首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2009. During this period, 450 earthquakes and 68 quarry blasts were detected and located in the region under consideration. The three strongest events occurred about 15 km NW of Basel in southern Germany (ML 4.2), near Wildhaus in the Toggenburg (ML 4.0) and near Bivio in Graubünden (ML 3.5). Although felt by the population, they were not reported to have caused any damage. With a total of 24 events with ML ≥ 2.5, the seismic activity in the year 2009 was close to the average over the previous 34 years.  相似文献   

2.
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2010. During this period, 407 earthquakes and 85 quarry blasts were detected and located in the region under consideration. With a total of only 19 events with ML ≥ 2.5, the seismic activity in the year 2010 was below the average over the previous 35 years. The two most noteworthy earthquakes were the ML 3.4 Barrhorn event near Sankt Niklaus (VS) and the ML 3.0 event of Feldkirch, both of which produced shaking of intensity IV.  相似文献   

3.
This report summarizes the seismicity in Switzerland and surrounding regions in the years 2015 and 2016. In 2015, the Swiss Seismological Service detected and located 735 earthquakes in the region under consideration. With a total of 20 earthquakes of magnitude ML ≥ 2.5, the seismic activity of potentially felt events in 2015 was close to the average of 23 earthquakes over the previous 40 years. Seismic activity was above average in 2016 with 872 located earthquakes of which 31 events had ML ≥ 2.5. The strongest event in the analyzed period was the ML 4.1 Salgesch earthquake, which occurred northeast of Sierre (VS) in October 2016. The event was felt in large parts of Switzerland and had a maximum intensity of V. Derived focal mechanisms and relative hypocenter relocations of aftershocks image a SSE dipping reverse fault, which likely also hosted an ML 3.9 earthquake in 2003. Another remarkable earthquake sequence in the Valais occurred close to Sion with four felt events (ML 2.7–3.2) in 2015/16. We associate this sequence with a system of WNW-ESE striking fault segments north of the Rhône valley. Similarities with a sequence in 2011, which was located about 10 km to the NE, suggest the existence of an en-echelon system of basement faults accommodating dextral slip along the Rhône-Simplon line in this area. Another exceptional earthquake sequence occurred close to Singen (Germany) in November 2016. Relocated hypocenters and focal mechanisms image a SW dipping transtensional fault segment, which is likely associated with a branch of the Hegau-Bodensee Graben. On the western boundary of this graben, micro-earthquakes close to Schlattingen (TG) in 2015/16 are possibly related to a NE dipping branch of the Neuhausen Fault. Other cases of earthquakes felt by the public during 2015/16 include earthquakes in the region of Biel, Vallorcine, Solothurn, and Savognin.  相似文献   

4.
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2011. During this period, 522 earthquakes and 92 quarry blasts were detected and located in the region under consideration. With a total of only 10 events with M L????2.5, the seismic activity in the year 2011 was far below the average over the previous 36?years. Most noteworthy were the earthquake sequence of Sierre (VS) in January, with two events of M L 3.3 and 3.2, the M L 3.3 earthquake at a depth of 31?km below Bregenz, and the M L 3.1 event near Delémont. The two strongest events near Sierre produced shaking of intensity IV.  相似文献   

5.
New empirical relations are derived for source parameters of the Koyna–Warna reservoir-triggered seismic zone in Western India using spectral analysis of 38 local earthquakes in the magnitude range M L 3.5–5.2. The data come from a seismic network operated by the CSIR-National Geophysical Research Institute, India, during March 2005 to April 2012 in this region. The source parameters viz. seismic moment, source radius, corner frequency and stress drop for the various events lie in the range of 1013–1016 Nm, 0.1–0.4 km, 2.9–9.4 Hz and 3–26 MPa, respectively. Linear relationships are obtained among the seismic moment (M 0), local magnitude (M L), moment magnitude (M w), corner frequency (fc) and stress drop (?σ). The stress drops in the Koyna–Warna region are found to increase with magnitude as well as focal depths of earthquakes. Interestingly, accurate depths derived from moment tensor inversion of earthquake waveforms show a strong correlation with the stress drops, seemingly characteristic of the Koyna–Warna region.  相似文献   

6.
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2006. During this period, 572 earthquakes and 91 quarry blasts were detected and located in the region under consideration. Of these earthquakes, two occurred in conjunction with the construction of the new Gotthard railway tunnel and 165 were induced artificially by the stimulation of a proposed geothermal reservoir beneath the city of Basel. With 20 events with M L ≥ 2.5, five of which were artificially induced, the seismic activity in the year 2006 was far below the average over the previous 31 years. Nevertheless, six events were felt by the public, most prominently the strongest of the induced Basel events (M L 3.4), which caused some non-structural building damage. Noteworthy are also the two earthquakes near Cortaillod (M L 3.2), on the shore of Lake Neuchatel, and in Val Mora (M L 3.5), between the Engadin and Val Müstair, as well as the 42 aftershocks of the M L 4.9 Vallorcine earthquake, between Martigny and Chamonix, of September 2005. Editorial handling: Stefan Bucher  相似文献   

7.
8.
Earthquakes in Switzerland and surrounding regions during 2004   总被引:1,自引:0,他引:1  
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2004. During this period, 677 earthquakes and 96 quarry blasts were detected and located in the region under consideration. With 22 events with ML≥2.5, the seismic activity in the year 2004 was close to the average over the last 30 years. As in previous years, most of the activity was concentrated in the Valais and in Graubünden. In addition, several moderate earthquakes occurred in the lower crust below the northern Alpine foreland. Unusual was that five earthquakes were sufficiently strong to cause ground shaking of intensity IV over large portions of the territory. Two were located in Switzerland (Liestal, ML 3.8, and Brugg, ML 4.0). The epicenters of the other three strong events were located outside Switzerland (Besan?on in the French Jura, ML 4.8, Waldkirch in southern Germany, ML 5.1, and Lago di Garda in northern Italy, ML 5.3).  相似文献   

9.
10.
Iceland has been subjected to destructive earthquakes and volcanic eruptions throughout history. Such events are often preceded by changes in earthquake activity over varying timescales. Although most seismicity is confined to micro-earthquakes, large earthquakes have occurred within populated regions. Following the most recent hazardous earthquakes in 2000, the Icelandic Meteorological Office (IMO) developed an early warning and information system (EWIS) Web-site for viewing near-real-time seismicity in Iceland. Here we assess Web-site usage data in relation to earthquake activity, as recorded by the South Iceland Lowland (SIL) seismic network. Between March 2005 and May 2006 the SIL seismic network recorded 12,583 earthquakes. During this period, the EWIS Web-site logged a daily median of 91 visits. The largest onshore event (M L 4.2) struck 20 km from Reykjavík on 06 March 2006 and was followed by an immediate, upsurge in usage resulting in a total of 1,173 unique visits to the Web-site. The greatest cluster of large (≥M L 3) events occurred 300 km offshore from Reykjavík in May 2005. Within this swarm, 9 earthquakes ≥M L 3 were detected on 11 May 2005, resulting in the release of a media bulletin by IMO. During the swarm, and following the media bulletin, the EWIS Web-site logged 1,234 unique visits gradually throughout the day. In summary, the data reveal a spatial and temporal relationship between Web-site usage and earthquake activity. The EWIS Web-site is accessed immediately after the occurrence of a local earthquake, whereas distant, unfelt earthquakes generate gradual interest prompted by media bulletins and, possibly, other contributing factors. We conclude that the Internet is a useful tool for displaying seismic information in near-real-time, which has the capacity to help increase public awareness of natural hazards.  相似文献   

11.
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2008. During this period, 451 earthquakes and 75 quarry blasts were detected and located in the region under consideration. The three strongest events occurred in the Valais, near Lac des Toules (ML 3.6), and in Graubünden, near Ilanz (ML 3.7) and Paspels (ML 4.0). Although felt by the population, they were not reported to have caused any damage. However, with a total of only 15 events with ML ≥ 2.5, the seismic activity in the year 2008 was far below the average over the previous 33 years.  相似文献   

12.
13.
This paper presents an analysis of the development of the current seismic state of the Kuznetsk coal basin, which is characterized by an increase in technogenic seismicity of different types under the influence of prolonged intensive mining operations. The development of technogenesis led to a significant increase in technogenic seismicity in the Kuznetsk Basin in the 1970-1980s, when the number of technogenic earthquakes began to exceed the number of natural earthquakes. Among the various types of induced seismicity, special attention is paid to strong technogenic tectonic earthquakes with a regional magnitude Mb ≥ 3 and, accordingly, a seismic energy release of more than 109 J, i.e., earthquakes of energy class K > 9. These small-focus earthquakes are often accompanied by destruction of underground mines, collapse of quarries and pits, damage to surface facilities and equipment, and other adverse effects. In this paper, such earthquakes are defined as technogenic tectonic to emphasize their dual origin: technogenic impacts and the subsequent relaxation of tectonic stresses. It is also noted that the Earth’s interior in Kuzbass initially had its own natural seismicity and a developed system of tectonic faults. Natural seismotectonic activity combined with constantly increasing scales of mining and explosive consumption has led to an increase in the number of technogenic seismic events and their intensity. A striking example of such an event was the 18 June, 2013 Bachat earthquake with a regional magnitude Mb= 5.8 and a seismic intensity of 7 in the epicentral zone. It was the world’s largest man-made earthquake induced by the mining of solid minerals. We consider the possible causes of this catastrophic earthquake and discuss the conditions favoring the formation of foci of such technogenic tectonic earthquakes resulting from changes in the geodynamic and hydrogeological conditions in the Earth’s crust under man-caused impacts. These induced changes in natural processes are accompanied by a change in the stress-strain state, resulting in the concentration of tectonic stresses at heterogeneities and in fault zones, which become sources of induced technogenic seismicity.The paper discusses the current period of the occurrence and increase in such anthropogenic seismicity in the Kuzbass region with increasing scales of coal mining and blasting. Over the last 20 years, the consumption of explosives at Kuzbass enterprises increased from 100-200 to 500-600 thousand tons per year, and, accordingly, the amounts of broken and transported rock increased from several million tons per year to a billion tons per year, which disturbed the dynamic equilibrium in the Earth’s crust and changed the existing field of tectonic stresses. Moreover, the continuously increasing consumption of explosives has also increased the technogenic impact on the crust structures. The location of the epicenters of large-scale blasts inducing seismic events with regional magnitudes Mb= 3.0-4.5 has made it possible to identify regions with the greatest technogenic impact in Kuzbass. Using the data of the ISC seismological catalog, we separated seismic events with the above magnitudes into day and night ones. Since blasting work is forbidden at night, night seismic events are referred to as technogenic tectonic earthquakes (night event criterion). The maximum magnitude of seismic events induced by blasting operations in the Kuznetsk Basin was estimated at Mb ≤ 4.4. The annual number of technogenic tectonic earthquakes with 3.0 ≤ Mb ≤ 3.4, 3.5 ≤ Mb ≤ 3.9, 4.0 ≤ Mb ≤ 4.4, and Mb ≥ 4.5 was determined based on the night event criterion. The regions of their occurrence were identified from the location of the epicenters of technogenic tectonic earthquakes.  相似文献   

14.
In this study, the seismicity rate changes that can represent an earthquake precursor were investigated along the Sagaing Fault Zone (SFZ), Central Myanmar, using the Z value technique. After statistical improvement of the existing seismicity data (the instrumental earthquake records) by removal of the foreshocks and aftershocks and man-made seismicity changes and standardization of the reported magnitude scales, 3574 earthquake events with a M w ≥ 4.2 reported during 1977–2015 were found to directly represent the seismotectonic activities of the SFZ. To find the characteristic parameters specifically suitable for the SFZ, seven known events of M w ≥ 6.0 earthquakes were recognized and used for retrospective tests. As a result, utilizing the conditions of 25 fixed earthquake events considered (N) and a 2-year time window (T w), a significantly high Z value was found to precede most of the M w ≥ 6.0 earthquakes. Therefore, to evaluate the prospective areas of upcoming earthquakes, these conditions (N = 25 and T w = 2) were applied with the most up-to-date seismicity data of 2010–2015. The results illustrate that the vicinity of Myitkyina and Naypyidaw (Z = 4.2–5.1) cities might be subject to strong or major earthquakes in the future.  相似文献   

15.
Study of the 26 December 2011 Aswan earthquake,Aswan area,South of Egypt   总被引:1,自引:1,他引:0  
The source process and parameters for a moderate earthquake of magnitude Ml 4.1 that occurred on the Kalabsha fault at the Aswan area are analyzed. The derived focal mechanisms of this event and other two aftershocks using polarities of P, SV, and SH waves show strike-slip fault with minor vertical movement of normal type. The solutions give two nodal planes trending ENE–WSW and NNW–SSE in close agreement with the surface traces of the faults crossing the area. The movement is right lateral along the first plane while left lateral along the second one. The rupture process characterization of this event has been investigated by using the empirical Green’s function deconvolution method. By inversion only for the P wave part of the records of these three events (main and other two aftershocks), the source time function for the master events and the azimuthally variations in the (RSTF) pulse amplitude are retrieved for estimating the rupture directivities. The estimated rupture direction is combined with the P-wave focal mechanisms for the three events to identify the fault plane solution for these earthquakes. Based on the width, amplitudes, and numbers of the isolated source time functions, a complex bi-lateral rupture of the studied earthquake is delineated. The source parameters of the master event is calculated and the derived corner frequencies f o for P-wave spectra show a value of 6.6 Hz; the seismic moment (M o ) is 4.2?×?1022 Nm; the average displacement (U) is 0.5 m; fault radius (r) 40 m; the average value of the stress drops (Δσ) is 0.6 Mpa, and the moment magnitude (M w ) is 4.4.  相似文献   

16.
Earthquakes in Kenya are common along the Kenya Rift Valley because of the slow divergent movement of the rift and hydrothermal processes in the geothermal fields. This implies slow but continuous radiation of seismic energy, which relieves stress in the subsurface rocks. On the contrary, the NW-SE trending rift/fault zones such as the Aswa-Nyangia fault zone and the Muglad-Anza-Lamu rift zone are the likely sites of major earthquakes in Kenya and the East African region. These rift/fault zones have been the sites of a number of strong earthquakes in the past such as the M w = 7.2 southern Sudan earthquake of 20 May 1990 and aftershocks of M w = 6.5 and 7.1 on 24 May 1990, the 1937 M s = 6.1 earthquake north of Lake Turkana close to the Kenya-Ethiopian border, and the 1913 M s = 6.0 Turkana earthquake, among others. Source parameters of the 20 May 1990 southern Sudan earthquake show that this earthquake consists of only one event on a fault having strike, dip, and rake of 315°, 84°, and ?3°. The fault plane is characterized by a left-lateral strike slip fault mechanism. The focal depth for this earthquake is 12.1 km, seismic moment M o = 7.65 × 1019 Nm, and moment magnitude, M w = 7.19 (?7.2). The fault rupture started 15 s earlier and lasted for 17 s along a fault plane having dimensions of ?60 km × 40 km. The average fault dislocation is 1.1 m, and the stress drop, , is 1.63 MPa. The distribution of historical earthquakes (M w ≥ 5) from southern Sudan through central Kenya generally shows a NW-SE alignment of epicenters. On a local scale in Kenya, the NW–SE alignment of epicenters is characterized by earthquakes of local magnitude M l ≤ 4.0, except the 1928 Subukia earthquake (M s = 6.9) in central Kenya. This NW–SE alignment of epicenters is consistent with the trend of the Aswa-Nyangia Fault Zone, from southern Sudan through central Kenya and further southwards into the Indian Ocean. We therefore conclude that the NW–SE trending rift/fault zones are sites of strong earthquakes likely to pose the greatest earthquake hazard in Kenya and the East African region in general.  相似文献   

17.
Seismic hazard assessment of slow active fault zones is challenging as usually only a few decades of sparse instrumental seismic monitoring is available to characterize seismic activity. Tectonic features linked to the observed seismicity can be mapped by seismic imaging techniques and/or geomorphological and structural evidences. In this study, we investigate a seismic lineament located in the Swiss Alpine foreland, which was discussed in previous work as being related to crustal structures carrying in size the potential of a magnitude M 6 earthquake. New, low-magnitude (?2.0 ≤ ML ≤ 2.5) earthquake data are used to image the spatial and temporal distribution of seismogenic features in the target area. Quantitative and qualitative analyses are applied to the waveform dataset to better constrain earthquakes distribution and source processes. Potential tectonic features responsible for the observed seismicity are modelled based on new reinterpretations of oil industry seismic profiles and recent field data in the study area. The earthquake and tectonic datasets are then integrated in a 3D model. Spatially, the seismicity correlates over 10–15 km with a N–S oriented sub-vertical fault zone imaged in seismic profiles in the Mesozoic cover units above a major decollement on top of the mechanically more rigid basement and seen in outcrops of Tertiary series east of the city of Fribourg. Observed earthquakes cluster at shallow depth (<4 km) in the sedimentary cover. Given the spatial extend of the observed seismicity, we infer the potential of a moderate size earthquake to be generated on the lineament. However, since the existence of along strike structures in the basement cannot be excluded, a maximum M 6 earthquake cannot be ruled out. Thus, the Fribourg Lineament constitutes a non-negligible source of seismic hazard in the Swiss Alpine foreland.  相似文献   

18.
Soil gas radon release patterns have been monitored continuously for more than 3 years in the Eastern Mediterranean Province (EMP) (Southern Turkey), alongside regional seismic events, providing a multidisciplinary approach. In the period from January 2008 to January 2011, 14 earthquakes M L ≥4 occurred in the study area. By monitoring the sites for more than 3 years, the site-characteristic patterns of soil radon emanation of each site have become evident. Radon emanation data show seasonal (semi-annual) variation characteristics; high soil radon values are between May and October and low soil radon values are between November and April. With available rainfall data, the soil gas radon data can be more reliably evaluated. It is shown in this paper that if radon emanation data are available over sufficiently long periods of time and baseline data (and their seasonal variations) are known with certainty for each monitoring site, then the observation of positive anomalies might provide a correlation or connection to seismic activity.  相似文献   

19.
A recent series of Swedish earthquakes at a focal depth not exceeding 2–3 km, the largest with IO = V + (MSK scale) andML = 3.2 shows that relatively strong seismic activity can occur in the uppermost part of the Baltic Shield. During the last 15 years several near-surface earthquakes have occurred in this region, as indicated by recorded Rg-waves and/or macroseismic data. Many events are located along the coast of central Sweden, suggesting a seismic belt of minor, near-surface activity, which should be considered in connection with the radioactive waste storage in the Swedish bedrock. The appearance of Rg, common in seismic records of explosions and rockbursts, is not a sufficient discriminator between artificial events and earthquakes.  相似文献   

20.
Gulf of Aqaba is recognized as an active seismic zone where many destructive earthquakes have occurred. The estimation of source parameters and coda Q attenuation are the main target of this work. Fifty digital seismic events in eight short-period seismic stations with magnitude 2.5–5.2 are used. Most of these events occurred at hypocentral depths in the range of 7–20 km, indicating that the activity was restricted in the upper crust. Seismic moment, M o, source radius, r, and stress drop, Δσ, are estimated from P- and S-wave spectra using the Brune’s seismic source model. The average seismic moment generated by the whole sequence of events was estimated to be 4.6E?+?22 dyne/cm. The earthquakes with higher stress drop occur at 10-km depth. The scaling relation between the seismic moment and the stress drop indicates a tendency of increasing seismic moment with stress drop. The seismic moment increases with increasing the source radius. Coda waves are sensitive to changes in the subsurface due to the wide scattering effects generating these waves. Single scattering model of local earthquakes is used to the coda Q calculation. The coda with lapse times 10, 20, and 30 s at six central frequencies 1.5, 3, 6, 12, 18, 24 Hz are calculated. The Q c values are frequency dependent in the range 1–25 Hz, and are approximated by a least squares fit to the power law [ $ {Q_c}(f) = {Q_o}{(f/{f_o})^\eta } $ ]. The average of Q c values increases from 53?±?10 at 1.5 Hz to 700?±?120 at 24 Hz. The average of Q o values ranges from 13?±?1 at 1.5 Hz to 39?±?4 at 24 Hz. The frequency exponent parameter η ranges between 1.3?±?0.008 and 0.9?±?0.001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号