revegetation operations and to provide guidance for future restoration work. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
In meandering rivers cut into bedrock, erosion across a channel cross‐section can be strongly asymmetric. At a meander apex, deep undercutting of the outer bank can result in the formation of a hanging cliff (which may drive hillslope failure), whereas the inner bank adjoins a slip‐off slope that connects to the hillslope itself. Here we propose a physically‐based model for predicting channel planform migration and incision, point bar and slip‐off slope formation, bedrock abrasion, the spatial distribution of alluvial cover, and adaptation of channel width in a mixed bedrock‐alluvial channel. We simplify the analysis by considering a numerical model of steady, uniform bend flow satisfying cyclic boundary conditions. Thus in our analysis, ‘sediment supply’, i.e. the total volume of alluvium in the system, is conserved. In our numerical simulations, the migration rate of the outer bank is a specified parameter. Our simulations demonstrate the existence of an approximate state of dynamic equilibrium corresponding to a near‐solution of permanent form in which a bend of constant curvature, width, cross‐sectional shape and alluvial cover distribution migrates diagonally downward at constant speed, leaving a bedrock equivalent of a point bar on the inside of the bend. Channel width is set internally by the processes of migration and incision. We find that equilibrium width increases with increasing sediment supply, but is insensitive to outer bank migration rate. The slope of the bedrock point bar varies inversely with both outer bank migration rate and sediment supply. Although the migration rate of the outer bank is externally imposed here, we discuss a model modification that would allow lateral side‐wall abrasion to be treated in a manner similar to the process of bedrock incision. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号