首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
The recently deglaciated environments in maritime permafrost regions are usually affected by very active paraglacial processes. Elephant Point is an ice‐free area of 1.16 km2 located in the SW of Livingston island (South Shetland Islands, Antarctica). Between 1956–2010 the retreat of the ice cap covering most part of this island has exposed 17.3% of the land surface in this peninsula. Two geomorphological units were identified in this new ice‐free area: a moraine extending from the western to the eastern coastlines and a relatively flat proglacial surface. The glacier in 1956 sat in contact with the northern slope of the moraine, but its accelerated retreat ‐ in parallel to the warming trend recorded in the Antarctic Peninsula ‐ left these areas free of glacier ice. Subsequently, the postglacial evolution was controlled by the relaxation phase typical of paraglacial systems. The typology and intensity of geomorphological processes show a significantly different dynamics between the southern and northern slopes of the moraine. This pattern is related to the different stage of paraglacial adjustment in both slopes. In the southern side, on coarser sediments, pronival ramparts, debris flows and alluvial fans are distributed, with a low to moderate activity of slope processes. In the northern side, mass wasting processes are extremely active on fine‐grained unconsolidated sediments. Ice‐rich permafrost is being degraded by thermokarst processes. Landslides and mudflows transfer large amounts of sediments down‐slope. The surface affected by retrogressive‐thaw slumps in the moraine has been quantified in 24,172 m2, which accounts for 9.6% of its surface. The abundance of kettle‐lakes is also indicative of the degradation of the ground ice. Paraglacial processes are expected to continue in the moraine and proglacial area in the near future, although their intensity and duration will depend on the magnitude and rate of future climate trends in the northern Antarctic Peninsula. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Holocene glaciers have contributed to an abundance of unstable sediments in mountainous environments. In permafrost environments, these sediments can contain ground ice and are subject to rapid geomorphic activity and evolution under condition of a warming climate. To understand the influence of ground ice distribution on this activity since the Little Ice Age (LIA), we have investigated the Pierre Ronde and Rognes proglacial areas, two cirque glacier systems located in the periglacial belt of the Mont Blanc massif. For the first time, electrical resistivity tomography, temperature data loggers and differential global positioning systems (dGPS) are combined with historical documents and glaciological data analysis to produce a complete study of evolution in time and space of these small landsystems since the LIA. This approach allows to explain spatial heterogeneity of current internal structure and dynamics. The studied sites are a complex assemblage of debris‐covered glacier, ice‐rich frozen debris and unfrozen debris. Ground ice distribution is related to former glacier thermal regime, isolating effect of debris cover, water supply to specific zones, and topography. In relation with this internal structure, present dynamics are dominated by rapid ice melt in the debris‐covered upper slopes, slow creep processes in marginal glacigenic rock glaciers, and weak, superficial reworking in deglaciated moraines. Since the LIA, geomorphic activity is mainly spatially restricted within the proglacial areas. Sediment exportation has occurred in a limited part of the former Rognes Glacier and through water pocket outburst flood and debris flows in Pierre Ronde. Both sites contributed little sediment supply to the downslope geomorphic system, rather by episodic events than by constant supply. In that way, during Holocene and even in a paraglacial context as the recent deglaciation, proglacial areas of cirque glaciers act mostly as sediment sinks, when active geomorphic processes are unable to evacuate sediment downslope, especially because of the slope angle weakness. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Geomorphological observations, geoelectrical soundings and photogrammetric measurements of surface movement on the Muragl glacier forefield were used to obtain an integrative analysis of a highly complex glacial and periglacial landform consisting of a push moraine, creeping permafrost and permafrost‐free glacial till in close proximity. Electrical resistivity tomography is considered as an important multifunctional geophysical method for research in periglacial permafrost related environments. Joint application with measurements of surface displacements offers a promising tool for investigating periglacial landforms related to ice‐rich permafrost for a more comprehensive characterization of permafrost characteristics and geomorphological interpretation of periglacial morphodynamics. The patchy permafrost distribution pattern described in this paper is determined by several factors, including the sediment characteristics, the snow cover distribution and duration, the aspect and the former glacier distribution and thermal regime. Recent and modern permafrost dynamics within the glacier forefield comprise aggradation, degradation and permafrost creep. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
A sequence of Late Holocene moraines on the foreland of the Mueller Glacier, Southern Alps, New Zealand, forms part of a local moraine‐age database used to establish a regional glacier chronology and subsequently to investigate potential intra‐hemispheric and global climate forcing mechanisms. We present new sedimentological and geomorphological evidence that a set of these moraine ridges, previously considered to represent individual advances, constitutes a single moraine complex (the ‘Mueller Memorial Moraine’) formed by supraglacial transport of a large volume of landslide debris to the glacier terminus. Because a moraine formed in this way is not necessarily associated with an advance triggered by a climate event, we question the palaeoclimatic significance of the Mueller Memorial Moraine, as well as that of other moraines in comparable settings. Our findings suggest that the mode of formation and glacio‐dynamical context of moraines whose ages contribute to existing palaeoclimate reconstructions need to be re‐examined in order to assess the reliability of these reconstructions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The evolution of glaciers and ice patches, as well as the equilibrium‐line altitude (ELA) since the Little Ice Age (LIA) maximum were investigated in the Julian Alps (south‐eastern European Alps) including ice masses that were previously unreported. Twenty‐three permanent firn and ice bodies have been recognized in the 1853 km2 of this alpine sector, covering a total area in 2012 of 0.385 km2, about one‐fifth of the area covered during the LIA (2.350 km2). These features were classified as very small glaciers, glacierets or ice patches, with major contribution to the mass balance from avalanches and wind‐blown snow. Localized snow accumulation is also enhanced in the area due to the irregular karst topography. The ice masses in the region are at the lowest elevations of any glaciers in the Alpine Chain, and are characterized by low dynamics. The ELAs of the two major LIA glaciers (Canin and Triglav) have been established at 2275 ± 10 m and 2486 ± 10 m, respectively, by considering the reconstructed area and digital elevation model (DEM) and using an accumulation area ratio (AAR) of 0.44 ± 0.07, typical of small cirque glaciers. Changes in the ELA and glaciers extension indicate a decoupling from climate. This is most evident in the smallest avalanche‐dominated ice bodies, which are currently controlled mainly by precipitation. The damming effect of moraine ridges and pronival ramparts at the snout of small ice bodies in the Julian Alps represents a further geomorphological control on the evolution of such ice masses, which seem to be resilient to recent climate warming instead of rapidly disappearing as should be expected. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Glacier recession and landform development in a debris‐charged glacial landsystem characterized by an overdeepening is quantified using digital photogrammetry, digital elevation model (DEM) construction and mapping of the Icelandic glacier Kvíárjökull for the period 1945–2003. Melting of ice‐cores is recorded by surface lowering rates of 0·8 m yr–1 (1945–1964), 0·3 m yr–1 (1964–1980), 0·015 m yr–1 (1980–1998) and 0·044 m yr–1 (1998–2003). The distribution/preservation of pushed and stacked ice‐cored moraine complexes are determined by the location of the long‐term glacial drainage network in combination with retreat from the overdeepening, into which glacifluvial sediment is being directed and where debris‐rich ice masses are being reworked and replaced by esker networks produced in englacial meltwater pathways that bypassed the overdeepening and connected to outwash fans prograding over the snout. Recent accelerated retreat of Kvíárjökull, potentially due to increased mass balance sensitivity, has made the snout highly unstable, especially now that the overdeepening is being uncovered and the snout flooded by an expanding pro‐glacial, and partially supraglacial, lake. This case study indicates that thick sequences of debris‐charged basal ice/controlled moraine have a very low preservation potential but ice‐cored moraine complexes can develop into hummocky moraine belts in de‐glaciated terrains because they are related to the process of incremental stagnation, which at Kvíárjökull has involved periodic switches from transport‐dominant to ablation‐dominant conditions. Glacier recession is therefore recorded temporally and spatially by two suites of landforms relating to two phases of landform production which are likely typical for glaciers occupying overdeepenings: an early phase of active, temperate recession recorded by push moraines and lateral moraines and unconfined pro‐glacial meltwater drainage; and a later phase of incremental stagnation and pitted outwash head development initiated by the increasing topographic constraints of the latero‐frontal moraine arc and the increasing importance of the overdeepening as a depo‐centre. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Glacier and ice sheet retreat exposes freshly deglaciated terrain which often contains small‐scale fragile geomorphological features which could provide insight into subglacial or submarginal processes. Subaerial exposure results in potentially rapid landscape modification or even disappearance of the minor‐relief landforms as wind, weather, water and vegetation impact on the newly exposed surface. Ongoing retreat of many ice masses means there is a growing opportunity to obtain high resolution geospatial data from glacier forelands to aid in the understanding of recent subglacial and submarginal processes. Here we used an unmanned aerial vehicle to capture close‐range aerial photography of the foreland of Isfallsglaciären, a small polythermal glacier situated in Swedish Lapland. An orthophoto and a digital elevation model with ~2 cm horizontal resolution were created from this photography using structure from motion software. These geospatial data was used to create a geomorphological map of the foreland, documenting moraines, fans, channels and flutes. The unprecedented resolution of the data enabled us to derive morphological metrics (length, width and relief) of the smallest flutes, which is not possible with other data products normally used for glacial landform metrics mapping. The map and flute metrics compare well with previous studies, highlighting the potential of this technique for rapidly documenting glacier foreland geomorphology at an unprecedented scale and resolution. The vast majority of flutes were found to have an associated stoss‐side boulder, with the remainder having a likely explanation for boulder absence (burial or erosion). Furthermore, the size of this boulder was found to strongly correlate with the width and relief of the lee‐side flute. This is consistent with the lee‐side cavity infill model of flute formation. Whether this model is applicable to all flutes, or multiple mechanisms are required, awaits further study. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

8.
Glacier forefields are landscapes in transition from glacial to non‐glacial conditions; this implies intense geomorphic, hydrological and ecological dynamics with important on‐ and off‐site effects. This special issue collects 13 papers covering recent research in both (sub‐)polar and alpine pro‐glacial environments that focus on (i) pro‐glacial sediment sources, (ii) pro‐glacial rivers, (iii) pro‐glacial lakes, (iv) ground water and ice, and (v) the development of soil and vegetation in its interplay with morphodynamics. Advances in mapping, surveying and geophysical techniques form the basis for research perspectives related to the historical evolution of pro‐glacial areas, the understanding of complex interactions of multiple processes, and the effects of continued glacier recession. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Recession of high‐mountain glaciers in response to climatic change frequently results in the development of moraine‐dammed glacial lakes. Moraine dam failure is often accompanied by the release of large volumes of water and sediment, termed a Glacial Lake Outburst Flood (GLOF). Chukhung Glacier is a small (~3 km2) receding valley glacier in Mt. Everest (Sagarmatha) National Park, Nepal. Unlike many Himalayan glaciers, which possess a thick mantle of supraglacial debris, its surface is relatively clean. The glacier terminus has receded 1.3 km from its maximum Holocene position, and in doing so provided the space for an ice‐contact moraine‐dammed lake to develop. The lake had a maximum volume of 5.5 × 105 m3 and drained as a result of breaching of the terminal moraine. An estimated 1.3 × 105 m3 of material was removed from the terminal moraine during breach development. Numerical dam‐breach modelling, implemented within a Generalised Likelihood Uncertainty Estimation (GLUE) framework, was used to investigate a range of moraine‐dam failure scenarios. Reconstructed outflow peak discharges, including failure via overtopping and piping mechanisms, are in the range 146–2200 m3 s‐1. Results from two‐dimensional hydrodynamic GLOF modelling indicate that maximum local flow depths may have exceeded 9 m, with maximum flow velocities exceeding 20 m s‐1 within 700 m of the breach. The floodwaters mobilised a significant amount of material, sourced mostly from the expanding breach, forming a 300 m long and 100 m wide debris fan originating at the breach exit. moraine‐dam. These results also suggest that inundation of the entire floodplain may have been achieved within ten minutes of initial breach development, suggesting that debris fan development was rapid. We discuss the key glaciological and geomorphological factors that have determined the evolution of a hazardous moraine‐dammed lake complex and the subsequent generation of a GLOF and its geomorphological impact. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

10.
Glaciokarst is a landscape which combines karst features and hydrology as well as inherited glacial features. It is a result of glaciation upon a karst geomorphological system. The relationship between glaciers and karst is rather poorly known and inadequately recognized. This research focuses on three distinct karst areas along the Adriatic coast in the southern Dinaric Alps that were affected by the Quaternary glaciations. An insight into specific glaciokarst processes and surface features was provided through the study of the areas of the Lov?en, Orjen and Vele? Mountains. A glaciokarst geomorphology is in general well preserved due to the prevailing vertically oriented chemical denudation following de‐glaciation and almost the entire absence of other surface processes. Typical glacial erosional features are combined by a variety of depressions which are the result of a karstic drainage of sub‐glacial waters. The majority of glacial deposits occur as extensive lateral‐terminal moraine complexes, which are often dissected by smaller breach‐lobe moraines on the external side of the ridge. Those moraine complexes are likely to be a product of several glacial events, which is supported by complex depositional structures. According to the type of glacial depositional features, the glaciers in the study areas were likely to have characteristics of moraine‐dammed glaciers. Due to vertical drainage ice‐marginal fluvial processes were unable to evacuate sediment. Fluvial transport between glacial and pro‐glacial systems in karst areas is inefficient. Nevertheless, some sediment from the glacier margin is washed away by the pro‐glacial streams, filling the karst depressions and forming piedmont‐type poljes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The multipart Riffeltal rock glacier, located in a tributary valley of the Kaunertal, Tyrol, Austria is investigated to enlarge the knowledge about spatial and temporal development of rock glaciers in and at the margins of pro‐glacial areas and to get a better understanding of glacier–rock glacier interactions. The subject of interest consists of a complex system of two adjacent rock glacier tongues and various superposed lobes with differing ages, origin and root zones, and therefore diverse development. To determine the reasons for their diverging development, the internal structure and permafrost occurrence on and in the surrounding area of the rock glacier were studied by application of geomorphological mapping, geophysical methods and measurement of the basal temperature of the winter snow cover (BTS). Permafrost modelling was performed on the basis of BTS data and land surface parameters derived from a high resolution airborne laser scanning (ALS) digital elevation model (DEM). Additionally, the ALS data were used to measure vertical and horizontal changes of the rock glacier surface between 2006 and 2012. Glacier–rock glacier interactions during and since the Little Ice Age (LIA) are evident for the development of the studied rock glacier. A geomorphic map gives important information about the connection between glacial advance or retreat and permafrost or ground ice occurrence. The combination of all information helps in the analysis of diverse kinematic action of neighbouring rock glacier tongues. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Pro‐glacial landscapes are some of the most active on Earth. Previous studies of pro‐glacial landscape change have often been restricted to considering either sedimentological, geomorphological or topographic parameters in isolation and are often mono‐dimensional. This study utilized field surveys and digital elevation model (DEM) analyses to quantify planform, elevation and volumetric pro‐glacial landscape change at Sólheimajökull in southern Iceland for multiple time periods spanning from 1960 to 2010. As expected, the most intense geomorphological changes persistently occurred in the ice‐proximal area. During 1960 to 1996 the pro‐glacial river was relatively stable. However, after 2001 braiding intensity was higher, channel slope shallower and there was a shift from overall incision to aggradation. Attributing these pro‐glacial river channel changes to the 1999 jökulhlaup is ambiguous because it coincided with a switch from a period of glacier advance to that of glacier retreat. Furthermore, glacier retreat (of ~40 m yr?1) coincided with ice‐marginal lake development and these two factors have both altered the pro‐glacial river channel head elevation. From 2001 to 2010 progressive increase in channel braiding and progressive downstream incision occurred; these together probably reflecting stream power due to increased glacier ablation and reduced sediment supply due to trapping of sediment by the developing ice‐marginal lake. Overall, this study highlights rapid spatiotemporal pro‐glacial landscape reactions to changes in glacial meltwater runoff regimes, glacier terminus position, sediment supply and episodic events such as jökuhlaups. Recognizing the interplay of these controlling factors on pro‐glacial landscapes will be important for understanding the geological record and for landscape stability assessments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper considers the links between structure, sediment transport and sediment delivery at Glacier de St. Sorlin, France. Sediment transported by the glacier is concentrated at flow‐unit boundaries as medial moraines, controlled by the position of bedrock outcrops in the accumulation area. Rockfall entrained within primary stratification is tightly folded at flow‐unit boundaries under high cumulative strains and laterally compressive stress. High cumulative strains and laterally compressive stresses lead to the development of longitudinal foliation from primary stratification. Folding elevates subglacial sediments into foliation‐parallel debris ridges, which are exposed in the ablation area. Crevasses and shear planes within the glacier have little control on sediment transport. Debris stripes in the proglacial area are morphologically similar to foliation‐parallel debris ridges; however, they are not structurally controlled, but formed by fluvial erosion. The conclusion of this study is that at Glacier de St. Sorlin proglacial sediment‐landform associations are subjected to intense syn‐ and post‐depositional modification by high melt‐water discharges, hence their composition does not reflect that of sediments melting out at the terminus. The action of melt water limits the potential of the sedimentary record to be used to constrain numerical models of past glacier dynamics in debris‐poor glacierized Alpine catchments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Megagrooves are kilometre‐scale linear topographic lows carved in bedrock, separated by ridges, typically in areas of largely devoid of till. They have been reported from several areas covered by Pleistocene glaciations, such as Canadian Northwest (NW) Territories, Michigan and NW Scotland. Here we report two previously undocumented megagroove fields from Ungava, Canada, and northern England, and present new analyses of the megagrooves from NW Scotland. This paper seeks to determine the nature of the lithological and structural controls on the occurrence and formation of megagrooves. Analysis of both geomorphological and bedrock properties shows that megagrooves are generally:
  1. confined to well stratified or layered bedrock, such as (meta)sedimentary rocks with closely spaced joints, and tend not to occur on massive rocks such as gneiss or granite, or thick‐bedded sedimentary rocks;
  2. subparallel to palaeo‐ice flow and the strike of the strata; and tend not to occur where palaeo‐ice flow is at high angles to the strike of strata;
  3. produced by significant glacial erosion by sustained unidirectional ice flow.
Detailed analysis of megagrooves in NW Scotland shows that neither glacio‐fluvial erosion, nor differential abrasion was the dominant mechanism of formation. A mechanism, here termed ‘lateral plucking’, is suggested that involves block plucking on rock steps parallel to ice flow. Removal of joint‐bounded blocks from such rock steps involves a component of rotation along a vertical axis. Block removal may be enhanced by a direct component of shear stress onto the vertical stoss sides. The lateral plucking mechanism results in horizontal erosion at right angles to the ice flow, and enhances the groove/ridge topography. Megagrooves are potentially useful as palaeo‐ice flow indicators in areas devoid of till, and can thus complement the palaeo‐ice stream datasets which are presently largely based on soft‐sediment landform studies. British Geological Survey © NERC 2011  相似文献   

15.
Climate change and sediment flux from the Roof of the World   总被引:2,自引:0,他引:2  
Potential rises in global temperature are likely to have major impacts on high altitude environments, including glacier recession and permafrost degradation. In turn, these could have far‐reaching impacts on riverine sediment flux. Such impacts are emerging in the Himalayas and Tibet Plateau region, one of the world's largest and most environmentally‐sensitive cold regions. Closer monitoring is urgently required to track changing trends of sediment load from the interactions of glacial recession treat, rainfall changes and human interventions, and to study the implications of such changes for the large Asian river systems of the region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Landsat images reveal a previously unsuspected large-scale pattern of streamlining within drift that is assumed to reflect former phases of ice flow. Such a glacial grain can be regarded as a landform assemblage comprised of a number of components. Drumlins and megaflutes form part of the pattern, but in addition there are two previously undocumented ice-moulded landform elements: streamlined lineations of much greater proportions, referred to as mega-scale glacial lineations, and a distinctive cross-cutting topology within the grain. The ice-moulded landform assemblage is described and illustrated with reference to examples from Canada. Possible modes of genesis of such landforms are discussed and their glaciological implications outlined. The discovery of this pattern indicates the pervasive nature of subglacial deformation of sediment, and demands a radical re-interpretation of ice sheet dynamics.  相似文献   

17.
Glacier recessions caused by climate change may uncover pro‐glacial lakes that form important sedimentation basins regulating the downstream sediment delivery. The impact of modern pro‐glacial lakes on fluvial sediment transport from three different Norwegian glaciers: Nigardsbreen, Engabreen and Tunsbergdalsbreen, and their long‐term development has been studied. All of these lakes developed in modern times in overdeepened bedrock basins. The recession of Nigardsbreen uncovered a 1.8 km long and on average 15 m deep pro‐glacial lake basin during 1937 to 1968. Since then the glacier front has been situated entirely on land, and the sediment input and output of the lake has been measured. The suspended sediment transport into and out of the lake averaged 11 730 t yr?1 and 2340 t yr?1 respectively. Thus, 20% remained in suspension at the outlet. The measured mean annual bedload supplied to the lake was 11 800 t yr?1, giving a total transport of 23 530 t yr?1 which corresponds to a specific sediment yield of 561 t km?2 yr?1. A 1.9 km long and up to 90 m deep pro‐glacial lake basin downstream from Engabreen glacier was uncovered during 1890 to 1944. The average suspended sediment load delivered from the glacier during the years 1970–1981 amounted to 12 375 t yr?1and the transport out of the lake was 2021 t yr?1, giving an average of 16% remaining in suspension. The mean annual bedload was 8000 t yr?1, thus the total transport was 20 375 t yr?1, giving a specific sediment yield of 566 t km?2 yr?1. For Tunsbergdalsbreen glacier, measurements in the early 1970s indicated that the suspended sediment transport was on average 44 000 t yr?1. From 1987 to 1993 the recession of the glacier uncovered a small pro‐glacial lake, 0.3 km long and around 9 m deep. Downstream from this, the suspended sediment load measured in 2009 was 28 000 t yr?1, indicating that as much as 64% remained in suspension. Flow velocity, grain size of sediment, and morphology of the lake are important factors controlling the sedimentation rate in the pro‐glacial lakes. A survey of the sub‐glacial morphology of Tunsbergdalsbreen revealed that there are several overdeepened basins beneath the glacier. The largest is 4 km long and 100 m deep. When the glacier melts back they will become lakes and act as sedimentation basins. Despite an expected increase in sediment yield from the glacier, little sediment will pass these lakes and downstream sediment delivery will be reduced markedly. Beneath Nigardsbreen there was only a small depression that may form a lake and the sediment delivery will not be significantly affected. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

18.
Groundwater discharge in alpine headwaters sustains baseflow in rivers originating in mountain ranges of the world, which is critically important for aquatic habitats, run-of-river hydropower generation, and downstream water supply. Groundwater storage in alpine watersheds was long considered negligible, but recent field-based studies have shown that aquifers are ubiquitous in the alpine zone with no soil and vegetation. Talus, moraine, and rock glacier aquifers are common in many alpine regions of the world, although bedrock aquifers occur in some geological settings. Alpine aquifers consisting of coarse sediments have a fast recession of discharge after the recharge season (e.g., snowmelt) or rainfall events, followed by a slow recession that sustains discharge over a long period. The two-phase recession is likely controlled by the internal structure of the aquifers. Spatial extent and distribution of individual aquifers determine the groundwater storage-discharge characteristics in first- and second-order watersheds in the alpine zone, which in turn govern baseflow characteristics in major rivers. Similar alpine landforms appear to have similar hydrogeological characteristics in many mountain ranges across the world, suggesting that a common conceptual framework can be used to understand alpine aquifers based on geological and geomorphological settings. Such a framework will be useful for parameterizing storage-discharge characteristics in large river hydrological models.  相似文献   

19.
Till deposition by glacier submarginal,incremental thickening   总被引:1,自引:0,他引:1  
Macro‐ and micro‐scale sedimentological analyses of recently deposited tills and complex push/squeeze moraines on the forelands of Icelandic glaciers and in a stacked till sequence at the former Younger Dryas margin of the Loch Lomond glacier lobe in Scotland are used to assess the depositional processes involved in glacier submarginal emplacement of sediment. Where subglacial meltwater is unable to flush out subglacial sediment or construct thick debris‐rich basal ice by cumulative freeze‐on processes, glacier submarginal processes are dictated by seasonal cycles of refreezing and melt‐out of tills advected from up‐ice by a combination of lodgement, deformation and ice keel and clast ploughing. Although individual till layers may display typical A and B horizon deformation characteristics, the spatially and temporally variable mosaic of subglacial processes will overprint sedimentary and structural signatures on till sequences to the extent that they would be almost impossible to classify genetically in the ancient sediment record. At the macro‐scale, Icelandic tills display moderately strong clast fabrics that conform to the ice flow directions documented by surface flutings; very strong fabrics typify unequivocally lodged clasts. Despite previous interpretations of these tills as subglacial deforming layers, micro‐morphological analysis reveals that shearing played only a partial role in the emplacement of till matrixes, and water escape and sediment flowage features are widespread. A model of submarginal incremental thickening is presented as an explanation of these data, involving till slab emplacement over several seasonal cycles. Each cycle involves: (1) late summer subglacial lodgement, bedrock and sediment plucking, subglacial deformation and ice keel ploughing; (2) early winter freeze‐on of subglacial sediment to the thin outer snout; (3) late winter readvance and failure along a decollement plane within the till, resulting in the carriage of till onto the proximal side of the previous year's push moraine; (4) early summer melt‐out of the till slab, initiating porewater migration, water escape and sediment flow and extrusion. Repeated reworking of the thin end of submarginal till wedges produces overprinted strain signatures and clast pavements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The development of glacier karst at the margins of melting ice sheets produces complex glaciofluvial sediment-landform assemblages that provide information on ice sheet downwasting processes. We present the first combined geomorphological, sedimentological and geophysical investigation of the Brampton Kame Belt, an important glaciofluvial depositional zone at the centre of the last British-Irish Ice Sheet. Ground-penetrating radar (GPR) data allow the broad scale internal architecture of ridges (eskers) and flat-topped hills (ice-walled lake plains) to be determined at four sites. In combination with sediment exposures, these provide information on lateral and vertical variations in accretion styles, depositional boundaries, and grain size changes. Building on existing work on the subject, we propose a refined model for the formation of ice-walled lake plains resulting from the evolution and collapse of major drainage axes into lakes as stable glacier karst develops during deglaciation. The internal structure of esker ridges demonstrates variations in sedimentation that can be linked to differences in ridge morphologies across the kame belt. This includes low energy flow conditions and multiple accretion phases identified within large S-N oriented esker ridges; and fluctuating water pressures, hyperconcentrated flows, and significant deformation within a fragmented SW–NE oriented esker ridge. In combination with updated geomorphological mapping, this work allows us to identify two main styles of drainage within the kame belt: (1) major drainage axes aligned broadly S-N that extend through the entire kame belt and collapsed into a chain of ice-walled lakes; and (2) a series of smaller, fragmented SW–NE aligned esker ridges that represent ice-marginal drainage as the ice sheet receded south-eastwards up the Vale of Eden. Our study demonstrates the importance of integrated geomorphological, sedimentological and geophysical investigations in order to understand complex and polyphase glaciofluvial sediment-landform assemblages. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号