首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Surface elevation tables, feldspar marker horizons, and210Pb analysis of core profiles were implemented at four sites in Western Port Bay, Victoria, Australia, to provide information on the role of sedimentation, subsidence or compaction, and enhanced sea-level rise in contributing to salt marsh decline. Photogrammetric surveys indicate that the rate of salt marsh decline that is attributable to mangrove encroachment is lower in Western Port Bay than in comparable sites in New South Wales. Differences in the rate of mangrove encroachment at Western Port Bay may be attributed to the inverse relationship found between the degree of mangrove encroachment and surface elevation increase. While sedimentation contributes to surface elevation changes, surface elevation is not solely explained by sedimentation; factors including autocompaction and changes in the water table also play a significant role in Western Port Bay. Historic sedimentation rates measured using210Pb dating techniques corresponded to contemporary sedimentation rates determined from feldspar marker horizons. Core sediment profiles show no change in sedimentation rates at three sites. A fourth site (French Island) was the only site that exhibited high rates of sedimentation, which appears to be related to local land-use changes in the area. All sites maintained their elevation with respect to sea level over the study period. Historic sedimentation exceeded sea-level rise for the past 32 yr, but it is difficult to determine the extent to which belowground processes affect surface elevation, causing deviations between surface elevation and sedimentation over longer periods.  相似文献   

2.
This study provides new insights in the relative role of tidal creeks and the marsh edge in supplying water and sediments to and from tidal marshes for a wide range of tidal inundation cycles with different high water levels and for marsh zones of different developmental stage. Net import or export of water and its constituents (sediments, nutrients, pollutants) to or from tidal marshes has been traditionally estimated based on discharge measurements through a tidal creek. Complementary to this traditional calculation of water and sediment balances based on creek fluxes, we present novel methods to calculate water balances based on digital elevation modeling and sediment balances based on spatial modeling of surface sedimentation measurements. In contrast with spatial interpolation, the presented approach of spatial modeling accounts for the spatial scales at which sedimentation rates vary within tidal marshes. This study shows that for an old, high marsh platform, dissected by a well-developed creek network with adjoining levees and basins, flow paths are different for tidal inundation cycles with different high water levels: during shallow inundation cycles (high water level <0.2 m above the creek banks) almost all water is supplied via the creek system, while during higher inundation cycles (high water level >0.2 m) the percentage of water directly supplied via the marsh edge increases with increasing high water level. This flow pattern is in accordance with the observed decrease in sedimentation rates with increasing distance from creeks and from the marsh edge. On a young, low marsh, characterized by a gently seaward sloping topography, material exchange does not take place predominantly via creeks but the marsh is progressively flooded starting from the marsh edge. As a consequence, the spatial sedimentation pattern is most related to elevation differences and distance from the marsh edge. Our results imply that the traditional measurement of tidal creek fluxes may lead in many cases to incorrect estimations of net sediment or nutrient budgets.  相似文献   

3.
Many salt marshes in densely populated areas have been subjected to a reduction in tidal flow. In order to assess the impact of tidal flow restriction on marsh sedimentation processes, sediment cores were collected from flow-restricted restricted salt marshes along the Connecticut coast of Long Island Sound. Cores were also collected from unrestricted reference marshes and from a marsh that had been previously restricted but was restored to fuller tidal flushing in the 1970's. High bulk densities and low C and N concentrations were found at depth in the restricted marsh cores, which we attribute to a period of organic matter oxidation, sediment compaction, and marsh surface subsidence upon installation of flow restrictions (between 100 and 200 years before the present, depending on the marsh). Recent sedimentation rates at the restricted marshes (as determined by137Cs and210Pb dating) were positive and averaged 78% (137Cs) and 50% (210Pb) of reference marsh sedimentation rates. The accumulation of inorganic sediment was similar at the restricted and reference marshes, perhaps because of the seasonal operation of the tide gates, while organic sediment accretion (and pore space) was significantly lower in the restricted marshes, perhaps because of higher decomposition rates. Sedimentation rates at the restored marsh were significantly higher than at the reference marshes. This marsh has responded to the higher water levels resulting from restoration by a rapid increase in marsh surface elevation.  相似文献   

4.
Throughflow marsh flumes were used to measure total sediment exchanges (TSS) between the marshes and water column of two Louisiana estuaries. One, the Barataria Basin estuary, is isolated from significant riverine sediment input. There were significant (p<0.05) imports of 33.9 to 443 mg TSS m?2 h?1 at the Barataria Basin brackish marsh (BM) site. The Barataria Basin saltmarsh (SM) site exported TSS in two summer samplings, but significant uptake was measured in April (166 mg m?2 h?1) and November (45 mg m?2 h?1) during a winter frontal passage event. The other estuary, Fourleague Bay, receives large sediment inputs from the Atchafalaya River, and TSS imports of 22.5 to 118.5 mg m?2 h?1 were measured at the BM site here. We calculated sediment accumulation from fluxes quantified in marsh flumes using site-specific sedimentological data and flooding regimes at each site. Water level records from May 1987 to April 1989 showed an extended period of unusually low flooding frequencies. As a result, calculated accretion rates were low, with monthly rates of 0.02 to 0.11 mm and ?0.06 to 0.06 mm at the Barataria BM and SM sites, respectively, and ?0.18 to 0.08 mm at the Fourleague Bay marsh flume site. Actual net sediment deposition, determined by feldspar marker horizon analysis, was 0.7–1.6 mm mo?1 at the Barataria SM and 0.2–1.3 mm mo?1 at the Fourleague Bay BM. Even the highest calculated accretion rates, based on flume measurements, were half to one order of magnitude lower than actual measured sediment deposition. This discrepancy was probably because: 1) most sedimentation occurs during episodic events, such as Hurricane Gilbert in September 1988, which deposited 3.5–15.5 mm of sediment on the Barataria Basin saltmarsh, or 2) most vertical accretion in Louisiana marshes occurs via deposition of in situ organic matter rather than by influx of allochthonous sediment. Our results affirm the variability of short-term sediment transport and depositional processes, the close coupling of meteorologic forcing and flooding regime to sediment dynamics, and the importance of understanding these interrelated mechanisms in the context of longer term measurements.  相似文献   

5.
One year’s measurements of surficial sedimentation rates (1986–1987) for 26 Maine marsh sites were made over marker horizons of brick dust. Observed sediment accumulation rates, from 0 to 13 mm yr?1, were compared with marsh morphology, local relative sea-level rise rate, mean tidal range, and ice rafting activity. Marshes with four different morphologies (back-barrier, fluvial, bluff-toe, and transitional) showed distinctly different sediment accumulation rates. In general, back-barrier marshes had the highest accumulation rates and blufftoe marshes had the lowest rates, with intermediate values for transitional and fluvial marshes. No causal relationship between modern marsh sediment accumulation rate and relative sea-level rise rate (from tide gauge records) was observed. Marsh accretionary balance (sediment accumulation rate minus relative sea-level rise rate) did not correlate with mean tidal range for this meso- to macro-tidal area. Estimates of ice-rafted debris on marsh sites ranged from 0% to >100% of measured surficial sedimentation rates, indicating that ice transport of sediment may make a significant contribution to surficial sedimentation on Maine salt marshes.  相似文献   

6.
Measurements of surface sediment accretion have been obtained for Hut Marsh, Scolt Head Island, Norfolk, England, using sand marker horizons. More than eighty 1-m2 marker sites were deployed in October 1983, and vertical accretion measured at them in April and October 1986 and April 1987. Elevations relative to Ordnance Datum were established by levelling each site at the time of deployment. Data collected by Steers between 1935 and 1957 on the same marsh show a clear relationship between marsh elevation and sedimentation. The results of the current more detailed study, presented as mean annual accretion rates, indicate a complex pattern of sediment distribution at this macrotidal location. These data, together with the results of tidal flow monitoring in the creeks on Hut Marsh, show the importance of spatial and temporal patterns of sediment delivery and variations in depositional processes in determining the distribution of sedimentation across the marsh surface.  相似文献   

7.
Temporal and spatial variation in intertidal sedimentation rates   总被引:2,自引:0,他引:2  
Sediment deposition and erosion rates are reported for an intertidal zone in the Burry Inlet, South Wales. Measured deposition rates over the salt marsh are compared with deposition rates calculated from observed suspended sediment concentrations. Notably, it is concluded that residual turbulence at slack water should not be discounted when calculating deposition rates. Grain-size distributions of suspended sediments over the marsh surface, during flood and ebb tides, contrast with the grain-size distribution of deposited marsh sediments, the latter being significantly coarser. These data in conjunction with mass budget calculations are used to relate total annual deposition and sediment supply by tidal action during settled meteorological periods. The analysis suggests that episodic storm-induced sediment transport is probably an important mechanism for introducing coarse sediment on to the marsh surface. Finally, it is noted that seasonal reworking of the sandy non-cohesive sediments may be related to variations in the intensity of wave-breaking throughout the year.  相似文献   

8.
Marsh sediment accumulation is predominately a combination of in situ organic accumulation and mineral sediment input during inundation. Within the Pamlico River Estuary (PRE), marsh inundation is dependent upon event (e.g., storms) and seasonal wind patterns due to minimal astronomical tides (<10 cm). A better understanding of the processes controlling sediment deposition and, ultimately, marsh accretion is needed to forecast marsh sustainability with changing land usage, climate, and sea level rise. This study examines marsh topography, inundation depth, duration of inundation, and wind velocity to identify relationships between short-term deposition (tile-based) and long-term accumulation (210Pb and 137Cs) recorded within and adjacent to the PRE. The results of this study indicate (1) similar sedimentation patterns between the interior marsh and shore-side marsh at different sites regardless of elevation, (2) increased sedimentation (one to two orders of magnitude, 0.04–4.54 g m?2 day?1) within the interior marsh when the water levels exceeded the adjacent topography (e.g., storm berm), and (3) that short-term sea level changes can have direct effects on sediment delivery to interior marshes in wind-driven estuarine systems.  相似文献   

9.
The objective of this study was to determine if the placement of dredged material on sediment-starved back barrier marshes in southeastern North Carolina could offset submergence without negatively affecting function. Clean sediment was placed in thickness from 0 to 10 cm, on deteriorated and non-deteriorated marsh plots. Original stem densities were greater, in non-deteriorated plots (256 stems m−2) compared to deteriorated sites (149 stems m−2). By the second growing season (after sediment additions), stem densities in the deteriorated plots (308 stems m−2) approached levels in the non-deteriorated plots (336 stems m−2). Sediment additions to, both nos-deteriorated and deteriorated plots resulted in a higher redox potential with plots receiving the most sediment exhibiting the highest Eh values. In deteriorated plots, placement of dredged material had the greatest effect on plant density, but also affected soil oxidation-reduction potential and sediment deposition (or mobility). Following sediment placement, substrate texture and composition incrementally returned to prefill conditions due to a combination of bioturbation and sedimentation. Where infaunal differences occurred, they were generally less abundant in deteriorated plots, but responses to sediment addition were variable. Sediment addition had little effect on the non-deteriorated plots, suggesting that the disposal of certain types of dredged material in marshes may be useful to mitigate the effects of marsh degradation without adversely affecting non-deteriorating marsh.  相似文献   

10.
Suspended sediment fluxes to and from tidal wetlands are of increasing concern because of habitat restoration efforts, wetland sustainability as sea level rises, and potential contaminant accumulation. We measured water and sediment fluxes through two channels on Browns Island, at the landward end of San Francisco Bay, United States, to determine the factors that control sediment fluxes on and off the island. In situ instrumentation was deployed between October 10 and November 13, 2003. Acoustic Doppler current profilers and the index velocity method were employed to calculate water fluxes. Suspended sediment concentrations (SSC) were determined with optical sensors and cross-sectional water sampling. All procedures were analyzed for their contribution to total error in the flux measurement. The inability to close the water balance and determination of constituent concentration were identified as the main sources of error; total error was 27% for net sediment flux. The water budget for the island was computed, with an unaccounted input of 0.20 m3s−1 (22% of mean inflow), after considering channel flow, change in water storage, evapotranspiration, and precipitation. The net imbalance may be a combination of groundwater seepage, overland flow, and flow through minor channels. Change of island water storage, caused by local variations in water surface elevation, dominated the tidally averaged water flux. These variations were mainly caused by wind and barometric pressure change, which alter regional water levels throughout the Sacramento-San Joaquin River Delta. Peak instantaneous ebb flow was 35% greater than peak flood flow, indicating an ebbdominant system, though dominance varied with the spring-neap cycle. SSC were controlled by wind-wave resuspension adjacent to the island and local tidal currents that mobilized sediment from the channel bed. During neap tides sediment was imported onto the island but during spring tides sediment was exported because the main channel became ebb dominant. Over the 34-d monitoring period 14,000 kg of suspended sediment were imported through the two channels. The water imbalance may affect the sediment balance if the unmeasured water transport pathways are capable of transporting large amounts of sediment. We estimate a maximum of 2,800 kg of sediment may have been exported through unmeasured pathways, giving a minimum ent import of 11,200 kg. Sediment flux measurements provide insight on tidal to fortnightly marsh sedimentation processes, especially in complex systems where sedimentation is spatially and temporally variable.  相似文献   

11.
A 115-year-old railroad levee bisecting a tidal freshwater marsh perpendicular to the Patuxent River (Maryland) channel has created a northern, upstream marsh and a southern, downstream marsh. The main purpose of this study was to determine how this levee may affect the ability of the marsh system to gain elevation and to determine the levee’s impact on the marsh’s long-term sustainability to local relative sea level rise (RSLR). Previously unpublished data from 1989 to 1992 showed that suspended solids and short-term sediment deposition were greater in the south marsh compared to the north marsh; wetland surface elevation change data (1999 to 2009) showed significantly higher elevation gain in the south marsh compared to the north (6?±?2 vs. 0?±?2 mm year?1, respectively). However, marsh surface accretion (2007 to 2009) showed no significant differences between north and south marshes (23?±?8 and 26?±?7 mm year?1, respectively), and showed that shallow subsidence was an important process in both marshes. A strong seasonal effect was evident for both accretion and elevation change, with significant gains during the growing season and elevation loss during the non-growing season. Sediment transport, deposition and accretion decreased along the intertidal gradient, although no clear patterns in elevation change were recorded. Given the range in local RSLR rates in the Chesapeake Bay (2.9 to 5.8 mm year?1), only the south marsh is keeping pace with sea level at the present time. Although one would expect the north marsh to benefit from high accretion of abundant riverine sediments, these results suggest that long-term elevation gain is a more nuanced process involving more than riverine sediments. Overall, other factors such as infrequent episodic coastal events may be important in allowing the south marsh to keep pace with sea level rise. Finally, caution should be exercised when using data sets spanning only a couple of years to estimate wetland sustainability as they may not be representative of long-term cumulative effects. Two years of data do not seem to be enough to establish long-term elevation change rates at Jug Bay, but instead a decadal time frame is more appropriate.  相似文献   

12.
We investigated use of δ13C in bulk organic sediment to define the botanical origin of samples preserved in coastal sediment as a means to reconstruct relative sea level in New Jersey, USA. Modern transects at three sites demonstrated that low and high salt‐marsh floral zones dominated by C4 species (Spartina alterniflora and Spartina patens) were associated with sediment δ13C values between ?18.9‰ and ?15.8‰ and occurred from mean tide level (MTL) to mean higher high water (MHHW). Brackish transitional settings vegetated by Phragmites australis with Iva fructescens and Typha sp. (C3 species) and freshwater upland samples (C3 species) were characterized by bulk sediment δ13C values of ?27.0‰ to ?22.0‰ and existed above MHHW. Parallel transects at one site suggested that intra‐site variability was not discernible. The utility of δ13C values for reconstructing relative sea level in New Jersey is limited by an inability to differentiate between brackish sediments related to sea level and freshwater upland samples. To facilitate this distinction in a 4.4 m core, we used a multi‐proxy approach (δ13C values with presence or absence of agglutinated foraminifera) to recognize indicative meanings for four sample types. Sediment with δ13C values greater than ?18.9‰ was derived from a vegetated salt‐marsh and formed between MTL and MHHW. Sediment with δ13C values less than ?22.0‰ and containing agglutinated foraminifera formed in a brackish transitional zone between MHHW and highest astronomical tide (HAT). This is the narrowest elevational range of the four sample types and most precise sea‐level indicator. Sediment with δ13C values less than ?22.0‰ and lacking foraminifera can only constrain the upper bound of former sea level. Samples with intermediate values (?22.0‰ to ?18.9‰) formed between MTL and HAT. Using these indicative meanings and radiocarbon dates, we suggest that a transition from brackish to salt‐marsh δ13C values recorded in the core took approximately 350 years (from 1800 to 1450 cal. a BP). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
During the mid-late Holocene large sections of the Scottish coastline have been characterized by falling relative sea-levels resulting from differential glacio-isostatic uplift of this region of northern Britain. The complex interplay between crustal and sea-level movements continues to influence the morphological development of the Scottish coast. A number of geophysical models predict ongoing uplift of the Scottish landmass. However, a number of recent studies based upon the analysis of satellite altimetry data indicate a late 20th Century acceleration in the rate of eustatic sea-level rise.Detailed geochemistry, radiometric dating, and diatom analysis on selected sediment cores from four mature coastal marsh environments in Argyll, western Scotland, provides an opportunity to investigate the linkages between Twentieth century crustal movements, eustatic sea-level rise and recent rates of sedimentation recorded within marsh sediments across the proposed Scottish glacio-isostatic uplift dome.Solid-phase major and trace element geochemistry has been used to examine the extent to which post-depositional physical disturbance and/or chemical reactions may have influenced the reliability of the radiometric dating methods. Geochemical data indicate that the evolution of these marsh environments has not been significantly influenced by physical disturbance and overall the supply of minerogenic material to the marshes has been quite uniform.Vertical distributions of 210Pbexcess and 137Cs activity have been measured and used to develop models of recent marsh vertical accretion. Dating of the cores reveals subtle variations in the rates of sediment accumulation over the last c. 70 years between sites. For much of the last hundred years or so, sedimentation rates have been in good overall agreement with various estimations for sea-level rise, although at the more easterly sites these estimates are generally exceeded. However, quasi-equilibrium between marsh sedimentation and sea-level rise for much of the Twentieth Century is indicated from the Diatom analysis.Over the most recent period of marsh development (<10 years), a significant increase in the rate of surface sedimentation is recorded at all sites across the study area. Diatom analysis of these surface layers reveals an increase in the relative abundance of marine (polyhalobous) taxa in the near-surface sediments. This signifies a very recent increase in the rate of regional relative sea-level rise indicating that a regional threshold in coastal forcing has now been exceeded.These findings provide clear evidence that recent relative sea-level rise is now outpacing estimated rates of glacio-isostatic adjustment (GIA) across the proposed Scottish uplift dome.  相似文献   

14.
《Applied Geochemistry》2003,18(9):1497-1506
Sedimentation and benthic release of As was determined in Baldeggersee, a eutrophic lake in central Switzerland. Sediment traps recorded As sedimentation during 1994, including a flood event in spring. Diagenetic processes were studied using porewater profiles at the sediment–water interface and in deeper sediment strata deposited in the mesotrophic lake (before 1885). Sediment cores were used to calculate the accumulation and to construct the balance of sedimentation and remobilisation. The results showed that the lake sediment acts as an efficient sink for As. Only 22% of the particulate As flux reaching the sediment surface was remobilised at the sediment–water interface. The As accumulation in the recent varved section of the eutrophic lake was 40 mg As m−2 a−1. Iron reduction in older sediment caused a remobilisation of 1.2 mg As m−2 a−1. This upward flux from the deeper sediment was quantitatively immobilised in the recent sulfidic sediments. The flood event in spring contributed about 34% of the yearly sediment load and led to distinct peak profiles of dissolved As in the porewater. This evidence for rapid remobilisation disappeared within months.  相似文献   

15.
We measured the amount of arsenic, chromium, copper, lead, nickel, vanadium, and zinc accumulated over a five-year period from 1997 to 2002 in surface sediments of seven salt marshes along the New Brunswick coast of the Bay of Fundy, Canada. Study sites extended from outer to inner Bay, spanning a gradient in tidal range (6–12 m) and mean sediment deposition rate (0.27–1.76 cm yr−1). In each study site, metal concentrations were measured in low and high marsh areas. Concentrations of chromium, nickel, and zinc appear to be within their natural range, while arsenic, lead, and vanadium are enriched in some sites. Calculated sediment metal loadings rates showed variability among marsh sites that closely followed sediment deposition patterns, suggesting sediment deposition rate is the driving factor of short-term metal accumulation in Fundy marshes. The value of salt marshes as a sink for metals may be enhanced by high sedimentation rates.  相似文献   

16.
A coastwide study of the relationship between marsh aggradation and water level changes along the rapidly deteriorating Louisiana gulf coast was conducted. Rate of vertical marsh accretion determined from137Cs dating was compared to water level changes or submergence. Results identified marsh locations that are not keeping pace with submergence. Coastwide vertical accretion rates on the order of 0.7–0.8 cm/yr are not sufficient to keep pace with water level increases occurring at rates in most locations of over 1.0 cm/yr. Submergence rates were four to five times greater than eustatic sea level change for the Gulf of Mexico. Louisiana gulf coast marshes are likely to continue deteriorating unless means are implemented for distributing Mississippi River sediment to the marsh. It is estimated that sediment equivalent to less than 10 percent of the present annual suspended load of the Mississippi would provide enough sediment for marsh accretionary processes to compensate for submergence or water level increase.  相似文献   

17.
Northeastern US salt marshes face multiple co-stressors, including accelerating rates of relative sea level rise (RSLR), elevated nutrient inputs, and low sediment supplies. In order to evaluate how marsh surface elevations respond to such factors, we used surface elevation tables (SETs) and surface elevation pins to measure changes in marsh surface elevation in two eastern Long Island Sound salt marshes, Barn Island and Mamacoke marshes. We compare marsh elevation change at these two systems with recent rates of RSLR and find evidence of differences between the two sites; Barn Island is maintaining its historic rate of elevation gain (2.3?±?0.24 mm year?1 from 2003 to 2013) and is no longer keeping pace with RSLR, while Mamacoke shows evidence of a recent increase in rates (4.2?±?0.52 mm year?1 from 1994 to 2014) to maintain its elevation relative to sea level. In addition to data on short-term elevation responses at these marshes, both sites have unusually long and detailed data on historic vegetation species composition extending back more than half a century. Over this study period, vegetation patterns track elevation change relative to sea levels, with the Barn Island plant community shifting towards those plants that are found at lower elevations and the Mamacoke vegetation patterns showing little change in plant composition. We hypothesize that the apparent contrasting trend in marsh elevation at the sites is due to differences in sediment availability, salinity, and elevation capital. Together, these two systems provide critical insight into the relationships between marsh elevation, high marsh plant community, and changing hydroperiods. Our results highlight that not all marshes in Southern New England may be responding to accelerated rates of RSLR in the same manner.  相似文献   

18.
In a large (8 ha) salt marsh restoration site, we tested the effects of excavating tidal creeks patterned after reference systems. Our purposes were to enhance understanding of tidal creek networks and to test the need to excavate creeks during salt marsh restoration. We compared geomorphic changes in areas with and without creek networks (n = 3; each area 1.3 ha) and monitored creek cross-sectional areas, creek lengths, vertical accretion, and marsh surface elevations for 5 yr that included multiple sedimentation events. We hypothesized that cells with creeks would develop different marsh surface and creek network characteristics (i.e., surface elevation change, sedimentation rate, creek cross-sectional area, length, and drainage density). Marsh surface vertical accretion averaged 1.3 cm yr−1 with large storm inputs, providing the opportunity to assess the response of the drainage network to extreme sedimentation rates. The constructed creeks initially filled due to high accretion rates but stabilized at cross-sectional areas matching, or on a trajectory toward, equilibrium values predicted by regional regression equations. Sedimentation on the marsh surface was greatest in low elevation areas and was not directly influenced by creeks. Time required for cross-sectional area stabilization ranged from 0 to > 5 yr, depending on creek order. First-order constructed creeks lengthened rapidly (mean rate of 1.3 m yr−1) in areas of low elevation and low vegetation cover. New (volunteer) creeks formed rapidly in cells without creeks in areas with low elevation, low vegetation cover, and high elevation gradient (mean rate of 6.2 m yr−1). After 5 yr, volunteer creeks were, at most, one-fourth the area of constructed creeks and had not yet reached the upper marsh plain. In just 4 yr, the site’s drainage density expanded from 0.018 to reference levels of 0.022 m m−2. Pools also formed on the marsh plain due to sediment resuspension associated with wind-driven waves. We conclude that excavated creeks jump-started the development of drainage density and creek and channel dimensions, and that the tidal prism became similar to those of the reference site in 4–5 yr.  相似文献   

19.
Little is known about the century‐scale response of water levels in inland estuaries to sea‐level change and human modifications to estuarine morphology. This study explored the ability of using testate amoebae (Protozoa, Rhizopoda) from sediments of a freshwater tidal marsh as indicators of water level in an inland estuary. The hypothesis was that modern testate amoeba assemblages change with surface elevation (approximately the duration of tidal flooding) within a freshwater tidal marsh. Variation in testate amoeba assemblages in relation to multiple environmental variables and sediment characteristics was studied through redundancy analysis. This demonstrated that a significant part of the variation in modern testate amoeba assemblages could be explained by flooding frequency, surface elevation, organic content and particle size of the soil. Transfer functions, partial least squares and weighted average regressions were made to show that testate amoebae can be used for reconstruction of water level (with an accuracy of 0.05 Normalized Elevation). A preliminary test of application of the transfer function to palaeo testate amoeba assemblages showed promising results. Testate amoebae from a freshwater tidal marsh provide a potentially powerful new tool for estuarine water‐level reconstructions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
福建罗源湾潮滩沉积过程对人类活动和台风事件的响应   总被引:1,自引:0,他引:1  
王爱军  叶翔 《沉积学报》2013,31(4):639-645
潮滩地区是人类活动和台风事件影响最为显著的地区之一,利用潮滩沉积记录可以提取影响区域重大人类活动和台风事件的历史变化。罗源湾潮滩中上部盐沼和光滩柱状沉积物粒度分析结果显示,罗源湾潮滩沉积物以细颗粒为主,盐沼内部和潮滩中上部光滩柱状沉积物平均粒径分别为5.41~45.00 μm和5.4~68.82 μm,但在不同深度出现多次沉积物变粗的现象;利用210Pb测试计算得到的沉积速率分别为1.96 cm/a和1.23 cm/a;近年来的围填海活动导致潮间带地区沉积速率显著增大,互花米草的引种也进一步导致潮间带上部沉积速率增大。台风的强烈影响使得潮间带沉积出现间断,在沉积间断界面出现沉积物粒度变粗的现象,由此推断了近170年来显著影响罗源湾地区的台风事件沉积层的位置,并由此计算了不同时段的沉积速率。根据柱状沉积物粒度分析结果,不仅可以反演近百年来的对罗源湾产生重要影响的台风事件,也可以反演20世纪50年代以来罗源湾经历的几次较大规模的人类活动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号