首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
温州港台风暴潮高潮最大增水分析和预报   总被引:1,自引:0,他引:1  
林克式 《海洋预报》1997,14(4):59-66
本文统计分析了温州港台风暴潮的情况,着重分析预报登陆型台风在登陆前和登陆后高潮时温州港的增水,并分析了海上转向型台风在高潮时的最大增水。通过统计相关建立起相应的预报公式,为温州港台风暴潮预报提供一定依据。  相似文献   

2.
8114台风暴潮与天文潮非线性耦合作用的初步探讨   总被引:2,自引:3,他引:2  
张延廷  王以娇 《海洋学报》1986,8(3):283-290
黄海的台风暴潮,具有明显的周期性波动。除风暴扰动的长波效应外,还存在天文潮与风暴潮的耦合作用。本文对此进行了数值模拟。计算结果与实际基本相符。由此说明,潮周期波动主要是由天文潮与风暴潮的耦合作用所致,其波动的强弱取决于风暴潮流与天文潮流的相对运动方向、潮差及增水的大小。涨潮时增水最大;退潮时增水最小;而高潮时不出现增水极值。  相似文献   

3.
迄今为止,天文潮波和气象潮相互作用的理论研究均局限于自由波的非线性效应。 本文试图对自由潮波和受迫气象潮波的相互作用作一探讨。作者求出的非线性精确解用于给出自由天文潮波与受迫气象潮波的零级解析解。 结果表明强迫波中心处非线性效应最大。强迫波中心遇到高潮时其增水小于强迫波中心遇到低潮时的增水,并且前者增水曲线更为平缓。因此,当强迫波中心与高潮相遇时,增水的时间往往持续得更长一些。  相似文献   

4.
针对只有高低潮数据的情况,利用人工神经网络建立起一种预报当前台风时刻后第一个高潮时增水的模型。该模型选取台风在当前时刻、前6 h、前12 h、前18 h的中心经度、纬度、最大风速、中心气压以及当前时刻前第一个高潮时刻的风暴增水为输入单元。台风当前时刻后第一个高潮时刻风暴增水为模型输出单元。利用历史资料形成的规范化后的模式对,对模型进行训练,训练成功后,结合台风因子预报模型,即可用于风暴增水的预报。经过长江口高桥站高低潮实测资料的检验,结果表明该模型提取到了风暴增水效应,说明该模型可用于风暴增水的预报。  相似文献   

5.
本文通过我国四个海区有代表性的台站多年实测潮位与大风浪资料的统计分析,找出了大风过程与天文潮位的关系,高潮时增水与天文潮的关系,大风浪过程与实测潮位的关系等,文中提出了一种采用联合概率确定设计潮位的方法。  相似文献   

6.
海岸是风暴潮发生的区域,由于该区域位于大气、海洋、陆地的交汇处,受到多种因素的共同影响,因此风暴潮过程的机理复杂。通常当风暴增水叠加在正常的天文高潮时,引发最为严重的影响。利用经验模态分解(EMD-Empirical Mode Decomposition)的方法,对中国沿海的潮位站的水位波进行分解。EMD分解得到的增水曲线与低通滤波后的调和分析的增水曲线基本一致。利用该方法,进一步的分析台风造成的福建沿海测站的风暴增水的异同。结果表明:台风经过台湾海峡南、北部和进入海峡时,都会造成福建沿岸各站的增水,增水的幅度与各站距离台风中心的距离有关,各站的增水时间差异很小。然而,通过两次热带气旋期间中国东部沿岸多个潮位站的分析发现,台风在东海产生的增水会以开尔文波的形式传播进入台湾海峡,造成福建沿岸异常的增水现象。  相似文献   

7.
为研究江苏近海海域风暴潮的特性以及为该海域风暴潮增水变化机理及后报做铺垫,本文基于FVCOM(Finite Volume Coast and Ocean Model)海洋模式和Jelesnianski圆形台风风场模型,建立了江苏近海风暴潮数值模型,并对江苏近海的天文潮以及1109号台风和1210号台风引起的风暴潮进行模拟。结合验潮站水位观测,研究了连云港站和吕泗站的天文潮和风暴潮增水过程。我们将风暴潮与天文潮非线性作用下的风暴潮增水和纯风暴潮增水过程进行对比,讨论了天文潮与1109号和1210号台风风暴潮之间的非线性作用引起的增水特征。结果均表明,在天文潮高潮时,天文潮和风暴潮之间的非线性作用可以抑制增水,在天文潮低潮时,天文潮和风暴潮之间的非线性作用有利于增水。除了气象因子以及天文潮和风暴潮之间的非线性作用外,该海区的地理环境也对台风风暴潮增水产生影响。因此对江苏近海的海岸线变化和浅滩地形变化进行敏感性试验,结果表明,本文所设计的海岸线变化对该海域的风暴潮增水影响较小,江苏沿海岸线的向外推移使得江苏海域风暴潮的增水略微上涨,而本文所设计的地形的变化对风暴潮增水影响较大。  相似文献   

8.
本文基于FVCOM(Finite Volume Community Ocean Model)构建了一个覆盖中国渤海、黄海和东海的数值模型,采用NCEP-CFSR风场数据对1509号台风“灿鸿”产生的风暴潮进行模拟,与实测水位数据的对比表明该模型可靠、模拟结果合理。基于此模型,本文对非线性作用和地形在风暴潮增水过程中的作用进行了研究。首先,重点分析了增水过程中潮汐与风暴潮的非线性作用,结果表明:高潮时非线性作用使增水值降低;低潮时非线性作用使增水值升高。另外,开边界处分别只添加M2、S2和K1分潮,分析天文潮的潮高和周期对非线性作用的影响,结果表明:潮高越高,非线性作用越明显;半日潮的非线性作用较全日潮更明显;并且,增水极值附近出现的半日周期的波动也与非线性作用有关。其次,除了非线性作用,地形对风暴潮的增水也有一定影响,本文改变地形的实验结果表明:坡度越大,增水极值越小。琉球群岛的存在使得东南沿海出现风暴潮增水的面积减小,但使得风暴潮增水的高值区域扩大。  相似文献   

9.
选择20个对舟山海域有较大影响的历史台风案例,开展定海站实测潮位数据的分析与归纳,总结得出20个台风中风暴潮过程增水最大值为5612号台风的207.1 cm,风暴潮高潮位最大值为9711号台风的283.7 cm。同时,在三维斜压水动力模型SELFE的基础上加入台风气压场和风场模块,建立了一个采用非结构三角形网格的天文潮-风暴潮耦合模型,模拟表明定海站的斜压效应较为明显,非线性耦合作用相对较弱,但两潮耦合风暴潮增水结果仍优于风暴潮单因子增水结果,与实际增水更为接近。在此基础上,以一定间隔在5612号台风原路径南北两侧各设计了2条平行路径,分别模拟两潮耦合风暴潮增水,结果表明5612号台风参数沿其原路径偏南1个最大风速半径距离的S1路径运动时可模拟得到定海站可能最大风暴潮增水为243.9 cm。最后,在S1路径下模拟可能最大风暴潮增水分别遭遇天文高、中、低潮位时的风暴潮高潮位,结果表明天文潮高潮时可得到可能最大风暴潮高潮位约为400 cm,天文中潮时次之,而天文低潮时风暴潮高潮位最低。  相似文献   

10.
文章利用沧州海洋站观测资料对本次台风风暴潮过程进行分析,发现天文高潮时沧州沿海出现了远超警戒潮位的高潮位,而后"达维"中心带来的东北大风使沧州沿海风暴增水值达到最大。对建国以来6次北上影响沧州的致灾台风进行了路径相似分析,获取影响台风风暴潮强度的重要因素,可为研究本地区台风风暴潮规律,提高预警报准确度,减少风暴潮灾害带来的损失提供经验和参考。  相似文献   

11.
近年来,应用数值模型模拟台风引起的风暴潮运动越来越普遍,模型中对于风拖曳力系数的确定,一般都从相对风速出发,可引用的公式也较多,但这些公式很少考虑潮位变化对此系数的影响.在强潮河口、海岸海域,潮位变幅大,最高潮位甚至可达风速参考高度(10m)的近一半,如长江口和杭州湾.在数值模拟中不考虑风暴潮和天文潮共同引起的潮位变化,会造成风应力高潮时被低估、低潮时被高估的现象,从而影响风暴潮模拟的精度.为此本文对现有的风拖曳力系数加以改进,提出了考虑潮位影响的风拖曳力系数表达式,并应用于长江口、杭州湾9711号台风风暴潮的模拟中,增水模拟结果得到了明显改善,可进一步推广应用于强潮河口、海岸的风暴潮增水模拟中.  相似文献   

12.
利用实测资料分析了天津近海增减水的变化规律,冬季温带气旋引起的增水在全年中所占的频率较高,夏季热带气旋引起的增水幅度较大,这两者较容易引起较大的风暴灾害。本文通过统计历史台风过程,确定了最大热带气旋参数,建立了风暴增减水数值模拟模型,计算了该海区台风引起的可能最大增水,增水值为3.6 m。构建了温带敏感性实验,确定了该海区温带气旋最大增水的方向,计算了温带可能最大增减水,增水值为3.3 m,减水值为-3.7 m。由此确定了该海区可能最大风暴潮增水值为3.6 m,减水值为-3.7 m。  相似文献   

13.
本文根据影响湛江的典型热带气旋和风暴潮增水资料,系统地分析了热带气旋登陆地点、路径等要素和湛江港增水的关系。结果表明,湛江港发生的增水极值时间和增水形式因热带气旋登陆地点和路径的不同而异。从动力学进一步分析也表明,湛江港的增水类型与热带气旋登陆地点和路径关系非常密切。本文最后还讨论共振现象对湛江港增水的影响。  相似文献   

14.
2010年连续三个台风在福建漳浦县登陆,创造了一年登陆当地台风个数的新纪录,并引发了严重风暴潮灾害.本文对比分析了三个台风风暴潮特征,结果表明:(1)三个台风风暴潮都具有开阔海域增水特征,最大增水出现在右半圆,并向两边递减;最大增水时空分布与台风移动路径和海岸地形相关,在南路“鲇鱼”和“狮子山”登陆后的偏南风作用下,湾口朝南的浮头湾出现过程最大增水,出现时间在台风登陆后;东路“凡亚比”台风在穿过台湾岛靠近沿海过程中,持续增强的偏东风,使湾口朝东的九龙江口出现最大增水,出现时间为台风登陆时刻;最大增水与台风登陆时的强度成正比;(2)东路的台风引发的增水出现在台风进入台湾海峡后,各站最大增水峰出现时间集中且明显;南路台风引发增水出现时间较早,持续时间长,最大增水峰不明显,过程最大增水出现在台风登陆后的局部区域.  相似文献   

15.
1409号"威马逊"台风是1949年以来登陆我国华南地区的最强台风。本文首先以铁山港海域的潮位站和气象站实测资料为基础,对铁山港海域的风暴增水特征进行了初步分析,结果表明:铁山港湾内最大风暴增水值要大于湾口处,通过对历史增水值进行重现期推算可知1409号台风造成的最大增水强度达到了200年一遇。台风登陆期间铁山港海域发生先减水后增水的现象,是因为铁山港海域的风向发生了转变,先是吹离岸风,后改为向岸风。然后基于MIKE21和Holland台风风场建立二维风暴潮数学模型分析了1409号台风的最大增水空间分布规律,模型结果显示地形与风暴潮增水的关系十分密切,铁山港内部湾顶位置处最大风暴增水超过了3.2 m,比铁山港口门处增加了1.2 m,因此需要格外重视铁山港湾顶处的风暴潮防灾减灾工作。  相似文献   

16.
宁波镇海海洋站为浙北沿岸较典型的验潮站,且其风暴潮增水资料序列也相对较长。文中通过对近几十年来镇海站70 cm以上风暴增水过程的分析,研究其强风暴潮增水过程的总体特征。文章还具体分析了3种不同路径台风造成的强风暴潮增水的特点,从而为以后该站强风暴潮增水的预报提供借鉴。  相似文献   

17.
李培顺 《海洋预报》1993,10(1):69-76
本文采用增水峰、谷时与高、低潮时的对应关系预报未来24小时之内的增水峰、谷时。采用增水峰增、减趋势外延和回归计算相结合的方法预报其峰值。然后,利用模拟的增水曲线,对港区内的台风增水及潮位进行预报,效果很好。  相似文献   

18.
基于ADCIRC模式和Holland台风模型,建立精细化珠江口风暴潮数学模型.针对2018年台风“山竹”在该区域的灾难性影响,模拟其在珠江河网引起的风暴增水过程,并着重分析了八大口门水道增水的时空分布特征和成因.结果 表明:珠江口外海最大增水和2m以上增水整体由外海向口门、东南向西北增大,最大增水范围为0.5~3.0 ...  相似文献   

19.
2006年夏季福建近海台风风暴潮特征分析   总被引:1,自引:0,他引:1  
许金电  郭小钢  黄奖 《台湾海峡》2011,30(4):473-482
根据2006年夏季福建沿岸4个海洋观测站和福建近海5个潜标水位观测站的水位观测资料,分析了在4个热带气旋影响下的福建近海风暴潮特征.结果表明:福建沿岸海域的台风风暴潮大小不完全取决于台风强弱,与大风半径关系密切.若台风大风区覆盖整个台湾海峡,福建沿岸海域增水都较大,比如0604号强热带风暴“碧利斯”的大风区较大,由其引起厦门海洋观测站的最大增水高度达114em.0608号超强台风“桑美”和0609号强热带风暴“宝霞”双台风的大风区都比较小,由其引起的各测站增水相对也较小,增水高度最大的厦门海洋观测站只有52em.比较福建近海潜标水位观测站及其附近的海洋观测站采用11点(11h)滑动平均后的最大增水可知,福建近海潜标观测站台风增水高度(22~46cm)比沿岸海洋观测站的台风增水高度(62—73em)小40%左右.这表明台风增水有个向岸堆积的过程,即测站离岸越远,台风增水高度就越小.位于热带气旋(0605号台风“格关”)行进路径右侧的测站增水较大(平潭海洋观测站极值增水高度为49em,崇武海洋观测站极值增水高度为55em),位于热带风暴行进路径左侧的测站增水较小(东山海洋观测站极值增水高度为45cm).通过对0604号强热带风暴“碧利斯”引起的各测站增水滤除高频振荡后,福建沿岸海洋观测站最大增水高度从大到小依次为崇武站(74orfl)、平潭站(73em)、厦门站(68om)、东山站(62cm),可见距离热带风暴中心越近(距离热带风暴中心从近到远依次为平潭、崇武、厦门、东山海洋观测站),增水高度越大,反之,增水高度越小.台湾海峡地形和福建沿岸海域地形容易出现双(多)增水峰现象.通过对各测站台风增水时间序列进行最大熵谱分析可知,热带气旋容易引起福建沿岸和近海各测站台风增水出现周期为12.0h的振荡.  相似文献   

20.
本文在统计1950-1997年影响湛江港的热带气旋的基础上,利用1953-1982年30年间湛江港发生的风暴增水的资料,对湛江港风暴增水的总体特征进行了分析,总结出湛江港风暴增水的特征在于季节分布的不均匀、大的正增水和高实测水位出现频繁、造成的风暴潮灾比较严重;通过两类典型风暴潮的详细分析,结果表明:湛江港的风暴增水与影响湛江的热带气旋密切相关,大的风暴增水主要由台风引起,湛江港的地理位置也是影响风暴增水的重要因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号