首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precious metals accompany all types of epithermal deposits. In general, the largest of these deposits occur in intrusive or extrusive rocks of alkaline or calc-alkaline affinity. The Apigania Bay vein system and Au–Ag mineralization is hosted in Mesozoic marbles and schists, and is composed primarily of five nearly parallel, high-angle quartz veins that extend for at least 200 m. Gold–silver mineralization, in association with more than thirty ore and vein minerals, is developed in three stages and occurs at the contact of marbles and schists. Zones of epidote–chlorite–calcite and sericite–albite alteration are associated with precious metal-bearing milky and clear quartz veins. Fluid inclusion studies suggest that hydrothermal mineralization was deposited under hydrostatic pressures of ~100 bars, at temperature of 120–235°C, from low to moderate, calcium-bearing, saline fluids of 0.2 to 6.8 equiv. wt.% NaCl. Calculated isotope compositions (δ18O?=??4.7‰ to 1.7‰ and δD?=??120‰ to ?80‰) for waters in equilibrium with milky and clear quartz are consistent with mixing with dilute, low temperature meteoric ore fluids. Calculated δ 13CCO2 (0.6‰ to 1.1‰) and δ 34SH2S (?7.3 to ?0.3‰) compositions of the ore fluids indicate exchange, in an open system, with a metasedimentary source. Gold and silver deposition was associated with degassing of hydrogen due to intense uplift of the mineralizing area. The physicochemical conditions of mineralization stages I to III range between 200°C and 150°C, $f_{{\text{S}}_2 } = 10^{ - 18.1} $ to 10?16.8, $f_{{\text{O}}_2 } = 10^{ - 44.0} $ to 10?41.5, pH?=?6.9 to7.6, $f_{{\text{H}}_{\text{2}} {\text{S}}} = 10^{ - 3.4} $ to 10?2.6 and $a_{{\text{H}}_{\text{2}} {\text{S}}} = 10^{ - 2.7} $ to 10?2.6. Apigania Bay could be possibly considered the latest evolutional phase of Tinos hydrothermal system.  相似文献   

2.
This study presents accurate and precise iron isotopic data for 16 co-magmatic rocks and 6 pyroxene–magnetite pairs from the classic, tholeiitic Red Hill sill in southern Tasmania. The intrusion exhibits a vertical continuum of compositions created by in situ fractional crystallisation of a single injection of magma in a closed igneous system and, as such, constitutes a natural laboratory amenable to determining the causes of Fe isotope fractionation in magmatic rocks. Early fractionation of pyroxenes and plagioclase, under conditions closed to oxygen exchange, gives rise to an iron enrichment trend and an increase in $ f_{{{\text{O}}_{2} }} $ of the melt relative to the Fayalite–Magnetite–Quartz (FMQ) buffer. Enrichment in Fe3+/ΣFemelt is mirrored by δ57Fe, where VIFe2+-bearing pyroxenes partition 57Fe-depleted iron, defining an equilibrium pyroxene-melt fractionation factor of $ \Updelta^{57} {\text{Fe}}_{{{\text{px}} - {\text{melt}}}} \le - 0.25\,\permille \times 10^{6} /T^{2} $ . Upon magnetite saturation, the $ f_{{{\text{O}}_{2} }} $ and δ57Fe of the melt fall, commensurate with the sequestration of the oxidised, 57Fe-enriched iron into magnetite, quantified as $ \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{melt}}}} = + 0.20\,\permille \times 10^{6} /T^{2} $ . Pyroxene–magnetite pairs reveal an equilibrium fractionation factor of $ \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{px}}}} \approx + 0.30\,\permille $ at 900–1,000?°C. Iron isotopes in differentiated magmas suggest that they may act as an indicator of their oxidation state and tectonic setting.  相似文献   

3.
The ferric-ferrous ratio of natural silicate liquids equilibrated in air   总被引:1,自引:1,他引:1  
Results of chemical analyses of glasses produced in 46 melting experiments in air at 1,350° C and 1,450° C on rocks ranging in composition from nephelinite to rhyolite have been combined with other published data to obtain an empirical equation relating in \((X_{{\text{Fe}}_{\text{2}} {\text{O}}_{\text{3}} }^{{\text{liq}}} /X_{{\text{FeO}}}^{{\text{liq}}} )\) to T, \(\ln f_{{\text{O}}_{\text{2}} } \) and bulk composition. The whole set of experimental data range over 1,200–1,450° C and oxygen fugacities of 10?9.00 to 10?0.69 bars, respectively. The standard errors of temperature and \(\log _{10} f_{{\text{O}}_{\text{2}} } \) predictions from this equation are 52° C and 0.5 units, respectively, for 186 experiments.  相似文献   

4.
Mineralization of groundwater in volcanic aquifers is partly acquired through silicates weathering. This alteration depends on the dissolution of atmospheric, biogenic, or mantellic gaseous CO2 whose contributions may depend on substratum geology, surface features, and lava flow hydrological functionings. Investigations of $ {\text{P}}_{{{\text{CO}}_{ 2} {\text{eq}}}} $ and δ13CTDIC (total dissolved inorganic carbon) on various spatiotemporal scales in the unsaturated and saturated zones of volcanic flows of the Argnat basin (French Massif Central) have been carried out to identify the carbon sources in the system. Mantellic sources are related to faults promoting CO2 uplift from the mantle to the saturated zone. The contribution of this source is counterbalanced by infiltration of water through the unsaturated zone, accompanied by dissolution of soil CO2 or even atmospheric CO2 during cold periods. Monitoring and modeling of δ13CTDIC in the unsaturated zone shows that both $ {\text{P}}_{{{\text{CO}}_{ 2} {\text{eq}}}} $ and δ13CTDIC are controlled by air temperature which influences soil respiration and soil-atmosphere CO2 exchanges. The internal geometry of volcanic lava flows controls water patterns from the unsaturated zone to saturated zone and thus may explain δ13C heterogeneity in the saturated zone at the basin scale.  相似文献   

5.
The nitrogen isotopic compositions of plant tissue could reflect its uptake of and preference for ammonium or nitrate. However, various factors may influence the field-collected δ15N values under field condition, which causes the interpretation problematic. The spatial variation of nitrogen (N) concentrations and the isotopic compositions were investigated in the soils and tissues of Chinese prickly ash from the southwest China to the east China. The objectives were to investigate the variation in soil and tissue δ15N values and N forms taken up by the plant. The leaf and root δ15N values varied significantly in response to the pattern of soil δ15N values. The difference in δ15N values between the leaves and roots was 2.57‰ and may be caused by an increase in the transport of unassimilated \( {\text{NO}}_{3}^{ - } \) and \( {\text{NH}}_{4}^{ + } \) to the leaves. Leaf nitrogen was significantly and positively correlated with leaf potassium and negatively related to leaf calcium. Because potassium is the favoured counter-cation for nitrate transport in the xylem, the enrichment of 15N in leaf relative to root induced by preferenced uptake of nitrate should be accompanied by significant and positive relationship of leaf nitrogen with leaf potassium concentrations. These results suggest that Chinese prickly ash prefers \( {\text{NO}}_{3}^{ - } \) over \( {\text{NH}}_{4}^{ + } \).  相似文献   

6.
A detailed hydrogeochemical study of groundwater in the Cecina coastal plain (Livorno province, Italy) and its inner sectors was undertaken in 2008, as chemical analyses carried out on groundwater since 2006 have revealed Cr(VI) concentrations of up to 49 μg/L (well above the permissible limit of 5 μg/L). Ophiolite outcrops are present throughout the study area, and their fragments likely represent a significant portion of the existing multilayered aquifer skeleton. Waters delivered by the serpentinite outcrops have a typically Mg–HCO3 composition, whereas those of the coastal plain are prevailingly of the Ca/Mg–HCO3 type with significant Mg contents. Significant NO3 contamination characterises the studied coastal plain, and an interesting negative correlation exists between Cr(VI) and both NO3 and SO4 deriving from the widespread use of (NH4)2SO4 as a farm fertilizer. Chromium speciation calculations carried out using the EQ3NR code reveal that the prevailing Cr(VI) species in solution is CrO4 2?; however, CaCrO4° and MgCrO4° neutral complexes represent significant percentages (up to 42 %). These findings suggest that the mobility and consequently the bioavailability of Cr(VI) can be significantly enhanced by these neutral complexes, which are not considered to be affected by adsorption/desorption processes. The Cr(VI) source, investigated by means of the Mg/SiO2 molar ratio, seems to be represented mainly by Mg-bearing minerals of the chlorite group. Petrographic observations confirm the occurrence of this mineral group. The interaction between rainwater and the local serpentinite rock was simulated at different $P_{{{\text{CO}}_{ 2} }}$ and $P_{{{\text{O}}_{ 2} }}$ conditions by reaction path modelling using the EQ3/6 software package. $P_{{{\text{O}}_{ 2} }}$ was varied in accordance with the assumption that redox conditions are determined in part by NO3. Results are in good agreement with experimental data on spring waters and subordinately with data on some coastal plain groundwater, which plot in a rather wide $P_{{{\text{CO}}_{ 2} }}$ and $P_{{{\text{O}}_{ 2} }}$ field. Although the dissolved Cr content is mostly of natural origin, fertilization may affect its fate.  相似文献   

7.
The system Fe-Si-O: Oxygen buffer calibrations to 1,500K   总被引:1,自引:0,他引:1  
The five solid-phase oxygen buffers of the system Fe-Si-O, iron-wuestite (IW), wuestite-magnetite (WM), magnetite-hematite (MH), quartz-iron-fayalite (QIF) and fayalite-magnetite-quartz (FMQ) have been recalibrated at 1 atm pressure and temperatures from 800°–1,300° C, using a thermogravimetric gas mixing furnace. The oxygen fugacity, \(f_{{\text{O}}_{\text{2}} }\) was measured with a CaO-doped ZrO2 electrode. Measurements were made also for wuestite solid solutions in order to determine the redox behavior of wuestites with O/Fe ratios varying from 1.05 to 1.17. For FMQ, additional determinations were carried out at 1 kb over a temperature range of 600° to 800° C, using a modified Shaw membrane. Results agree reasonably well with published data and extrapolations. The reaction parameters K, ΔG r o , ΔH r o , and ΔS r o were calculated from the following log \(f_{{\text{O}}_{\text{2}} }\) /T relations (T in K): $$\begin{gathered} {\text{IW }}\log f_{{\text{O}}_{\text{2}} } = - 26,834.7/T + 6.471\left( { \pm 0.058} \right) \hfill \\ {\text{ }}\left( {{\text{800}} - 1,260{\text{ C}}} \right), \hfill \\ {\text{WM }}\log f_{{\text{O}}_{\text{2}} } = - 36,951.3/T + 16.092\left( { \pm 0.045} \right) \hfill \\ {\text{ }}\left( {{\text{1,000}} - 1,300{\text{ C}}} \right), \hfill \\ {\text{MH }}\log f_{{\text{O}}_{\text{2}} } = - 23,847.6/T + 13.480\left( { \pm 0.055} \right) \hfill \\ {\text{ }}\left( {{\text{1,040}} - 1,270{\text{ C}}} \right), \hfill \\ {\text{QIF }}\log f_{{\text{O}}_{\text{2}} } = - 27,517.5/T + 6.396\left( { \pm 0.049} \right) \hfill \\ {\text{ }}\left( {{\text{960}} - 1,140{\text{ C}}} \right), \hfill \\ {\text{FMQ }}\log f_{{\text{O}}_{\text{2}} } = - 24,441.9/T + 8.290\left( { \pm 0.167} \right) \hfill \\ {\text{ }}\left( {{\text{600}} - 1,140{\text{ C}}} \right). \hfill \\ \end{gathered}$$ These experimentally determined reaction parameters were combined with published 298 K data to determine the parameters Gf, Hf, and Sf for the phases wuestite, magnetite, hematite, and fayalite from 298 K to the temperatures of the experiments. The T? \(f_{{\text{O}}_{\text{2}} }\) data for wuestite solid solutions were used to obtain activities, excess free energies and Margules mixing parameters. The new data provide a more reliable, consistent and complete reference set for the interpretation of redox reactions at elevated temperatures in experiments and field settings encompassing the crust, mantle and core as well as extraterrestrial environments.  相似文献   

8.
Ephesite, Na(LiAl2) [Al2Si2O10] (OH)2, has been synthesized for the first time by hydrothermal treatment of a gel of requisite composition at 300≦T(° C)≦700 and \(P_{H_2 O}\) upto 35 kbar. At \(P_{H_2 O}\) between 7 and 35 kbar and above 500° C, only the 2M1 polytype is obtained. At lower temperatures and pressures, the 1M polytype crystallizes first, which then inverts to the 2M1 polytype with increasing run duration. The X-ray diffraction patterns of the 1M and 2M1 poly types can be indexed unambiguously on the basis of the space groups C2 and Cc, respectively. At its upper thermal stability limit, 2M1 ephesite decomposes according to the reaction (1) $$\begin{gathered} {\text{Na(LiAl}}_{\text{2}} {\text{) [Al}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{{\text{10}}} {\text{] (OH)}}_{\text{2}} \hfill \\ {\text{ephesite}} \hfill \\ {\text{ = Na[AlSiO}}_{\text{4}} {\text{] + LiAl[SiO}}_{\text{4}} {\text{] + }}\alpha {\text{ - Al}}_{\text{2}} {\text{O}}_{\text{3}} {\text{ + H}}_{\text{2}} {\text{O}} \hfill \\ {\text{nepheline }}\alpha {\text{ - eucryptite corundum}} \hfill \\ \end{gathered}$$ Five reversal brackets for (1) have been established experimentally in the temperature range 590–750° C, at \(P_{H_2 O}\) between 400 and 2500 bars. The equilibrium constant, K, for this reaction may be expressed as (2) $$log K{\text{ = }}log f_{{\text{H}}_{\text{2}} O}^* = 7.5217 - 4388/T + 0.0234 (P - 1)T$$ where \(f_{H_2 O}^* = f_{H_2 O} (P,T)/f_{H_2 O}^0\) (1,T), with T given in degrees K, and P in bars. Combining these experimental data with known thermodynamic properties of the decomposition products in (1), the following standard state (1 bar, 298.15 K) thermodynamic data for ephesite were calculated: H f,298.15 0 =-6237372 J/mol, S 298.15 0 =300.455 J/K·mol, G 298.15 0 =-5851994 J/mol, and V 298.15 0 =13.1468 J/bar·mol.  相似文献   

9.
The experimental distribution coefficient for Ni/ Fe exchange between olivine and monosulfide (KD3) is 35.6±1.1 at 1385° C, \(f_{{\text{O}}_{\text{2}} } = 10^{ - 8.87} ,f_{{\text{S}}_{\text{2}} } = 10^{ - 1.02} \) , and olivine of composition Fo96 to Fo92. These are the physicochemical conditions appropriate to hypothesized sulfur-saturated komatiite magma. The present experiments equilibrated natural olivine grains with sulfide-oxide liquid in the presence of a (Mg, Fe)-alumino-silicate melt. By a variety of different experimental procedures, K D3 is shown to be essentially constant at about 30 to 35 in the temperature range 900 to 1400° C, for olivine of composition Fo97 to FoO, monosulfide composition with up to 70 mol. % NiS, and a wide range of \(f_{{\text{O}}_{\text{2}} } \) and \(f_{{\text{S}}_{\text{2}} } \) .  相似文献   

10.
We investigated the dissolved major elements, $ {}^{87}{\text{Sr/}}{}^{86}{\text{Sr}},\;\delta {}^{34}{\text{S}}_{{\text{SO}}_{\text{4}} } ,\;{\text{and}}\;\delta {}^{18}{\text{O}}_{{\text{SO}}_{\text{4}} } $ composition of the Min Jiang, a headwater tributary of the Chang Jiang (Yangtze River). A forward calculation method was applied to quantify the relative contribution to the dissolved load from rain, evaporite, carbonate, and silicate reservoirs. Input from carbonate weathering dominated the major element composition (58–93%) and that from silicate weathering ranged from 2 to 18% in unperturbed Min Jiang watersheds. Most samples were supersaturated with respect to calcite, and the CO2 partial pressures were similar to or up to ~5 times higher than atmospheric levels. The Sr concentrations in our samples were low (1.3–2.5 μM) with isotopic composition ranging from 0.7108 to 0.7127, suggesting some contribution from felsic silicates. The Si/(Na* + K) ratios ranged from 0.5 to 2.5, which indicate low to moderate silicate weathering intensity. The $ \delta {}^{34}{\text{S}}_{{\text{SO}}_{\text{4}} } \;{\text{and}}\;\delta {}^{18}{\text{O}}_{{\text{SO}}_{\text{4}} } $ for five select samples showed that the source of dissolved sulfate was combustion of locally consumed coal. The silicate weathering rates were 23–181 × 103 mol/km2/year, and the CO2 consumption rates were 31–246 × 103 mol/km2/year, which are moderate on a global basis. Upon testing various climatic and geomorphic factors for correlation with the CO2 consumption rate, the best correlation coefficients found were with water temperature (r 2 = 0.284, p = 0.009), water discharge (r 2 = 0.253, p = 0.014), and relief (r 2 = 0.230, p = 0.019).  相似文献   

11.
The Gibbs free energy and volume changes attendant upon hydration of cordierites in the system magnesian cordierite-water have been extracted from the published high pressure experimental data at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =P total, assuming an ideal one site model for H2O in cordierite. Incorporating the dependence of ΔG and ΔV on temperature, which was found to be linear within the experimental conditions of 500°–1,000°C and 1–10,000 bars, the relation between the water content of cordierite and P, T and \(f_{{\text{H}}_{\text{2}} {\text{O}}} \) has been formulated as $$\begin{gathered} X_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{crd}}} = \hfill \\ \frac{{f_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{P, T}}} }}{{\left[ {{\text{exp}}\frac{1}{{RT}}\left\{ {64,775 - 32.26T + G_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{1, }}T} - P\left( {9 \times 10^{ - 4} T - 0.5142} \right)} \right\}} \right] + f_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{P, T}}} }} \hfill \\ \end{gathered} $$ The equation can be used to compute H2O in cordierites at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) <1. Our results at different P, T and partial pressure of water, assuming ideal mixing of H2O and CO2 in the vapour phase, are in very good agreement with the experimental data of Johannes and Schreyer (1977, 1981). Applying the formulation to determine \(X_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{crd}}} \) in the garnet-cordierite-sillimanite-plagioclase-quartz granulites of Finnish Lapland as a test case, good agreement with the gravimetrically determined water contents of cordierite was obtained. Pressure estimates, from a thermodynamic modelling of the Fe-cordierite — almandine — sillimanite — quartz equilibrium at \(P_{{\text{H}}_{\text{2}} {\text{O}}} = 0\) and \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =Ptotal, for assemblages from South India, Scottish Caledonides, Daly Bay and Hara Lake areas are compatible with those derived from the garnetplagioclase-sillimanite-quartz geobarometer.  相似文献   

12.
Equilibria in the Sirf (Silica-Ilmenite-Rutile-Ferrosilite) system: $${\text{SiO}}_{\text{2}} + ({\text{Mg,Fe}}){\text{TiO}}_{\text{3}} {\text{ + (Mg,Fe)SiO}}_{\text{3}} $$ have been calibrated in the range 800–1100° C and 12–26 kbar using a piston-cylinder apparatus to assess the potential of the equilibria for geobarometry in granulite facies assemblages that lack garnet. Thermodynamic calculations indicate that the two end-member equilibria involving quartz + geikielite = rutile + enstatite, and quartz + ilmenite = rutile + ferrosilite, are metastable. We therefore reversed equilibria over the compositional range Fs40–70, using Ag80Pd20 capsules with \(f_{{\text{O}}_{\text{2}} } \) buffered at or near iron-wüstite. Ilmenite compositions coexisting with orthopyroxene are \(X_{{\text{MgTiO}}_{\text{3}} }^{{\text{Ilm}}} \) of 0.06 to 0.15 and \(X_{{\text{Fe}}_{\text{2}} {\text{O}}_{\text{3}} }^{{\text{Ilm}}} \) of 0.00 to 0.01, corresponding toK D values of 13.3, 10.2, 9.0 and 8.0 (±0.5) at 800, 900, 1000 and 1100° C, respectively, whereK D =(XMg/XFe)Opx/(XMg/XFe)Ilm. Pressures have been calculated using equilibria in the Sirf system for granulites from the Grenville Province of Ontario and for granulite facies xenoliths from central Mexico. Pressures are consistent with other well-calibrated geobarometers for orthopyroxeneilmenite pairs from two Mexican samples in which oxide textures appear to represent equilibrium. Geologically unreasonable pressures are obtained, however, where oxide textures are complex. Application of data from this study on the equilibrium distribution of iron and magnesium between ilmenite and orthopyroxene suggests that some ilmenite in deep crustal xenoliths is not equilibrated with coexisting pyroxene, while assemblages from exposed granulite terranes have reequilibrated during retrogression. The Sirf equilibria are sensitive to small changes in composition and may be used for determination of activity/composition (a/X) relations of orthopyroxene if an ilmenite model is specified. A symmetric regular solution model has been used for orthopyroxene in conjunction with activity models for ilmenite available from the literature to calculatea/X relations in orthopyroxene of intermediate composition. Data from this study indicate that FeSiO3?MgSiO3 orthopyroxene exhibits small, positive deviations from ideality over the range 800–1100°C.  相似文献   

13.
The biotite zone assemblage: calcite-quartz-plagioclase (An25)-phengite-paragonite-chlorite-graphite, is developed at the contact between a carbonate and a pelite from British Columbia. Thermochemical data for the equilibrium paragonite+calcite+2 quartz=albite+ anorthite+CO2+H2O yields: $$\log f{\text{H}}_{\text{2}} {\text{O}} + \log f{\text{CO}}_{\text{2}} = 5.76 + 0.117 \times 10^{ - 3} (P - 1)$$ for a temperature of 700°K and a plagioclase composition of An25. By combining this equation with equations describing equilibria between graphite and gas species in the system C-H-O, the following partial pressures: \(P{\text{H}}_2 {\text{O}} = 2572{\text{b, }}P{\text{CO}}_2 = 3162{\text{b, }}P{\text{H}}_2 = 2.5{\text{b, }}P{\text{CH}}_4 = 52.5{\text{b, }}P{\text{CO}} = 11.0{\text{b}}\) are obtained for \(f{\text{O}}_2 = 10^{ - 26}\) . If total pressure equals fluid pressure, then the total pressure during metamorphism was approximately 6 kb. The total fluid pressure calculated is extremely sensitive to the value of \(f{\text{O}}_2\) chosen.  相似文献   

14.
A new determination of the equilibrium reaction: $$\begin{gathered} 2{\text{ Mg}}_{\text{2}} [{\text{SiO}}_{\text{4}} ] + 3{\text{ H}}_{\text{2}} {\text{O}} \rightleftharpoons {\text{1 Mg}}_{\text{3}} [({\text{OH)}}_{\text{4}} |{\text{Si}}_{\text{2}} {\text{O}}_{\text{5}} ] + 1{\text{ Mg(OH)}}_{\text{2}} \hfill \\ \hfill \\ {\text{ forsterite serpentine brucite}} \hfill \\ \end{gathered} $$ yielded equilibrium temperatures which lie (at identical H2O-pressures) about 60° C lower than all previously published data (Bowen and Tuttle, 1949; Yoder, 1952; Kitahara et al., 1966; Kitahara and Kennedy, 1967). It has been shown that the above authors have determined not the stable equilibrium curve but instead a metastable “synthesis boundary”. The actual (stable) equilibrium curve is located at 0,5 kb and 350° C 2,0 kb and 380° C 3,5 kb and 400° C 5,0 kb and 420° C 6,5 kb and 430° C.  相似文献   

15.
In order to evaluate the effect of trace and minor elements (e.g., P, Y, and the REEs) on the high-temperature solubility of Ti in zircon (zrc), we conducted 31 experiments on a series of synthetic and natural granitic compositions [enriched in TiO2 and ZrO2; Al/(Na + K) molar ~1.2] at a pressure of 10 kbar and temperatures of ~1,400 to 1,200 °C. Thirty of the experiments produced zircon-saturated glasses, of which 22 are also saturated in rutile (rt). In seven experiments, quenched glasses coexist with quartz (qtz). SiO2 contents of the quenched liquids range from 68.5 to 82.3 wt% (volatile free), and water concentrations are 0.4–7.0 wt%. TiO2 contents of the rutile-saturated quenched melts are positively correlated with run temperature. Glass ZrO2 concentrations (0.2–1.2 wt%; volatile free) also show a broad positive correlation with run temperature and, at a given T, are strongly correlated with the parameter (Na + K + 2Ca)/(Si·Al) (all in cation fractions). Mole fraction of ZrO2 in rutile $ \left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) $ in the quartz-saturated runs coupled with other 10-kbar qtz-saturated experimental data from the literature (total temperature range of ~1,400 to 675 °C) yields the following temperature-dependent expression: $ {\text{ln}}\left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) + {\text{ln}}\left( {a_{{{\text{SiO}}_{2} }} } \right) = 2.638(149) - 9969(190)/T({\text{K}}) $ , where silica activity $ a_{{{\text{SiO}}_{2} }} $ in either the coexisting silica polymorph or a silica-undersaturated melt is referenced to α-quartz at the P and T of each experiment and the best-fit coefficients and their uncertainties (values in parentheses) reflect uncertainties in T and $ \mathop X\nolimits_{{{\text{ZrO}}_{2} }}^{\text{rt}} $ . NanoSIMS measurements of Ti in zircon overgrowths in the experiments yield values of ~100 to 800 ppm; Ti concentrations in zircon are positively correlated with temperature. Coupled with values for $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ for each experiment, zircon Ti concentrations (ppm) can be related to temperature over the range of ~1,400 to 1,200 °C by the expression: $ \ln \left( {\text{Ti ppm}} \right)^{\text{zrc}} + \ln \left( {a_{{{\text{SiO}}_{2} }} } \right) - \ln \left( {a_{{{\text{TiO}}_{2} }} } \right) = 13.84\left( {71} \right) - 12590\left( {1124} \right)/T\left( {\text{K}} \right) $ . After accounting for differences in $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ , Ti contents of zircon from experiments run with bulk compositions based on the natural granite overlap with the concentrations measured on zircon from experiments using the synthetic bulk compositions. Coupled with data from the literature, this suggests that at T ≥ 1,100 °C, natural levels of minor and trace elements in “granitic” melts do not appear to influence the solubility of Ti in zircon. Whether this is true at magmatic temperatures of crustal hydrous silica-rich liquids (e.g., 800–700 °C) remains to be demonstrated. Finally, measured $ D_{\text{Ti}}^{{{\text{zrc}}/{\text{melt}}}} $ values (calculated on a weight basis) from the experiments presented here are 0.007–0.01, relatively independent of temperature, and broadly consistent with values determined from natural zircon and silica-rich glass pairs.  相似文献   

16.
Shallow groundwater (>30 mbgl) is an essential source of drinking water to rural communities in the Ndop plain, northwest Cameroon. As a contribution to water management, the effect of seasonal variation on the groundwater chemistry, hydrochemical controls, drinking quality and recharge were investigated during the peaks of the dry (January) and rainy (September) seasons. Field measurements of physical parameters were preceded by sampling 58 groundwater samples during both seasons for major ions and stable isotope analyses. The groundwater, which was barely acidic (mean pH of 6) and less mineralised (TDS < 272 mg/l), showed no significant seasonal variation in temperature, pH and TDS during the two seasons. The order of cation abundance (meq/l) was Na+ > Ca2+ > Mg2+ > K+ and Na+ > Mg2+ > Ca2+ > K+ in the dry and rainy seasons, respectively, but that of anions ( \( {\text{HCO}}_{3}^{ - } \)  >  \( {\text{NO}}_{3}^{ - } \)  > Cl? >  \( {\text{SO}}_{4}^{2 - } \)  > F?) was similar in both seasons. This suggests a negligible effect of seasonal variations on groundwater chemistry. The groundwater, which was CaMgHCO3 and NaHCO3, is chemically evolved rainfall (CaMgSO4Cl) in the area. Silicate mineral dissolution and cation-exchange were the main controls on groundwater chemistry while there was little anthropogenic influence. The major ions and TDS concentrations classified the water as suitable for human consumption as per WHO guidelines. The narrow cluster of δ18O and δD of same groundwater from both seasons between the δ18O and δD values of May–June precipitation along the Ndop Meteoric Water Line indicates meteoric origin, rapid recharge (after precipitation) and timing of recharge between May and June rainfall. Diffuse groundwater recharge mainly occurs at low altitudes (<1,400 m asl) within the plain. Besides major ions and TDS, the similar δ18O and δD of groundwater from both seasons indicate a consistent groundwater recharge and flow pattern throughout the year and resilience to present day short-term seasonal climatic variations. However, controlled groundwater abstraction is recommended given the increasing demand.  相似文献   

17.
Experiments at high pressure and temperature indicate that excess Ca may be dissolved in diopside. If the (Ca, Mg)2Si2O6 clinopyroxene solution extends to more Ca-rich compositions than CaMgSi2O6, macroscopic regular solution models cannot strictly be applied to this system. A nonconvergent site-disorder model, such as that proposed by Thompson (1969, 1970), may be more appropriate. We have modified Thompson's model to include asymmetric excess parameters and have used a linear least-squares technique to fit the available experimental data for Ca-Mg orthopyroxene-clinopyroxene equilibria and Fe-free pigeonite stability to this model. The model expressions for equilibrium conditions \(\mu _{{\text{Mg}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{opx}}} = \mu _{{\text{Mg}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{cpx}}} \) (reaction A) and \(\mu _{{\text{Ca}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{opx}}} = \mu _{{\text{Ca}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{cpx}}} \) (reaction B) are given by: 1 $$\begin{gathered} \Delta \mu _{\text{A}}^{\text{O}} = {\text{RT 1n}}\left[ {\frac{{(X_{{\text{Mg}}}^{{\text{opx}}} )^2 }}{{X_{{\text{Mg}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} }}} \right] - \frac{1}{2}\{ W_{21} [2(X_{{\text{Ca}}}^{{\text{M2}}} )^3 - (X_{{\text{Ca}}}^{{\text{M2}}} ] \hfill \\ {\text{ + 2W}}_{{\text{22}}} [X_{{\text{Ca}}}^{{\text{M2}}} )^2 - (X_{{\text{Ca}}}^{{\text{M2}}} )^3 + \Delta {\text{G}}_{\text{*}}^{\text{0}} (X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Ca}}}^{{\text{M2}}} )\} \hfill \\ {\text{ + W}}^{{\text{opx}}} (X_{{\text{Wo}}}^{{\text{opx}}} )^2 \hfill \\ \Delta \mu _{\text{B}}^{\text{O}} = {\text{RT 1n}}\left[ {\frac{{(X_{{\text{Ca}}}^{{\text{opx}}} )^2 }}{{X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Ca}}}^{{\text{M2}}} }}} \right] - \frac{1}{2}\{ 2W_{21} [2(X_{{\text{Mg}}}^{{\text{M2}}} )^2 - (X_{{\text{Mg}}}^{{\text{M2}}} )^3 ] \hfill \\ {\text{ + W}}_{{\text{22}}} [2(X_{{\text{Mg}}}^{{\text{M2}}} )^3 - (X_{{\text{Mg}}}^{{\text{M2}}} )^2 + \Delta {\text{G}}_{\text{*}}^{\text{0}} (X_{{\text{Mg}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} )\} \hfill \\ {\text{ + W}}^{{\text{opx}}} (X_{{\text{En}}}^{{\text{opx}}} )^2 \hfill \\ \hfill \\ \end{gathered} $$ where 1 $$\begin{gathered} \Delta \mu _{\text{A}}^{\text{O}} = 2.953 + 0.0602{\text{P}} - 0.00179{\text{T}} \hfill \\ \Delta \mu _{\text{B}}^{\text{O}} = 24.64 + 0.958{\text{P}} - (0.0286){\text{T}} \hfill \\ {\text{W}}_{{\text{21}}} = 47.12 + 0.273{\text{P}} \hfill \\ {\text{W}}_{{\text{22}}} = 66.11 + ( - 0.249){\text{P}} \hfill \\ {\text{W}}^{{\text{opx}}} = 40 \hfill \\ \Delta {\text{G}}_*^0 = 155{\text{ (all values are in kJ/gfw)}}{\text{.}} \hfill \\ \end{gathered} $$ . Site occupancies in clinopyroxene were determined from the internal equilibrium condition 1 $$\begin{gathered} \Delta G_{\text{E}}^{\text{O}} = - {\text{RT 1n}}\left[ {\frac{{X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} }}{{X_{{\text{Ca}}}^{{\text{M2}}} \cdot X_{{\text{Mg}}}^{{\text{M1}}} }}} \right] + \tfrac{1}{2}[(2{\text{W}}_{{\text{21}}} - {\text{W}}_{{\text{22}}} )(2{\text{X}}_{{\text{Ca}}}^{{\text{M2}}} - 1) \hfill \\ {\text{ + }}\Delta G_*^0 (X_{{\text{Ca}}}^{{\text{M1}}} - X_{{\text{Ca}}}^{{\text{M2}}} ) + \tfrac{3}{2}(2{\text{W}}_{{\text{21}}} - {\text{W}}_{{\text{22}}} ) \hfill \\ {\text{ (1}} - 2X_{{\text{Ca}}}^{{\text{M1}}} )(X_{{\text{Ca}}}^{{\text{M1}}} + \tfrac{1}{2})] \hfill \\ \end{gathered} $$ where δG E 0 =153+0.023T+1.2P. The predicted concentrations of Ca on the clinopyroxene Ml site are low enough to be compatible with crystallographic studies. Temperatures calculated from the model for coexisting ortho- and clinopyroxene pairs fit the experimental data to within 10° in most cases; the worst discrepancy is 30°. Phase relations for clinopyroxene, orthopyroxene and pigeonite are successfully described by this model at temperatures up to 1,600° C and pressures from 0.001 to 40 kbar. Predicted enthalpies of solution agree well with the calorimetric measurements of Newton et al. (1979). The nonconvergent site disorder model affords good approximations to both the free energy and enthalpy of clinopyroxenes, and, therefore, the configurational entropy as well. This approach may provide an example for Febearing pyroxenes in which cation site exchange has an even more profound effect on the thermodynamic properties.  相似文献   

18.
The sulfide (H2S/HS?) that is emitted from hydrothermal vents begins to oxidize abiotically with oxygen upon contact with ambient bottom water, but the reaction kinetics are slow. Here, using in situ voltammetry, we report detection of the intermediate sulfur oxidation products polysulfides [ $ {\text{S}}_{\text{x}}^{2 - } $ ] and thiosulfate [ $ {\text{S}}_{ 2} {\text{O}}_{ 3}^{ 2- } $ ], along with contextual data on sulfide, oxygen, and temperature. At Lau Basin in 2006, thiosulfate was identified in less than one percent of approximately 10,500 scans and no polysulfides were detected. Only five percent of 11,000 voltammetric scans taken at four vent sites at Lau Basin in May 2009 show either thiosulfate or polysulfides. These in situ data indicate that abiotic sulfide oxidation does not readily occur as H2S contacts oxic bottom waters. Calculated abiotic potential sulfide oxidation rates are <10?3 ??M/min and are consistent with slow oxidation and the observed lack of sulfur oxidation intermediates. It is known that the thermodynamics for the first electron transfer step for sulfide and oxygen during sulfide oxidation in these systems are unfavorable, and that the kinetics for two electron transfers are not rapid. Here, we suggest that different metal catalyzed and/or biotic reaction pathways can readily produce sulfur oxidation intermediates. Via shipboard high-pressure incubation experiments, we show that snails with chemosynthetic endosymbionts do release polysulfides and may be responsible for our field observations of polysulfides.  相似文献   

19.
Natural springs have been reliable sources of domestic water and have allowed for the development of recreational facilities and resorts in the Central Appalachians. The structural history of this area is complex and it is unknown whether these natural springs receive significant recharge from modern precipitation or whether they discharge old water recharged over geological times scales. The main objective of this study was to use stable isotopes of water ( $\delta^{18} {\text{O}}_{{{\text{H}}_{2} {\text{O}}}}$ and $\delta^{2} {\text{H}}_{{{\text{H}}_{2} {\text{O}}}}$ ), dissolved inorganic carbon ( $\delta^{13} {\text{C}}_{\text{DIC}}$ ) and dissolved sulfate ( $\delta^{34} {\text{S}}_{{{\text{SO}}_{4} }}$ and $\delta^{18} {\text{O}}_{{{\text{SO}}_{4} }}$ ) to delineate sources of water, carbon and sulfur in several natural springs of the region. Our preliminary isotope data indicate that all springs are being recharged by modern precipitation. The oxygen isotope composition indicates that waters in thermal springs did not encounter the high temperatures required for O isotope exchange between the water and silicate/carbonate minerals, and/or the residence time of water in the aquifers was short due to high flow rates. The carbon isotopic composition of dissolved inorganic carbon and sulfur/oxygen isotopic composition of dissolved sulfate provide evidence of low-temperature water–rock interactions and various biogeochemical transformations these waters have undergone along their flow path.  相似文献   

20.
Crystals of challacolloite, KPb2Cl5, and hephaistosite, TlPb2Cl5, from volcanic sublimates formed on the crater rim of the “La Fossa Crater” at Vulcano, Aeolian Archipelago, Italy, were investigated. Chemical compositions were ${\left( {{\text{K}}_{{0.93}} {\text{Tl}}_{{0.02}} } \right)}_{{\Sigma = 0.95}} {\text{Pb}}_{{2.04}} {\left( {{\text{Cl}}_{{4.90}} {\text{Br}}_{{0.11}} } \right)}_{{\Sigma = 5.01}} $ and ${\text{Tl}}_{{0.94}} {\text{Pb}}_{{2.01}} {\left( {{\text{Cl}}_{{4.91}} {\text{Br}}_{{0.14}} } \right)}_{{\Sigma = 5.05}} $ , respectively. Single crystal X-ray measurements showed monoclinic symmetry for both phases, space group P21/c, with the following unit-cell parameters: a = 8.8989(4), b = 7.9717(5), c = 12.5624(8) Å, β = 90.022(4)°, V = 891.2(1) Å3, Z = 4 (challacolloite) and a = 9.0026(6), b = 7.9723(6), c = 12.5693(9) Å, β = 90.046(4)°, V = 902.1(1) Å3, Z = 4 (hephaistosite). The structure refinements converge to R = 3.99% and R = 3.86%, respectively. The effects of Br?Cl and K?Tl substitutions on the structure of these natural compounds have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号