首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the radial velocities based on spectra of high (near the H α line) and moderate (4420–4960 Å) resolutions supplemented by the published radial velocities has revealed the binarity of a bright member of the young open star cluster χ Per, the star V622 Per. The derived orbital elements of the binary show that the lines of both components are seen in its spectrum, the orbital period is 5.2 days, and the binary is in the phase of active mass exchange. The photometric variability of the star is caused by the ellipsoidal shape of its components. Analysis of the spectroscopic and photometric variabilities has allowed the absolute parameters of the binary’s orbit and its components to be found. V622 Per is shown to be a classical Algol with moderate mass exchange in the binary. Mass transfer occurs from the less massive (\({M_1} = 9.1 \pm 2.7{M_ \odot }\)) but brighter (\(\log {L_1} = 4.52 \pm 0.10{L_ \odot }\)) component onto the more massive (\({M_2} = 13.0 \pm 3.5{M_ \odot }\)) and less bright (\(\log {L_2} = 3.96 \pm 0.10{L_ \odot }\)) component. Analysis of the spectra has confirmed an appreciable overabundance of CNO-cycle products in the atmosphere of the primary component. Comparison of the positions of the binary’s components on the T eff–log g diagram with the age of the cluster χ Per points to a possible delay in the evolution of the primary component due to mass loss by no more than 1–2Myr.  相似文献   

2.
We present an analysis of BV R light curves of an eclipsing binary CK Bootis, a system with a very small mass ratio. The light curves appear to exhibit a typical O'Connell effect. The light curves are analyzed by means of the latest version of the WD program. The asymmetry of the light curves is explained by a cool star spot model. The simultaneous BV R synthetic light curve analysis gives a tiny mass ratio of 0.12, an extremely large fill‐out factor of 0.65, and a very small difference between the component temperatures of 90 K. The absolute parameters of the system were also derived by combining the photometric solutions with the radial velocity data. The mass of the secondary is very low (0.15 M) and it continues losing mass. Thirty seven new times of minimum are reported. It is found that the orbital period of the system has a quasi periodic variation, superimposed on a period increase. The long‐term period increase rate is deduced to be dP/dt = 3.54x10–7 d yr–1, which can be interpreted as being due to mass transfer from the less massive star to the more massive component. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The light curves, obtained by the authors of the present paper during the period 1978–1992, of the chromospherically active binary system RT Lac were examined. The average (B–V) colour indices were obtained and corrected for the interstellar extinction. Spectroscopic studies indicate that the less massive component may be taken as G8. The light curve analysis indicates that the less massive, larger component fills its corresponding Roche lobe. Both photometric and spectroscopic observations compel one to draw a conclusion that circumstellar matter does exist around the binary system. A colour excess caused by this matter is found to be 0.278 for B–V colour at mid–secondary eclipse. On the basis of photometric colour indices alone, the components of RT Lac are classified as G3–4 and G8. If we use the observed radial velocities of the less massive subgiant star from Ca II emission lines and from other optical lines we find for the mass of the more massive component as 1.34–1.70 M. This mass range corresponds to the main sequence late F stars. The common envelope hypothesis and mass function and also blending of the spectral lines of more massive component point out that it should be at most a late F type main sequence star.  相似文献   

4.
We present a quantitative model of a proposed common slowly expanding envelope corotating with a symbiotic binary system. The geometry of the envelope is defined by the equipotential surface containing the Lagrangian pointL 2. The model was applied to the symbiotic binary EG And. The orbital inclination,i = 45°, and mass ratio of the cool to the hot component,q = 2.8–3.0, are determined. The nature of the primary as well as the secondary minima in the light curves, development of the line profiles, radial velocities and equivalent widths of the H line through an orbital revolution are explained by this model.  相似文献   

5.
A brief history of investigations of Lyr, an emission‐line binary and one of the first ever discovered Be stars is presented. A rather fast progress in the understanding of this enigmatic object during the past fifteen years is then discussed in some detail. The current picture of β Lyr is that it is an eclipsing binary in a stage of mass transfer between the components. The mass‐losing star is a B6‐8II object, with a mass of about 3 M, which is filling the Roche lobe and sending material towards its more massive companion at a rate of about 2 × 10—5 M yr—1. This leads to the observed rapid increase of the orbital period at a rate of 19 s per year. The mass‐gaining star is as early B star with a mass of about 13 M. It is completely hidden inside an opaque accretion disk, jet‐like structures, perpendicular to the orbital plane and a light‐scattering halo above the poles of the star. The observed radiation of the disk corresponds to an effective temperature which is much lower than what would correspond to an early B star. The disk shields the radiation of the central star in the directions along the orbital plane and redistributes it in the directions perpendicular to it. That is why the mass‐losing star appears brighter of the two in the optical region of the spectrum. At present, rather reliable estimates of all basic properties of the binary and its components are available. However, in spite of great progress in understanding the system in recent years, some disagreement between the existing models and observed phase variations still remains, both for continuum and line spectrum, which deserves further effort.  相似文献   

6.
BVR light curves of the recently discovered eclipsing binary V351 Peg were studied to derive the preliminary physical parameters of the system. The light curves were obtained at the TüBİTAK* – Turkish National Observatory (TUG) during three nights in August, 2003. The solutions were made using Djurašević’s inverse problem method. V351 Peg is a system in an overcontact configuration (f over∼ 21 %) with a relatively small temperature difference between the components ΔT ≈ 20 K. The results suggest a significant mass and energy transfer from the more massive primary onto the less massive secondary. The hot area on the less massive star, near the neck region, can be considered as a consequence of this mass and energy exchange between the components through the connecting neck of the common envelope. TüBİTAK: The Scientific and Technical Research Council of Turkey.  相似文献   

7.
The peculiar combination of a relatively short pulse period and a relatively weak surface dipole magnetic field strength of binary radio pulsars finds a consistent explanation in terms of (i) decay of the surface dipole component of neutron-star magnetic fields on a timescale of (2–5) × 106 yr, in combination with (ii) spin-up of the rotation of the neutron star during a subsequent mass-transfer phase. The four known binary radio pulsars appear to fall into two different categories. Two of them, PSR 0655 + 64 and PSR 1913 + 16, have short orbital periods (<25 h) and high mass functions, indicating companion masses 0.7M⊙ (∼1 (± 0.3) M⊙ and 1.4 M⊙, respectively). The other two, PSR 0820 + 02 and PSR 1953 + 29, have long orbital periods (117d), nearly circular orbits, and low, almost identical mass functions of about 3×10-3 M⊙, suggesting companion masses of about 0.3M⊙. It is pointed out that these two classes of systems are expected to be formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. In the first case the companion of the neutron star in the final system will be a massive white dwarf, in a circular orbit, or a neutron star in an eccentric orbit. In the second case the final companion to the neutron star will be a low-mass (∼ 0.3 M⊙) helium white dwarf in a wide and nearly circular orbit. In systems of the second type the neutron star was most probably formed by the accretion-induced collapse of a white dwarf. This explains in a natural way why PSR 1953 + 29 has a millisecond rotation period and PSR 0820 + 02 has not. Among the binary models proposed for the formation of the 1.5-millisecond pulsar, the only ones that appear to be viable are those in which the companion disappeared by coalescence with the neutron star. In such models the companion may have been a red dwarf of mass 0.03M⊙, a neutron star, or a massive (>0.7M⊙) white dwarf. Only in the last-mentioned case is a position of the pulsar close to the galactic plane a natural consequence. In the first-mentioned case the progenitor system most probably was a cataclysmic-variable binary in which the white dwarf collapsed by accretion.  相似文献   

8.
New times of light minimum of the short‐period (P = 0d.26) close binary system, VZ Psc, are presented. A period investigation of the binary star, by combining the three new eclipse times with the others collected from the literatures, shows that the variation of the period might be in an alternate way. Under the hypothesis that the variation of the orbital period is cyclic, a period of 25 years and an amplitude of 0.d0030 for the cyclic change are determined. If this periodic variation is caused by the presence of a third body, the mass of the third body (m3) should be no less than 0.081M. Since both components of VZ Psc are strong chromospherically active and the level of activity of the secondary component is higher than that of the primary one, the period may be more plausibly explained by cyclic magnetic activity of the less massive component. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We propose that single stars in the mass range 4–6·5M , that explode as Supernovae of Type I, are totally disrupted by the explosion and form shell-type remnants. More massive single stars which explode as Supernovae of Type II also give rise to shell-type remnants, but in this case a neutron star or a black hole is left behind. The first supernova explosion in a close binary also gives rise to a shell-type supernova remnant. The Crab-like filled-centre supernova remnants are formed by the second supernova explosion in a close binary. The hybrid supernova remnants, consisting of a filled centre surrounded by a shell, are formed if there is an active neutron star inside the shell.  相似文献   

10.
The metal-deficient star RT Sculptoris is a rare binary showing a secularlydecreasing period, probably due to mass transfer from the more to the less massive component. The somewhat difficult photometric solution indicates a semi-detached configuration with one star only very slightly smaller than its limiting lobe. Probably it is the more massive and lower temperature star which fills its lobe. The photometric solution for the mass ratio (q) is especially troublesome, as there are at least two (nearly equally deep) minima in parameter space-one atq=1.10 and another atq=1.67. The few existing radial velocity observations are inadequate for a determination of the mass ratio, but do point to absolute masses which are about half of those expected. We look into the question of whether this result can be understood in terms of low metallicity, and conclude that a significant part of the discrepancy can be so explained. The remainder could be due to accretion luminosity and to evolution. Some comments are made in regard to whether RT Sculptoris is likely to evolve into a contact system.Contribution from the Department of Astronomy, University of Florida, No. 64.  相似文献   

11.
From accurate radial‐velocity measurements covering 11 circuits of the orbit of the composite‐spectrum binary 45 Cnc, together with high‐resolution spectroscopy spanning nearly 3 circuits, we have (i) isolated cleanly the spectrum of the early‐type secondary, (ii) classified the component spectra as G8 III and A3 III, (iii) derived the first double‐lined orbit for the system and a mass ratio (M1/M2) of 1.035 ± 0.01, and (iv) extracted physical parameters for the component stars, deriving the masses and (log) luminosities of the G star and A star as 3.11 and 3.00 M, and 2.34 and 2.28 L, respectively, with corresponding uncertainties of ±0.10 M and ±0.09 L. Since the mass ratio is close to unity, we argue that the more evolved component is unlikely to have been a red giant long enough to have made multiple ascents of the RGB, an argument that is supported somewhat by the rather high eccentricity of the orbit (e = 0.46) and the evolutionary time‐scales of the two components, but chiefly by the presence of significant Li I in the spectrum of the cool giant. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The evolution of young (≲ 10 Myr) star clusters with a density exceeding about 105 star pc−3 are strongly affected by physical stellar collisions during their early lifetime. In such environments the same star may participate in several tens to hundreds of collisions ultimately leading to the collapse of the star to a black hole of intermediate mass. At later time, the black hole may acquire a companion star by tidal capture or by dynamical – three-body – capture. When the captured star evolves it starts to fill its Roche-lobe and transfers mass to its accompanying black hole. This then leads to a bright phase of X-ray emission, which lasts for the remaining main-sequence lifetime of the donor. If the star captured by the intermediate mass black hole is relatively low mass ≲ 2 M⊙) the binary will also be visible as a bright source in gravitational waves. Based on empirical models we argue that, for as long as the donor remains on the main sequence, the source will be ultraluminous Lx >rsim 1040 ergs-1 for about a week every few month. When the donor star is more massive >15 M⊙, or evolved off the main sequence the bright time is longer, but the total accretion phase lasts much shorter.  相似文献   

13.
Based on two high-dispersion spectra of the close binary BW Boo, we have detected lines of the secondary component whose contribution to the combined spectrum does not exceed 2%. We have determined the rotation velocities of the components and spectroscopic orbital elements. Numerous lines of neutral and ionized iron have been used to determine the effective temperature and surface gravity for the primary component. The photometric light curves for this binary have been solved for the first time. Its primary component is an A2Vm star with a mass of 2 ± 0.1M and a radius of 1.9 ± 0.4R . Its rotation velocity is 2 km s−1, which is a factor of 18 lower than the pseudo-synchronous velocity for this component. The G6 secondary component, a T Tau star, has a rotation velocity of 17 km s−1, amass of 1.1M , and a radius of 1 R . The age of the binary has been estimated to be 107 yr.  相似文献   

14.
The evolution of three close binary systems of total mass 20.4M in and after the phase of mode Br mass-transfer in caseA of mass exchange is investigated. In every case a secondary component evolves to interfere with the progress of primary's evolution and the system overflows the outer critical surface before the primary completes its nuclear-burning evolution. This strongly indicates the importance of simultaneous calculation of both components. A summary of evolution of the systems considered in this series of papers up to the stage ofL 2-overflow is given. The observational aspects of the numerical models are also discussed.  相似文献   

15.
In this paper we present a method for computing the equilibrium structures and various physical parameters of a primary component of the binary system assuming that the primary is more massive than the secondary and is rotating differentially according to the law of the w2 = b0 + b1 × s2 + b2 × s4, w being the angular velocity of rotation of a fluid element distant s from the axis of rotation and b0, b1, b2 suitably chosen numerical constants. This method utilizes the averaging approach of Kippenhahn and Thomas (1997) and the concept of Roche equipotentials in a manner earlier used by Mohan et al. (1997) to incorporate the effects of rotation and tidal distortions on the equilibrium structures of certain rotationally and tidally distorted stellar models. The use of the method has been illustrated by applying it to obtain the structures and some observable parameters of certain differentially rotating and tidally distorted binary systems whose primary component is assumed to be a white dwarf star.  相似文献   

16.
The evolution of the family of binaries with a low-mass star and a compact neutron star companion (low-mass X-ray binaries (LMXBs) with neutron stars) ismodeled by the method of population synthesis. Continuous Roche-lobe filling by the optical star in LMXBs is assumed to be maintained by the removal of orbital angular momentum from the binary by a magnetic stellar wind from the optical star and the radiation of gravitational waves by the binary. The developed model of LMXB evolution has the following significant distinctions: (1) allowance for the effect of the rotational evolution of a magnetized compact remnant on themass transfer scenario in the binary, (2) amore accurate allowance for the response of the donor star to mass loss at the Roche-lobe filling stage. The results of theoretical calculations are shown to be in good agreement with the observed orbital period-X-ray luminosity diagrams for persistent Galactic LMXBs and their X-ray luminosity function. This suggests that the main elements of binary evolution, on the whole, are correctly reflected in the developed code. It is shown that most of the Galactic bulge LMXBs at luminosities L x > 1037 erg s?1 should have a post-main-sequence Roche-lobe-filling secondary component (low-mass giants). Almost all of the models considered predict a deficit of LMXBs at X-ray luminosities near ~1036.5 erg s?1 due to the transition of the binary from the regime of angular momentum removal by a magnetic stellar wind to the regime of gravitational waves (analogous to the widely known period gap in cataclysmic variables, accreting white dwarfs). At low luminosities, the shape of the model luminosity function for LMXBs is affected significantly by their transient behavior-the accretion rate onto the compact companion is not always equal to the mass transfer rate due to instabilities in the accretion disk around the compact object. The best agreement with observed binaries is achieved in the models suggesting that heavy neutron stars with masses 1.4–1.9M can be born.  相似文献   

17.
《New Astronomy》2007,12(1):33-37
Orbital period variation of the W UMa-type eclipsing binary, V899 Herculis, discovered by the Hipparcos satellite was investigated based on all available photoelectric and CCD times of light minimum. It is discovered that the orbital period of the binary shows a cyclic change with an amplitude of 0.0117 days. The cyclic period change can be explained as the light-travel time orbit of a tertiary component in the system, which is in agreement with the spectroscopic result obtained by Lu et al. [Lu, W., Rucinski, S.M., Ogloza, W., 2001. AJ 122, 402] who found that the system, of which V899 Herculis is a fainter component (B), is a triple, even quadruple and with the photometric result obtained by Özdemir et al. [Özdemir, S., Demircan, O., Erdem, A., Cicek, C., Bulut, I., Soydugan, E., Soydugan, F., 2002. A&A 387, 240] who reported a large amount of third light (L3  0.68) of the system. The third body (A) rotates around the eclipsing pair in a period of 3.7 years. Lu et al. [Lu, W., Rucinski, S.M., Ogloza, W., 2001. AJ 122, 402] reported that the tertiary component is F5-type main-sequence star. However, the present analysis shows that the mass of the third component is no less than 2.8 M, which is larger than the mass of an F5-type main-sequence star suggesting that the tertiary component may be a non-eclipsing close binary. Therefore, the system may be a possible unsolved quadruple system containing double close binary stars. It is a good astrophysical laboratory to study the formation and evolution of binary and multiple system. The timescale for the formation of the G-type overcontact binary (V899 Herculis) via AML should be shorter than the main-sequence time of an F5-type star.  相似文献   

18.
The further evolution of a massive X-ray binary consisting of a compact object and an OB supergiant is outlined. The supergiant exceeds its critical Roche lobe and a second stage of mass transfer starts. The remnant of the mass losing star — a pure helium star — develops a collapsing iron core and finally undergoes a supernova explosion. If the compact companion is a black hole the system remains bound; if the compact companion is a neutron star the system is disrupted unless an extra kick allowing an asymmetric explosion is given. Computations were performed for the massive binary 22.5M +2M . The possible final evolutionary products are: (1) a black hole and a compact object, in a binary system, (2) two run-away pulsars, (3) a binary pulsar. As final parameters for the described system the eccentricity and period for the recently discovered binary pulsar 1913+16 may be found. An orbital inclination ofi=40° may be derived. The probability for the generation of binary pulsars is very low; in most cases the system is disrupted during the supernova explosion.  相似文献   

19.
Earlier photometric and spectroscopic observations of the binary BM Ori are interpreted in terms of a thin disk model for the object which causes the eclipses. It is shown that the secondary mass, about which the disk particles orbit, has small dimensions and a mass of 3 to 4m , which suggests that it can only be a collapsed star. The model requires a history of mass exchange or mass loss for the binary. If the Trapezium stars have been formed with the past 2×104 yr, as some studies have indicated, a less conventional alternative, perhaps involving fragmentation of a pre-stellar mass, is needed. Further observations may make it possible to decide for certain between this and a recent model by Hall.  相似文献   

20.
Main results of computations of evolution for massive close binaries (10M +9.4M , 16M +15M , 32M +30M , 64M +60M ) up to oxygen exhaustion in the core are described. Mass exchange starting in core hydrogen, shell hydrogen and core helium burning stages was studied. Computations were performed assuming both the Ledoux and Schwarzschild stability criteria for semiconvection. The influence of UFI-neutrino emission on evolution of close binaries was investigated. The results obtained allow to outline the following evolutionary chain: two detached Main-Sequence stars — mass exchange — Wolf-Rayet star or blue supergiant plus main sequence star — explosion of the initially more massive star appearing as a supernova event — collapsed or neutron star plus Main-Sequence star, that may be observed as a runaway star — mass exchange leading to X-rays emission — collapsed or neutron star plus WR-star or blue supergiant — second explosion of supernova that preferentially disrupts the system and gives birth to two single high spatial velocity pulsars.Numerical estimates concerning the number and properties of WR-stars, pulsars and X-ray sources are presented. The results are in favour of the existence of UFI-neutrino and of the Ledoux criterion for describing semiconvection. Properties of several well-known X-ray sources and the binary pulsar are discussed on base of evolutionary chain of close binaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号