首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of NOx (NO +NO2) and the sum of reactive nitrogenconstituents, NOy, were made near the surface atAlert (82.5°N), Canada during March and April1998. In early March when solar insolation was absentor very low, NOx mixing ratios were frequentlynear zero. After polar sunrise when the sun was abovethe horizon for much or all of the day a diurnalvariation in NOx and NOy was observed withamplitudes as large as 30–40 pptv. The source ofactive nitrogen is attributed to release from the snowsurface by a process that is apparently sensitized bysunlight. If the source from the snowpack is a largescale feature of the Arctic then the diurnal trendsalso require a competing process for removal to thesurface. From the diurnal change in the NO/NO2ratio, mid-April mixing ratios for the sum of peroxyand halogen oxide radicals of 10 pptv werederived for periods when ozone mixing ratios were inthe normal range of 30–50 ppbv. Mid-day ozoneproduction and loss rates with the active nitrogensource were estimated to be 1–2 ppbv/day and in nearbalance. NOy mixing ratios which averaged only295±66 pptv do not support a large accumulation inthe high Arctic surface layer in the winter and springof 1998. The small abundance of NOy relative tothe elevated mixing ratios of other long-livedanthropogenic constituents requires that reactivenitrogen be removed to the surface during transport toor during residence within the high Arctic.  相似文献   

2.
The seasonal and diurnal variations of ozone mixing ratios have been observed at Niwot Ridge. Colorado. The ozone mixing ratios have been correlated with the NO x (NO+NO2) mixing ratios measured concurrently at the site. The seasonal and diurnal variations in O3 can be reasonably well understood by considering photochemistry and transport. In the winter there is no apparent systematic diurnal variation in the O3 mixing ratio because there is little diurnal change of transport and a slow photochemistry. In the summer, the O3 levels at the site are suppressed at night due to the presence of a nocturnal inversion layer that isolated ozone near the surface, where it is destroyed. Ozone is observed to increase in the summer during the day. The increases in ozone correlate with increasing NO x levels, as well as with the levels of other compounds of anthropogenic origin. We interpret this correlation as in-situ or in-transit photochemical production of ozone from these precursors that are transported to our site. The levels of ozone recorded approach 100 ppbv at NO x mixing ratios of approximately 3 ppbv. Calculations made using a simple clean tropospheric chemical model are consistent with the NO x -related trend observed for the daytime ozone mixing ratio. However, the chemistry, which does not include nonmethane hydrocarbon photochemistry, underestimates the observed O3 production.  相似文献   

3.
The mixing ratios for ozone and NOx (NO+NO2) have been measured at a rural site in the United States. From the seasonal and diurnal trends in the ozone mixing ratio over a wide range of NOx levels, we have drawn certain conclusions concerning the ozone level expected at this site in the absence of local photochemical production of ozone associated with NOx from anthropogenic sources. In the summer (June 1 to September 1), the daily photochemical production of ozone is found to increase in a linear fashion with increasing NOx mixing ratio. For NOx mixing ratios less than 1 part per billion by volume (ppbv), the daily increase is found to be (17±3) [NOx]. In contrast, the winter data (December 1 to March 1) indicate no significant increase in the afternoon ozone level, suggesting that the photochemical production of ozone during the day in winter approximately balances the chemical titration of ozone by NO and other pollutants in the air. The extrapolated intercept corresponding to [NOx]=0 taken from the summer afternoon data is 13% less than that observed from the summer morning data, suggesting a daytime removal mechanism for O3 in summer that is attributed to the effects of both chemistry and surface deposition. No significant difference is observed in the intercepts inferred from the morning and afternoon data taken during the winter.The results contained herein are used to deduce the background ozone level at the measurement site as a function of season. This background is equated with the natural ozone background during winter. However, the summer data suggest that the background ozone level at our site is elevated relative to expected natural ozone levels during the summer even at low NOx levels. Finally, the monthly daytime ozone mixing ratios are reported for 0[NOx]0.2 ppbv, 0.3 ppbv[NOx]0.7 ppbv and 1 ppbv[NOx]. These monthly ozone averages reflect the seasonal ozone dependence on the NOx level.  相似文献   

4.
In summer, atmospheric ozone was measured from an aircraft platform simultaneously with nitric oxide (NO), oxides of nitrogen (NO y ), and water vapor over the Pacific Ocean in east Asia from 34° N to 19° N along the longitude of 138±3°E. NO y was measured with the aid of a ferrous sulfate converter. The altitude covered was from 0.5 to 5 km. A good correlation in the smoothed meridional distributions between ozone and NO y was seen. In particular, north of 25° N, ozone and NO y mixing ratios were considerably higher than those observed in tropical marine air south of 25° N. NO y and O3 reached a minimum of 50 pptv and 4 ppbv respectively in the boundary layer at a latitude of 20° N. The NO concentration between 2 and 5 km at the same latitude was 30 pptv. The profiles of ozone and water vapor mixing ratios were highly anti-correlated between 25° N and 20° N. In contrast, it was much poorer at the latitude of 33° N, suggesting a net photochemical production of ozone there.  相似文献   

5.
The objectives of this study were to identify species and levels of volatile organic compounds (VOCs), and determine their oxidation capacity in the rural atmosphere of western Senegal. A field study was conducted to obtain air samples during September 14 and September 15, 2006 for analyses of VOCs. Methanol, acetone, and acetaldehyde were the most abundant detected chemical species and their maximum mixing ratios reached 6 parts per billion on a volume basis (ppbv). Local emission sources such as firewood and charcoal burning strongly influenced VOC concentrations. The VOC concentrations exhibited little temporal variations due to the low reactivity with hydroxyl radicals, with reactivity values ranging from 0.001 to 2.6 s−1. The conditions in this rural site were rather clean. Low ambient NO x levels limited ozone production. Nitrogen oxide (NO x ) levels reached values less than 2 ppbv and maximum VOC/NO x ratios reached 60 ppbvC/ppbv, with an overall average of 2.4 ± 4.5 ppbvC/ppbv. This indicates that the rural western Senegal region is NO x limited in terms of oxidant formation potential. Therefore, during the study period photochemical ozone production became limited due to low ambient NO x levels. The estimated ozone formation reactivity for VOCs was low and ranged between −5.5 mol of ozone/mol of benzaldehyde to 0.6 mol/mol of anthropogenic dienes.  相似文献   

6.
Springtime measurements of NOx, ozone, PAN,J(NO2), and other compounds were made near Ny-Ålesund,Svalbard (78°54N, 11°53E), in 1994 and Poker Flat,Alaska (65°08N, 147°29W), in 1995. At Svalbard medianmixing ratios for PAN and NOx of 237 and 23.7 pptv,respectively, were observed. The median mixing ratios at Poker Flat for PANand NOx were 79.5 and 85.9 pptv, respectively. These data areused to estimate thermal PAN decomposition using several differentapproaches. At Svalbard PAN decomposition was very small, while at PokerFlat up to 30 pptv/h PAN decomposed. At both sites the NOx/PANratio increased with temperature between –10 and 20°C implyingthat PAN decomposition is an important NOx source. In-situozone production was calculated from the measured NO, NO2,O3, J(NO2), and temperature data, using thesteady state assumption Median ozone production was 605 pptv/h at PokerFlat, and one order of magnitude smaller at Svalbard during the daytime.Only at Poker Flat could a direct influence on the diurnal ozone cycle beobserved from in-situ production. These results imply that PAN decompositionis a major source of NOx in the high latitude troposphere, andthat this contributes to the observed spring maximum in surface ozone.  相似文献   

7.
Simultaneousindependent measurements of NOy and NOx(NOx= NO + NO2) by high-sensitivitychemiluminescence systems and of PAN (peroxyacetylnitrate) and PPN (peroxypropionyl nitrate) by GC-ECDwere made at Spitsbergen in the Norwegian Arcticduring the first half year of 1994. The average mixingratio of the sum of PAN and PPN (denoted PANs)increased from around 150 pptv in early winter to amaximum of around 500 pptv in late March, whereasepisodic peak values reached 800 pptv. This occurredsimultaneously with a maximum in ozone which increasedto 45–50 ppbv in March–April. The average NOxmixing ratio was 27 pptv and did not show any cyclethrough the period. The NOy mixing ratio showeda maximum in late March, while the difference betweenNOy and PAN decreased during spring. This is anindication of the dominance of PAN in the NOybudget in the Arctic, but possible changes in theefficiency of the NOy converter could alsocontribute to this. Although most PAN in theArctic is believed to be due to long range transport,the observations indicate local loss and formationrates of up to 1–2 pptv h-1 in April–May.Measurements of carbonyl compounds suggest thatacetaldehyde was the dominant, local precursor ofPAN.Now at 1.  相似文献   

8.
A series of ozone transects measured each year from 1987 to 1990 over thewestern Pacific and eastern Indian oceans between mid-November andmid-Decembershows a prominent ozone maximum reaching 50–80 ppbv between 5 and 10 kmin the 20° S–40° S latitude band. This maximum contrasts with ozonemixing ratios lower than20 ppbv measured at the same altitudes in equatorial regions. Analyses witha globalchemical transport model suggest that these elevated ozone values are part ofa large-scale tropospheric ozone plume extending from Africa to the western Pacific acrosstheIndian ocean. These plumes occur several months after the peak in biomassburninginfluence and during a period of high lightning activity in the SouthernHemispheretropical belt. The composition and geographical extent of these plumes aresimilar to theozone layers previously encountered during the biomass burning season in thisregion.Our model results suggest that production of nitrogen oxides from lightningstrokes sustains the NOx (= NO+NO2) levels and the ozonephotochemical productionrequired in the upper troposphere to form these persistent elevated ozonelayers emanating from biomass burning regions.  相似文献   

9.
The observational results in Lin;an show the elevated average concentrations of surface ozone and Nitric Oxides(NOx)in the rural area in the eastern mid-latitudes of China.The mechanism of its variations was explained by the theoretical analysis.In the case of breeze,the photochemical reactions controlled by solar radiation is the determined factors affecting the variations of the surface O3 and NOx.A study of the correlation between NOx and SO2 demonstrates that the biomass burning is an important local emission source of NOx.  相似文献   

10.
Continuous measurements of surface ozone (O3), NOx (NO + NO2) and meteorological parameters have been made in Kannur (11.9?°N, 75.4?°E, 5?m asl), India from November 2009 to October 2010. It was observed that O3 and NOx showed distinct diurnal and seasonal variabilities at this site. The annual average diurnal profile of O3 showed a peak of (30.3?±?10.4) ppbv in the late afternoon and a minimum of (3.2?±?0.7) ppbv in the early morning. The maximum value of O3 mixing ratio was observed in winter (44?±?3.1) ppbv and minimum during monsoon (18.46?±?3.5) ppbv. The rate of production of O3 was found to be higher in December (10.1?ppbv/h) and lower in July (1.8?ppbv/h) during the time interval 0800?C1000?h. A correlation coefficient of 0.52 for the relationship between O3 and [NO2]/[NO] reveals the role of NO2 photolysis that generates O3 at this site. The correlation between O3 and meteorological parameters indicate the influence of seasonal changes on O3 production. Investigations were further extended to explore the week day weekend variations in O3 mixing ratio at an urban site reveals the enhancement of O3. The variations of O3 mixing ratio with seasonal air mass flows were elucidated with the aid of backward air trajectories. This study also indicates how vapor phase organic species present in the ambient air at this location may influence the complex chemistry involving (VOCs) that enhances the production of O3 at this location.  相似文献   

11.
Near-total depletions of ozone have been observed in the Arctic spring since the mid 1980s. The autocatalytic reaction cycles involving reactive halogens are now recognized to be of main importance for ozone depletion events in the polar boundary layer. We present sensitivity studies using the model MISTRA in the box-model mode on the influence of chemical species on these ozone depletion processes. In order to test the sensitivity of the chemistry under polar conditions, we compared base runs undergoing fluxes of either Br2, BrCl, or Cl2 to induce ozone depletions, with similar runs including a modification of the chemical conditions. The role of HCHO, H2O2, DMS, Cl2, C2H6, HONO, NO2, and RONO2 was investigated. Cases with elevated mixing ratios of HCHO, H2O2, DMS, Cl2, and HONO induced a shift in bromine speciation from Br / BrO to HOBr/HBr, while high mixing ratios of C2H6 induced a shift from HOBr/HBr to Br/BrO. The shifts from Br/BrO to HOBr/HBr accelerated the aerosol debromination, but also increased the total amount of deposited bromine at the surface (mainly via increased deposition of HOBr). For all NOy species studied (HONO, NO2, RONO2) the chemistry is characterized by an increased bromine deposition on snow reducing the amount of reactive bromine in the air. Ozone is less depleted under conditions of high mixing ratios of NOx. The production of HNO3 led to the acid displacement of HCl, and the release of chlorine out of salt aerosol (Cl2 or BrCl) increased.  相似文献   

12.
This paper shows a comparative study of particle and surface ozone concentration measurements undertaken simultaneously at two distinct semi-urban locations distant by 4 km at Saint-Denis, the main city of La Réunion island (21.5° S, 55.5° E) during austral autumn (May 2000). Black carbon (BC) particles measured at La Réunion University, the first site situated in the suburbs of Saint-Denis, show straight-forward anti-correlation with ozone, especially during pollution peaks ( 650 ng/m3 and 15 ppbv, for BC and ozone respectively) and at night-time (90 ng/m3 and 18.5 ppbv, for BC and ozone respectively). NOx (NO and NO2) and PM10 particles were also measured in parallel with ozone at Lislet Geoffroy college, a second site situated closer to the city centre. NOx and PM10 particles are anti-correlated with ozone, with noticeable ozone destruction during peak hours (mean 6 and 9 ppbv at 7 a.m. and 8 p.m. respectively) when NOx and PM10 concentrations exhibit maximum values. We observe a net daytime ozone creation (19 ppbv, O3 +4.5 ppbv), following both photochemical and dynamical processes. At night-time however, ozone recovers (mean 11 ppbv) when anthropogenic activities are lower ([BC] 100 ng/m3). BC and PM10 concentration variation obtained during an experiment at the second site shows that the main origin of particles is anthropogenic emission (vehicles), which in turn influences directly ozone variability. Saint-Denis BC and ozone concentrations are also compared to measurements obtained during early autumn (March 2000) at Sainte-Rose (third site), a quite remote oceanic location. Contrarily to Saint-Denis observations, a net daytime ozone loss (14.5 ppbv at 4 p.m.) is noticed at Sainte-Rose while ozone recovers (17 ppbv) at night-time, with however a lower amplitude than at Saint-Denis. Preliminary results presented here are handful data sets for modelling and which may contribute to a better comprehension of ozone variability in relatively polluted areas.  相似文献   

13.
14.
The fluxes of ozone and NOx out of the atmospheric boundary layer (ABL) over Europe are calculated in a mesoscale chemical transport model (MCT) and compared with the net chemical production or destruction of ozone and the emissions of precursors within the ABL for two 10 days' periods which had quite different synoptic situations and levels of photochemical activity (1–10 July 1991 (JUL91) and 26 October–4 November 1994 (ON94)). Over the European continent, about 8% of the NOx emissions were brought from the ABL to the free troposphere as NOx, while about 15% of the NOx emissions were brought to the free troposphere as NOy–NOx, i.e. as PAN or HNO3. The convection dominates over the synoptic scale vertical advection as a transport mechanism both for NOx and NOy out of the boundary layer in the summertime high pressure situation (JUL91), while in the fall situation (ON94) the convective part was calculated to be the smallest. NOx was almost completely transformed to NOy–NOx or removed within the ABL. Also for NOy the major part of the atmospheric cycle is confined to the ABL both for JUL91 and ON94. The vertical transport time out of the ABL is of the order of 100h both for the total model domain and over the European continent. The net convective exchange of ozone from the ABL is not a dominant process for the amount of ozone in the ABL averaged over 10 days and the whole domain, but convection reduces the maximum ozone concentration in episodes significantly. The ozone producing efficiency of NOx is calculated to increase with height to typically 15–20 in the upper half of the troposphere from around 5 in the ABL, but in the middle free troposphere the concentration of NOx is often too low to cause net chemical formation of ozone there.  相似文献   

15.
The manual harvest of sugar cane requires the burning of its foliage. This burning has strongly increased in Brazil after the National Alcohol Program was started which substituted automobile gasoline engines for alcohol engines. Presently, the source strength per unit area of this rural pollution is comparable to the well-known biomass burning source in Amazonia. The observed concentrations of CO and O3 in the rural area of the state of São Paulo during the 1988 burning season were twice as large as those reported from an aircraft experiment of 1985 for biomass burnings of the tropical rain forest. Results are reported from airplane measurements and from three fixed ground stations. Mixing ratios of ozone and carbon monoxide in the height range below 6 km are normally less than 40 and 100 ppbv, (parts per billion by volume), respectively, in the absence of burnings. A strong O3 and CO layer was observed during the burning period with peak concentrations of 80 ppbv of ozone and 580 ppbv of CO at about 2 km. The concentrations of CH4 and CO2 were also large, 1756 ppbv and 409 ppmv, respectively, at 1500 m. During the dry season period of the experiment, the ground based O3 average diurnal variations obtained at the rural sites were practically identical to the typical urban variation observed at São José dos Campos, with daytime ozone values between 45 and 60 ppbv. A second three-day airplane excursion to the surgar cane fields in the wet season of 1989 has produces results to be contrasted with the dry (burning) season of 1988 and 1989. Carbon monoxide concentrations were below 100 ppbv at all heights and ozone concentrations were around 30–40 ppbv. The maximum daytime concentrations at the ground station Bauru was 25 ppbv of O3, and at Jaboticabal it was 35 ppbv of O3, only one half of what was observed in the dry season.Universidade Estadual de São Paulo.  相似文献   

16.
We have studied long-term changes in tropospheric NO2 over South India using ground-based observations, and GOME and OMI satellite data. We have found that unlike urban regions, the region between Eastern and Western Ghat mountain ranges experiences statistically significant decreasing trend. There are few ground-based observatories to verify satellite based trends for rural regions. However, using a past study and recent measurements we show a statistically significant decrease in NOX and O3 mixing ratio over a rural location (Gadanki; 13.48° N, 79.18° E) in South India. In the ground-based records of surface NOX, the concentration during 2010–11 is found to be lower by 0.9 ppbv which is nearly 60 % of the values observed during 1994–95. Small but statistically significant decrease in noon-time peak ozone concentration is also observed. Noon-time peak ozone concentration has decreased from 34?±?13 ppbv during 1993–96 to 30?±?15 ppbv during 2010–11. NOX mixing ratios are very low over Gadanki. In spite of low NOX values (0.5 to 2 ppbv during 2010–11), ozone mixing ratios are not significantly low compared to many cities with high NOX. The monthly mean ozone mixing ratio varies from 9 ppbv to 37 ppbv with high values during Spring and low values during late Summer. Using a box-model, we show that presence of VOCs is also very important in addition to NOX in determining ozone levels in rural environment and to explain its seasonal cycle.  相似文献   

17.
Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3-NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx?<?1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ substantially if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following days peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate coefficients.  相似文献   

18.
Measurements of surface O3, CO, NOx and light NMHCs were made during December 2004 at Hissar, a semi-urban site in the state of Haryana in north-west region of the Indo-Gangetic Plain (IGP). The night-time O3 values were higher when levels of CO, NO and NO2 were lower but almost zero values were observed during the episodes of elevated mixing ratios of CO (above 2000 ppbv) and NOx (above 50 ppbv). Slopes derived from linear fits of O3 versus CO and O3 versus NOx scatter plots were also negative. However, elevated levels of O3 were observed when CO and NOx were in the range of 200–300 ppbv and 20–30 ppbv, respectively. Slope of CO-NOx of about 33 ppbv/ppbv is much larger than that observed in the US and Europe indicating significant impact of incomplete combustion processes emitting higher CO and lesser NOx. Correlations and ratios of these trace gases including NMHCs show dominance of recently emitted pollutants mostly from biomass burning at this site.  相似文献   

19.
As part of the Polar Sunrise Experiment (PSE) 1997, concentrations of halogen species thought to be involved in ground level Arctic ozone depletion were made at Alert, NWT, Canada (82.5°N, 62.3°W) during the months of March and April, 1997. Measurements were made of photolyzable chlorine (Cl2 and HOCl) and bromine (Br2 and HOBr) using the Photoactive Halogen Detector (PHD), and bromine radicals (BrOx) using a modified radical amplifier. During the sampling period between Julian Day 86 (March 27) and Day 102 (April 12), two ozone depletion episodes occurred, the most notable being on days 96-99, when ozone levels were below detectable limits (1 ppbv). Concentrations of BrOx above the 4 pptv detection limit were found for a significant part of the study, both during and outside of depletion events. The highest BrOx concentrations were observed at the end of the depletion event, when the concentration reached 15 pptv. We found substantial amounts of Br2 in the absence of O3, indicating that O3 is not a necessary requirement for production of Br2. There is also Br2 present when winds are from the south, implying local scale (e.g. from the snowpack) production. During the principal O3 depletion event, the HOBr concentration rose to 260 pptv, coincident with the BrOx maximum. This implies a steady state HO2 concentration of 6 pptv. During a partial O3 depletion event, we estimate that the flux of Br2 from the surface is about 10 times greater than that for Cl2.  相似文献   

20.
Ozone Concentrations in Rural Regions of the Yangtze Delta in China   总被引:4,自引:0,他引:4  
Elevated concentrations of ozone have been observed at six non-urban, surface monitoring sites in the Yangtze Delta of China during a 16-month field experiment carried out in 1999 and 2000 as part of the joint Chinese-American China-MAP Project (the Yangtze Delta of china as an Evolving Metro-Agro-Plex). The average daytime (0900–1600 h) ozone levels for the monitoring period at sites ranged from 35 to 47 ppbv (parts per billion by volume) and the mean ozone levels from 26 to 35 ppbv. Observed data show seasonal variation obviously, with highest mixing ratios of ozone in May. Average daytime ozone levels in May at sites were between 60 and 79 ppbv. High ozone concentrations were most prevalent during the late spring. Frequency counts of hourly mean ozone concentration over 60 ppbv and 40 ppbv appeared peak values of 22–39% and 42–74% in May at sites. Even higher daytime ozone levels were observed during two regional episodes, in which average daytime (0900–1600 h) ozone concentrations during 10 May and 23 May 2000 were 68 to 81 ppbv, during Oct. 18 and Oct. 28, 1999 were 59 to 67 ppbv at sites. Peak value of ozone mixing ratio appearing in late spring, instead of in summer, was attributed to summer monsoon. Backward trajectories showed that ozone episodes associated with meteorological conditions. Also many high ozone levels associated with high CO levels and high CO to NO x ratios, which suggests a contribution from sources of emission involving incomplete combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号