首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Sea stacks are common and striking coastal landforms, but few details are known about how, how quickly, and under what conditions they form. We present numerical and analytical models of sea stack formation due to preferential erosion along a pre‐existing headland to address these basic questions. On sediment‐rich rocky coasts, as sea cliffs erode and retreat, they produce beach sediment that is distributed by alongshore sediment transport and controls future sea cliff retreat rates. Depending on their width, beaches can encourage or discourage sea cliff erosion by acting either as an abrasive tool or a protective cover that dissipates wave energy seaward of the cliff. Along the flanks of rocky headlands where pocket beaches are often curved and narrow due to wave field variability, abrasion can accelerate alongshore‐directed sea cliff erosion. Eventually, abrasion‐induced preferential erosion can cut a channel through a headland, separating it from the mainland to become a sea stack. Under a symmetrical wave climate (i.e. equal influence of waves approaching the coastline from the right and from the left), numerical and analytical model results suggest that sea stack formation time and plan‐view size are proportional to preferential erosion intensity (caused by, for example, abrasion and/or local rock weakness from joints, faults, or fractures) and initial headland aspect ratio, and that sea stack formation is discouraged when the sediment input from sea cliff retreat is too high (i.e. sea cliffs retreat quickly or are sand‐rich). When initial headland aspect ratio is too small, and the headland is ‘rounded’ (much wider in the alongshore direction at its base than at its seaward apex), the headland is less conducive to sea stack formation. On top of these geomorphic and morphologic controls, a highly asymmetrical wave climate decreases sea stack size and discourages stack formation through rock–sediment interactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Montjoly is a headland‐bound embayed sandy beach in Cayenne, French Guiana, that shows long‐term plan shape equilibrium in spite of periodic changes in accretion and erosion that alternately affect either end of the beach. These changes are caused by mud banks that move alongshore from the Amazon. The mechanisms involved in changes in the plan shape of the beach in response to the passage of one of these mud banks were monitored between 1997 and 2000 from airborne video imagery and field work. The beach longshore drift to the northwest, driven by the incident easterly to northeasterly swell usually affecting this coast, became temporarily reversed as the mud bank, migrating from east to west, initially sheltered the southeastern end of the beach. The difference in exposure to waves engendered a negative wave height gradient alongshore towards the southeast, resulting in the setting up of a cell circulation and counter‐active longshore drift from the exposed northwestern sector to the southeast. Sand eroded from the exposed sector accumulated first in the southeastern, and then the central sectors of the beach. The effect of increasing beach sheltering by the mudbank moving west is highlighted on the videographs by an ‘arrested’ pattern of beach shoreline development. The videographs show hardly any changes in beach plan shape since January 1999, due to sheltering of the beach from wave attack by the mud bank. It is expected that the eroded sector will recover in the future as the mud bank passes, leading to re‐establishment of the northwesterly sand drift. This temporally phased bi‐directional drift within the confines of the bounding headlands results in a rare example of mud‐bank‐induced beach rotation, and probably explains the long‐term equilibrium plan shape of Montjoly beach. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Point of the Mountain spit and Fingerpoint spit are two of the largest geomorphic features of Pleistocene Lake Bonneville of the western Great Basin, USA. The spits and their associated shorelines show distinctly different geomorphic expression and genesis; this is a function of their positions within the lake and the dynamics of the waves and storms that formed them. Mapping of geomorphic features, geometry of erosional features, and detailed lithologic analysis of shoreline deposits are used to determine dominant modes of sediment erosion and deposition. The Point of the Mountain spit, located in the eastern portion of the basin, was formed as a result of highly fractured bedrock in a salient of the Wasatch Front being exposed to wave trains that approached from the north‐northwest causing north‐to‐south longshore sediment transport. Shoreline development and sediment transport on the southern portion of the spit were minimal. The Fingerpoint spit, located on an island in the northwest portion of the basin, was formed by bidirectional longshore sediment transport as the result of waves that approached from both the north‐northeast and the south‐southwest. Spit development is a function of surface wave energy and direction which in turn is the integrated result of wind direction, wind intensity, and fetch. Wave transport direction determined from ?eld measurements at Point of the Mountain spit corresponds very well to the direction of maximum fetch (c. 200 km). For the Fingerpoint spit, the hypothesized wave transport direction from the south corresponds with the direction of maximum fetch (c. 350 km). However, wave energy transport from the north had limited fetch (c. 100 km), implying that wind intensity from the north was relatively large. The geometry of the two large Bonneville spits suggests the predominant wind direction from storms during the Pleistocene was from the north and points the way for future studies that can aid in further understanding the nature of Pleistocene wind ?elds in the Great Basin. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Sand spits with distal hooks have been well documented from coasts with low to moderate tidal ranges, unlike high tidal-range environments. Datasets from 15 LiDAR and 3 UAV surveys between 2009 and 2019 on the Agon spit in Normandy (France), a setting with one of the largest tidal ranges in the world (mean spring tidal range: 11 m), combined with in-situ hydrodynamic records between 2013 and 2017, highlight a three-stage pattern of spit hook evolution. Stage 1 (2009–2013) commenced with the onshore migration and attachment of a swash bar, followed by persistent spit accretion updrift of the bar and erosion downdrift because of the slow speed of bar migration in this large tidal-range environment. In stage 2 (2013–2016), three overwash events and a 220 m-wide breach culminating in the total destruction of the spit during winter 2015–2016 involved the landward mobilization of thousands of cubic metres of sand. These events occurred during short durations (a few hours) when spring high tides coincided with relatively energetic waves, underscoring the importance of storms in rapid spit morphological change. Strong spring tidal currents maintained the breach. Stage 3 (2016–2019) has involved new hook construction through welding of a swash bar and spit longshore extension, highlighting the resilience of the spit over the 10-year period, and involving a positive sediment balance of 244 000 m3. The three stages bring out, by virtue of the temporal density of LiDAR and UAV data used, a high detail of spit evolution relative to earlier studies in this macrotidal setting. The large tidal range strongly modulates the role of waves and wave-generated longshore currents, the main process drivers of spit evolution, by favouring long periods of inertia in the course of the spring–neap tidal cycle, but also brief episodes of significant morphological change when storm waves coincide with spring high tides. © 2020 John Wiley & Sons, Ltd.  相似文献   

5.
Intermittently open/closed estuaries (IOCE) are a dynamic form of estuary characterised by periodic entrance closure to the ocean. Entrance closure is a function of the relative balance between on and offshore sediment transport with closures occurring during periods of low fluvial discharge whereby the estuary ebb‐tidal prism is reduced. Although the broad scale processes of entrance closure are becoming better understood, there remains limited knowledge on channel morphodynamics during an individual closure event. In this study, the entrance dynamics of three IOCE on the coast of Victoria, Australia, were monitored over a daily timescale following both artificial and natural openings. The influence of changing marine and fluvial conditions on the relative sedimentation rate within the entrance channel was examined. IOCE in Victoria showed two distinct modes of entrance closure: (a) lateral accretion, whereby the estuary gradually closes by longshore drift‐driven spit growth during low river flows; and (b) vertical accretion, where the channel rapidly aggrades under high (> 2 m), near‐normal waves. During storms, when fluvial discharge and wave heights simultaneously increase, large swells will not always close the mouth due to an increase in the ebb‐tidal prism. The estuary water depth and the maximum channel dimensions following opening were not proportional to the opening duration, with this being a function of the wave and fluvial conditions occurring following lagoon drainage. Based on the findings of this work, implementing a successful artificial entrance opening is dependent on reduced onshore sedimentation rates which occur when wave energy is low (< 2 m Hs) relative to river flow. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
A 2-year set of profile data from Ovari to Kanyakumari Beach,SE India has been analysed by using empirical orthogonal function(EOF) techniques to identify characteristic patterns of temporal and spatial variation in the sediment volume of the beaches.The results show that variation in the sediment volume of the beach is determined by interaction between the biennial and seasonal exchanges.EOF analysis the pattern of alongshore sediment exchange along the study area.The method facilitated separation of onshore-offshore and alongshore modes of sediment transfer and identification of the patterns of alongshore sediment exchange.The eigenfunction modes confirm the dominance of biennial,annual,and biannual sediment transfers occurring on study area.The sediment movement along the shoreline of study area is mainly governed by the forces associated with the incoming waves and the availability of sediments within the area.The present investigation has been made as an attempt to appreciate the sediment movement in relation to wave activity along the coast.The longshore sediment transport is intensive in the northerly direction as compared to southerly direction.The normal condition is for and to be moved annually or more frequently in the shallows and on the beach.Waves and wave-driven currents cause longshore drift of sand along the beach and offshore.  相似文献   

7.
Analyses of shoreline and bathymetry change near Calais, northern coast of France, showed that shoreline evolution during the 20th century was strongly related with shoreface and nearshore bathymetry variations. Coastal erosion generally corresponds to areas of nearshore seabed lowering while shoreline progradation is essentially associated with areas of seafloor aggradation, notably east of Calais where an extensive sand flat experienced seaward shoreline displacement up to more than 300 m between 1949 and 2000. Mapping of bathymetry changes since 1911 revealed that significant variation in nearshore morphology was caused by the onshore and alongshore migration of a prominent tidal sand bank that eventually welded to the shore. Comparison of bathymetry data showed that the volume of the bank increased by about 10×107 m3 during the 20th century, indicating that the bank was acting as a sediment sink for some of the sand transiting alongshore in the coastal zone. Several lines of evidence show that the bank also represented a major sediment source for the prograding tidal flat, supplying significant amounts of sand to the accreting upper beach. Simulation of wave propagation using the SWAN wave model (Booij et al., 1999) suggests that the onshore movement of the sand bank resulted in a decrease of wave energy in the nearshore zone, leading to more dissipative conditions. Such conditions would have increased nearshore sediment supply, favoring aeolian dune development on the upper beach and shoreline progradation. Our results suggest that the onshore migration of nearshore sand banks may represent one of the most important, and possibly the primary mechanism responsible for supplying marine sand to beaches and coastal dunes in this macrotidal coastal environment.  相似文献   

8.
Climate warming in the Arctic directly causes two opposite changes in Arctic coastal systems: increased melt‐water discharge through rivers induces extra influx of sediments and extended open water season increases wave impact which reworks and erodes the shores. A shoreline change analysis along the southern coast of Disko Island in western Greenland was conducted with aerial photographs and satellite images from 1964, 1985, and 2012. The decadal morphologic evolution of this 85 km section showed that large parts of the coast had undergone very limited changes. However, two deltas were highly dynamic and popped up as hotspots. The Tuapaat delta and Skansen delta showed large progradation rates (1.5 and 7 m/yr) and migration of the adjacent barriers and spits. The dynamic behavior at the delta mouths was mainly caused by classic delta channel lobe switching at one delta (Tuapaat), and by a breach of the fringing spit at the other delta (Skansen). The longshore and cross‐shore transports are responsible for reworking the sediment with a result of migrating delta mouths and adjacent subaqueous mouth bars. Seaward progradation of the deltas is limited due to the steep nature of the bathymetry in Disko Bay. Finally, a schematic conceptual overview of processes and associated morphological responses for deltas in Arctic environments is presented, including the climate drivers affecting delta evolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Spatial patterns of multidecadal shoreline changes in two microtidal, low-energetic embayments of southern Zealand, Denmark, were investigated by using the directional distribution of wave energy fluxes. The sites include a barrier island system attached to moraine bluffs, and a recurved spit adjacent to a cliff coast. The barrier island system is characterized by cross-shore translation and by an alignment of the barrier alongshore alternating directions of barrier-spit progradation in a bidirectional wave field. The recurved spit adjacent to the cliff coast experienced shoreline rotation through proximal erosion and distal lateral accretion in a unidirectional wave climate. The multidecadal shoreline changes were coupled to a slope-based morphological coastal classification. All erosive shores occurred within a narrow range of onshore and offshore coastal slopes. The alongshore variability of directional distributions of wave energy fluxes furthermore outlined potential sediment sources and sinks for the evolution of the barrier island system and for the evolution of the recurved spit.  相似文献   

10.
Rivers display temporal dependence in suspended sediment–water discharge relationships. Although most work has focused on multi‐decadal trends, river sediment behavior often displays sub‐decadal scale fluctuations that have received little attention. The objectives of this study were to identify inter‐annual to decadal scale fluctuations in the suspended sediment–discharge relationship of a dry‐summer subtropical river, infer the mechanisms behind these fluctuations, and examine the role of El Niño Southern Oscillation climate cycles. The Salinas River (California) is a moderate sized (11 000 km2), coastal dry‐summer subtropical catchment with a mean discharge (Qmean) of 11.6 m3 s?1. This watershed is located at the northern most extent of the Pacific coastal North America region that experiences increased storm frequency during El Niño years. Event to inter‐annual scale suspended sediment behavior in this system was known to be influenced by antecedent hydrologic conditions, whereby previous hydrologic activity regulates the suspended sediment concentration–water discharge relationship. Fine and sand suspended sediment in the lower Salinas River exhibited persistent, decadal scale periods of positive and negative discharge corrected concentrations. The decadal scale variability in suspended sediment behavior was influenced by inter‐annual to decadal scale fluctuations in hydrologic characteristics, including: elapsed time since small (~0.1 × Qmean), and moderate (~10 × Qmean) threshold discharge values, the number of preceding days that low/no flow occurred, and annual water yield. El Niño climatic activity was found to have little effect on decadal‐scale fluctuations in the fine suspended sediment–discharge relationship due to low or no effect on the frequency of moderate to low discharge magnitudes, annual precipitation, and water yield. However, sand concentrations generally increased in El Niño years due to the increased frequency of moderate to high magnitude discharge events, which generally increase sand supply. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100 cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the “small-scale” or “narrow” dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently “bent over” toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1 h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1 km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project.  相似文献   

12.
Stochastic erosion of composite banks in alluvial river bends   总被引:2,自引:0,他引:2       下载免费PDF全文
The erosion of composite river banks is a complex process involving a number of factors including fluvial erosion, seepage erosion, and cantilever mass failure. To predict the rate of bank erosion with these complexities, a stochastic bank erosion model is suitable to define the probability distribution of the controlling variables. In this study, a bank erosion model in a river bend is developed by coupling several bank erosion processes with an existing hydrodynamic and morphological model. The soil erodibility of cohesive bank layers was measured using a submerged jet test apparatus. Seasonal bank erosion rates for four consecutive years at a bend in the Brahmaputra River, India, were measured by repeated bankline surveys. The ability of the model to predict erosion was evaluated in the river bend that displayed active bank erosion. In this study, different monsoon conditions and the distribution functions of two variables were considered in estimating the stochastic bank erosion rate: the probability of the soil erodibility and stochastic stage hydrographs for the nth return period river stage. Additionally, the influences of the deflection angle of the streamflow, longitudinal slope of river channel, and bed material size on bank erosion rate were also investigated. The obtained stochastic erosion predictions were compared with the observed distribution of the annual‐average bank erosion rate of 45 river bends in the Brahmaputra River. The developed model appropriately predicted the short‐term morphological dynamics of sand‐bed river bends with composite banks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Nearshore regions act as an interface between the terrestrial environment and deeper waters. As such, they play important roles in the dispersal of fluvial sediment and the transport of sand to and from the shoreline. This study focused on the nearshore of Poverty Bay, New Zealand, and the processes controlling the dispersal of sediment from the main source, the Waipaoa River. Hydrodynamics and sediment-transport in water shallower than 15 m were observed from April through mid-September 2006. This deployment afforded observations during 3-4 periods of elevated river discharge and 5 dry storms.Similar wind, river discharge, wave, current, and turbidity patterns were characterized during three of the wet storms. At the beginning of each event, winds blew shoreward, increasing wave heights to 2-3 m within Poverty Bay. As the cyclonic storms moved through the system the winds reversed direction and became seaward, reducing the local wave height and orbital velocity while river discharge remained elevated. At these times, high river discharge and relatively small waves enabled fluvially derived suspended sediment to deposit in shallow water. Altimetry measurements indicated that at least 7 cm was deposited at a 15 m deep site during a single discharge event. Turbidity and seabed observations showed this deposition to be removed, however, as large swell waves from the Southern Ocean triggered resuspension of the material within three weeks of deposition. Consequently, two periods of dispersal were associated with each discharge pulse, one coinciding with fluvial delivery, and a second driven by wave resuspension a few weeks later. These observations of nearfield sediment deposition contradict current hypotheses of very limited sediment deposition in shallow water offshore of small mountainous rivers when floods and high-energy, large wave and fast current, oceanic conditions coincide.Consistently shoreward near-bed currents, observed along the 10 m isobath of Poverty Bay, were attributed to a combination of estuarine circulation, Stokes drift, and wind driven upwelling. Velocities measured at the 15 m isobath, however, were directed more alongshore and diverged from those at the 10 m isobath. The divergence in the currents observed at the 10 and 15 m locations seemed to facilitate segregation of coarse and fine sediment, with sand transported near-bed toward the beach, while suspended silts and clays were exported to deeper water.  相似文献   

14.
This study provides fundamental examination of mass fluvial erosion along a stream bank by identifying event timing, quantifying retreat lengths, and providing ranges of incipient shear stress for hydraulically driven erosion. Mass fluvial erosion is defined here as the detachment of thin soil layers or conglomerates from the bank face under higher hydraulic shear stresses relative to surface fluvial erosion, or the entrainment of individual grains or aggregates under lower hydraulic shear stresses. We explore the relationship between the two regimes in a representative, US Midwestern stream with semi‐cohesive bank soils, namely Clear Creek, IA. Photo‐Electronic Erosion Pins (PEEPs) provide, for the first time, in situ measurements of mass fluvial erosion retreat lengths during a season. The PEEPs were installed at identical locations where surface fluvial erosion measurements exist for identifying the transition point between the two regimes. This transition is postulated to occur when the applied shear stress surpasses a second threshold, namely the critical shear stress for mass fluvial erosion. We hypothesize that the regimes are intricately related and surface fluvial erosion can facilitate mass fluvial erosion. Selective entrainment of unbound/exposed, mostly silt‐sized particles at low shear stresses over sand‐sized sediment can armor the bank surface, limiting the removal of the underlying soil. The armoring here is enhanced by cementation from the presence of optimal levels of sand and clay. Select studies show that fluvial erosion strength can increase several‐fold when appropriate amounts of sand and clay are mixed and cement together. Hence, soil layers or conglomerates are entrained with higher flows. The critical shear stress for mass fluvial erosion was found to be an order of magnitude higher than that of surface fluvial erosion, and proceeded with higher (approximately 2–4 times) erodibility. The results were well represented by a mechanistic detachment model that captures the two regimes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
There is growing concern that rapidly changing climate in high latitudes may generate significant geomorphological changes that could mobilise floodplain sediments and carbon; however detailed investigations into the bank erosion process regimes of high latitude rivers remain lacking. Here we employ a combination of thermal and RGB colour time-lapse photos in concert with water level, flow characteristics, bank sediment moisture and temperature, and topographical data to analyse river bank dynamics during the open-channel flow period (the period from the rise of the spring snowmelt flood until the autumn low flow period) for a subarctic river in northern Finland (Pulmanki River). We show how variations of bank sediment temperature and moisture affect bank erosion rates and locations, how bank collapses relate to fluvial processes, and elucidate the seasonal variations and interlinkages between the different driving processes. We find that areas with high levels of groundwater content and loose sand layers were the most prone areas for bank erosion. Groundwater seeping caused continuous erosion throughout the study period, whereas erosion by flowing river water occurred during the peak of snowmelt flood. However, erosion also occurred during the falling phase of the spring flood, mainly due to mass failures. The rising phase of the spring flood therefore did not affect the river bank as much as its peak or receding phases. This is explained because the bank is resistant to erosion due to the prevalence of still frozen and drier sediments at the beginning of the spring flood. Overall, most bank erosion and deposition occurrences were observed during the low flow period after the spring flood. This highlights that spring melt, while often delivering the highest discharges, may not be the main driver of bank erosion in sub-arctic meandering rivers. © 2019 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

The steady state circulation of a constant barotropic current around a coastal headland, bay, or combination of the two, located on a flat bottom, mid-latitude β-plane is considered. The maximum displacement of the coastal features from the mean straight coastline is assumed to be small compared to the longshore variation of the coastline. Under this slowly varying coastline approximation, a linearised vorticity equation is derived for the perturbation stream function. An analytical solution for the perturbation stream function is obtained using a Green's function technique. For a specified coastline the effects of coastal orientation, linear friction and the strength of the mean flow are investigated. The model predicts that the flow field will adopt the pattern of the coastline. The question of whether a coastal feature is likely to induce linear flow dynamics within the coastal boundary layer is also addressed. In the case when a single Gaussian headland or bay violates the slowly varying longshore condition the model predicts that flow stagnation will not occur. However for multiple headlands and bays, flow stagnation is possible when the slowly varying longshore condition is sufficiently violated.

Cape Mendocino and Point Conception along the California coast can be modelled using either a single Gaussian headland coastline or a multiple headland and bay coastline. In either case the model coastline does not vary slowly alongshore and nonlinear flow in the coastal region is likely. A permanent eddy to the south of Point Conception is likely to testify to the non-linear flow regime induced by the headland.  相似文献   

17.
The stability of a river bank depends on the balance of forces, motive and resistive, associated with the most critical mechanism of failure. Many mechanisms are possible and the likelihood of failure occurring by any particular one depends on the size, geometry and structure of the bank, the engineering properties of the bank material, the hydraulics of flow in the adjacent channel and climatic conditions. Rivers flowing through alluvial deposits often have a composite structure of cohesionless sand and gravel overlain by cohesive silt/clay. Bank erosion occurs by fluvial entrainment of material from the lower, cohesionless bank at a much higher rate than material from the upper, cohesive bank. This leads to undermining that produces cantilevers of cohesive material. Upper bank retreat takes place predominantly by the failure of these cantilevers. Three mechanisms of failure have been identified: shear, beam and tensile failure. The stability of a cantilever may be analysed using static equilibrium and beam theory, and dimensionless charts for cantilever stability constructed. Application of the charts requires only a few simple measurements of cantilever geometry and soil properties. In this analysis the effects of cracks and fissures in the soil must be taken into account. These cracks seriously weaken the soil and can invalidate a stability analysis by affecting the shape of the failure surface. Following mechanical failure, blocks of soil must be removed from the basal area by fluvial entrainment if rapid undermining and cantilever generation are to continue. Hence, the rate of bank retreat is fluvially controlled, even though the mechanism of failure of the upper bank is not directly fluvial in nature. This cycle of bank erosion: undermining, cantilever failure and fluvial scour of the toe, operates over several flood events and has important implications for river engineering, channel changes, and the movement of sediment through fluvial systems.  相似文献   

18.
Farewell Spit is a 25 km long barrier spit that marks the end of a littoral drift system, almost 1000 km in length that runs along South Island, New Zealand. The spit is composed of barchan dunes over 20 m high, sand sheets over 1 km wide and vegetated linear dunes. Analysis of aerial photography indicates a rapid colonization of the spit by vegetation which has expanded in area by 75% since 1950. Vegetation colonization preferentially occurs on the southern side of the spit, with its northern margin characterized by barchan dunes which migrate at rates of up to 64 m/yr. Sand sourced from longshore drift appears to be the primary source of beach sediment, which is then transported into the dune field by the persistent westerly winds of the Roaring 40s. While there has been significant dune roll‐over on the surface of the spit, its overall area has remained much the same for the past 54 years. Occasional cyclone events cause erosion, but this is balanced by aeolian sediment transport. It would appear that extension of the subaerial portion of the spit is related to the development of shells banks at its downdrift end which are periodically welded to the main spit by dune extension. Farewell Spit therefore provides an ideal example of a barrier environment where longshore sediment supply and aeolian transport dominates geomorphic evolution. This differentiates the study site from other barrier environments where overwash or tidal inlet development often characterizes recent landform evolution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
River mouths along the Israeli Mediterranean coast are characterized by a dynamic morphology as their channels migrate hundreds of meters along the coast. This study examines the dynamic morphology of seven such river mouths. It offers a conceptual model aimed at generalizing and describing their spatial and temporal morphological patterns, and the environmental factors influencing them. The study methodology comprised a detailed monitoring and mapping by GIS techniques, with quantitative data derived from historic aerial photographs, river discharge records, wave measurements, and a digital elevation model. These data were incorporated into a homogenous database and subsequently applied in the investigation of the morphological patterns of these mouths, and the analysis of their influencing factors. River mouths in this study occur in two distinctive topographic settings. In one setting (here termed barrier topography) the river mouth is deflected alongshore by a sandy barrier. In the second setting (termed funnel topography) the river mouth is confined to a funnel‐shaped topographic depression perpendicular to the coast. The behavior of river mouths in these two settings is quite distinctive. Barrier mouths usually migrate over larger distances, as they tend to deflect along a sand barrier and establish semi‐permanent channels along the dune toe. This enables the wide range migration of semi‐permanent channels over decades. Funnel topography mouths deflect over shorter distances and they rapidly migrate within the funnel boundaries. This study concludes that the topographic setting of the beach, a constant element in the temporal scale of this study, is the primary influencing factor on the morphology of the mouths studied. The influence of other factors on the morphology of these mouths differs in space and time and depends on the topographic settings.  相似文献   

20.
Linear sandbanks appear in the lee of coastal headlands where the hydrodynamics are dominated by strong tidal currents and the seabed is characterized by an abundance of sands. They may develop as symmetrical sandbanks on either sides of the headland or as an unique banner bank. The present study numerically investigates the combined effects of waves and tide on the initial development of headland-associated sandbanks. A morphological model based on the coupling of the wave propagation module SWAN (Simulating WAves Nearshore) with the three-dimensional circulation module COHERENS (COupled Hydrodynamical-Ecological model for REgioNal and Shelf seas) is applied to an idealized Gaussian shaped headland for waves conditions varying in heights and directions at the offshore boundary. The coupling considers the effects of the interactions between the wave and current bottom boundary layers, namely the enhanced levels of turbulence near the bottom and the increase of the total bottom shear stress. Waves substantially modify the initial development of sandbanks formed by suspension narrowing their width and reorienting them along the side of the headland. They weakly impact the morphogenesis of sandbanks by bedload favoring on a short-time scale the growth of symmetric circular-shaped features and a central depositional spit prolonging the headland tip. Waves of transverse directions toward the tip of the headland contribute to the initiation by suspension of a well-developed feature in the headland side of low energy limiting the seabed evolution in the exposed area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号