首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper explores the role of synoptic eddy feedback in the air-sea interaction in the North Atlantic region, particularly the interaction between the North Atlantic Oscillation (NAO) and the North Atlantic sea surface temperature anomalies (SSTA) tripole. A linearized five-layer primitive equation atmospheric model with synoptic eddy and low-frequency flow (SELF) interaction is coupled with a linearized oceanic mixed-layer model to investigate this issue. In this model, the “climatological” storm track/activity (or synoptic eddy activity) is characterized in terms of spatial structures, variances, decay time scales and propagation speeds through the complex empirical orthogonal function (CEOF) analysis on the observed data, which provides a unique tool to investigate the role of synoptic eddy feedback in the North Atlantic air–sea coupling. Model experiments show that the NAO-like atmospheric circulation anomalies can produce tripole-like SSTA in the North Atlantic Ocean, and the tripole-like SSTA can excite a NAO-like dipole with an equivalent barotropic structure in the atmospheric circulation, which suggests a positive feedback between the NAO and the SSTA tripole. This positive feedback makes the NAO/SSTA tripole-like mode be the leading mode of the coupled dynamical system. The synoptic eddy feedback plays an essential role in the origin of the NAO/SSTA tripole-like leading mode and the equivalent barotropic structure in the atmosphere. Without synoptic eddy feedback, the atmosphere has a baroclinic structure in the response field to the tripole-like SSTA forcing, and the leading mode of the dynamic system does not resemble NAO/SSTA tripole pattern.  相似文献   

2.
王国民  黄土松 《大气科学》1993,17(4):442-450
本文使用一个简单的全球二层大气环流模式作了强迫响应数值试验。模式中引入了代表热带低频偶极型对流的异常强迫.结果表明这一强迫不仅能激发显著的局地大气响应,也能引起北半球中纬显著的低频异常波列,中纬波列的发展与热带强迫变化之间存在四分之一位相差关系.这些结果与观测研究的结果一致.进一步的分析表明,大气响应的位相滞后与强迫产生的能量从内模向外模的非线性转换过程有关.最后提出了季节内尺度热带-中纬相互作用的可能机制.  相似文献   

3.
A general rule for synoptic-eddy feedback onto low-frequency flow   总被引:1,自引:1,他引:0  
In this study, scale interaction between synoptic eddies and low-frequency flow is investigated. It is demonstrated here that there is a general rule, the “left-hand rule”, that describes synoptic eddy feedback onto low-frequency flow. The rule is that low-frequency anomalies systematically stir and deform the transient eddies in such a way that the irrotational eddy-vorticity fluxes are directed preferentially about 90° toward the left-hand side of the low-frequency flow; thus this eddy feedback plays a positive role in maintaining and prolonging low-frequency flow under the stormy atmosphere. Similarly, we show that the irrotational eddy-temperature and moisture fluxes are also directed preferentially about 90° toward the left-hand side of the low-frequency flow in the northern hemisphere. The eddy-temperature fluxes and their vertical structure play a positive role in reinforcing the low-frequency flow in the low levels. The moisture fluxes play a role in enhancing low-frequency flow by providing eddy-induced moisture convergence and divergence.  相似文献   

4.
Chen  Lilan  Fang  Jiabei  Yang  Xiu-Qun 《Climate Dynamics》2020,55(9-10):2557-2577

While recent observational studies have shown the critical role of atmospheric transient eddy (TE) activities in midlatitude unstable air-sea interaction, there is still a lack of a theoretical framework characterizing such an interaction. In this study, an analytical coupled air-sea model with inclusion of the TE dynamical forcing is developed to investigate the role of such a forcing in midlatitude unstable air-sea interaction. In this model, the atmosphere is governed by a barotropic quasi-geostrophic potential vorticity equation forced by surface diabatic heating and TE vorticity forcing. The ocean is governed by a baroclinic Rossby wave equation driven by wind stress. Sea surface temperature (SST) is determined by mixing layer physics. Based on detailed observational analyses, a parameterized linear relationship between TE vorticity forcing and meridional second-order derivative of SST is proposed to close the equations. Analytical solutions of the coupled model show that the midlatitude air-sea interaction with atmospheric TE dynamical forcing can destabilize the oceanic Rossby wave within a wide range of wavelengths. For the most unstable growing mode, characteristic atmospheric streamfunction anomalies are nearly in phase with their oceanic counterparts and both have a northeastward phase shift relative to SST anomalies, as the observed. Although both surface diabatic heating and TE vorticity forcing can lead to unstable air-sea interaction, the latter has a dominant contribution to the unstable growth. Sensitivity analyses further show that the growth rate of the unstable coupled mode is also influenced by the background zonal wind and the air–sea coupling strength. Such an unstable air-sea interaction provides a key positive feedback mechanism for midlatitude coupled climate variabilities.

  相似文献   

5.
Since the interaction between atmospheric synoptic eddy(SE)(2–8 days) activity and low-frequency(LF)(monthly)flow(referred to as SELF) plays an essential role in generating and maintaining dominant climate modes,an evaluation of the performance of BCC_CSM1.1(m) in simulating the SE feedback onto the LF flow is given in this paper.The model captures well the major spatial features of climatological eddy vorticity forcing,eddy-induced growth rate,and patterns of SELF feedback for the climate modes with large magnitudes in cold seasons and small magnitudes in warm seasons for both the Northern and Southern Hemisphere.As in observations,the eddy-induced growth rate and SELF feedback patterns in the model also show positive SE feedback.Overall,the relationships between SE and LF flow show that BCC_CSM1.1(m)satisfactorily captures the basic features of positive SE feedback,which demonstrates the simulation skill of the model for LF variability.Specifically,such an evaluation can help to find model biases of BCC_CSM1.1(m) in simulating SE feedback,which will provide a reference for the model's application.  相似文献   

6.
中高纬度大气低频模态研究进展   总被引:1,自引:0,他引:1  
大气低频模态是导致中高纬地区季节及气候变化的主要因素,加强低频模态动力机制的认识对于提高短期气候预测水平具有十分重要的科研意义和应用价值。由于中高纬大气低频环流本身的复杂性,关于其动力机制的研究仍然是大气动力学中重点难点问题。本文简单回顾了激发维持低频模态的前两种机制,即:外源强迫、气流的纬向非均匀性对大气低频模态的影响。从观测事实和模式结果出发,着重介绍了瞬变波与基本气流相互作用激发维持低频模态的第三种机制,且详细阐述了线性假设条件下,瞬变波与基本气流相互作用的动力机制。本文最后针对瞬变波与基本气流相互作用研究中一些尚未解决的问题进行了讨论。  相似文献   

7.
热带低层大气30~60天低频动能的年际变化与ENSO循环   总被引:17,自引:7,他引:10  
龙振夏  李崇银 《大气科学》2001,25(6):798-808
利用NCEP再分析资料,通过统计相关及合成分析研究了热带大气季节内振荡(ISO)的年际变化与ENSO循环之间的关系.结果表明,热带大气季节内振荡(也称30~60天低频振荡)的年际变化在热带中西太平洋地区最强.在ElNino成熟之前的春夏季,热带西太平洋的30~60天振荡异常活跃,其动能明显增加且逐渐东移;在E1Nino成熟以后,热带西太平洋大气30~60天低频振荡迅速减弱.与这种加强的30~60天振荡相伴随,在赤道北侧为异常的气旋式环流,赤道地区出现偏西风异常.相反,在LaNina成熟之前的春夏季,热带西太平洋大气30~60天振荡偏弱.进一步的分析还发现,东亚冬季风的年际变化是引起热带大气30~60天振荡的年际变化的主要机制:强东亚冬季风导致热带西太平洋积云对流加强,从而引起热带西太平洋大气30~60天振荡加强;相反,对应于弱的东亚冬季风,热带西太平洋地区积云对流偏弱,大气30~60天振荡偏弱.作者的资料分析还证实,热带大气30~60天低频振荡的年际变化,作为一种外强迫,对ElNino的形成起着十分重要的作用.  相似文献   

8.
The characteristics and formation conditions of eddy meridional heat transport (MHT) in the eastern equatorial Pacific are studied using the results of eddy-resolving numerical modeling as compared with observational and reanalysis data. Calculations of the eddy MHT convergence at the equator are performed and realistic results in the analyzed region except for its easternmost part are obtained. The interannual variability and velocity of propagation of tropical instability waves are estimated. The errors of the time-averaged model solution are analyzed, and the assumptions on the mechanisms of their occurrence are made.  相似文献   

9.
Bin Yu  Hai Lin 《Climate Dynamics》2013,40(5-6):1183-1200
The secular trends and interannual variability of wintertime temperatures over northern extratropical lands and circulations over the northern hemisphere are examined using the NCEP/NCAR reanalysis from 1961 to 2010. A primitive equation dry atmospheric model, driven by time-averaged forcing in each winter diagnosed from the NCEP reanalysis, is then employed to investigate the influences of tropical and extratropical forcing on the temperature and circulation variability. The model has no topography and the forcing is thus model specific. The dynamic and thermodynamic maintenances of the circulation and temperature anomalies are also diagnosed. Distinct surface temperature trends over 1961–1990 and 1991–2010 are found over most of the extratropical lands. The trend is stronger in the last two decades than that before 1990, particularly over eastern Canadian Arctic, Greenland, and Asia. The exchange of midlatitude and polar air supports the temperature trends. Both the diagnosed extratropical and tropical forcings contribute to the temperature and circulation trends over 1961–1990, while the extratropical forcing dominates tropical forcing for the trends over 1991–2010. The contribution of the tropical forcing to the trends is sensitive to the period considered. The temperature and circulation responses to the diagnosed tropical and extratropical forcings are approximately additive and partially offsetting. Covariances between the interannual surface temperature and 500-hPa geopotential anomalies for the NCEP reanalysis from 1961 to 2010 are dominated by two leading modes associated with the North Atlantic Oscillation (NAO) and Pacific-North American (PNA) teleconnection patterns. The diagnosed extratropical forcing accounts for a significant part of the NAO and PNA associated variability, including the interannual variability of stationary wave anomalies, as well as dynamically and thermodynamically synoptic eddy feedbacks over the North Atlantic and North Pacific. The tropical forcing contributes to the PNA related temperature and circulation variability, but has a small contribution to the NAO associated variability. Additionally, relative contributions of tropical Indian and Pacific forcings are also assessed.  相似文献   

10.
热带大气季节内振荡的传播及影响因子研究   总被引:15,自引:2,他引:13  
通过观测资料的分析,对热带大气季节内振荡(ISO)的传播(移动)进行了深入系统的研究,揭示了热带大气ISO的纬向和经向移动的特征,以及热带大气低频动能的跨赤道传播特征.同时,通过对比分析还揭示了ENSO和热带对流加热场异常对热带大气ISO移动的影响.  相似文献   

11.
阿留申低压低频变化及其相关的瞬变动力学过程分析   总被引:2,自引:0,他引:2  
利用NCEP/NCAR 1979—2013年的再分析资料,研究了冬季阿留申低压低频变化的环流特征,探讨了阿留申低压低频变化形成和维持的相关天气尺度瞬变强迫机制。冬季阿留申低压的低频变化在850 h Pa环流场上表现为北太平洋海盆区一个异常气旋/异常反气旋在局地强弱变化的过程,即阿留申低压在低频尺度上先异常增强/减弱随后逐渐恢复正常态的演变过程;850 h Pa上大气温度低频变化表现为低频冷中心在西北太平洋建立并逐渐东移的过程。对天气尺度瞬变扰动活动及其强迫的异常进行分析表明,北太平洋海盆区上空的瞬变动力强迫在阿留申低压异常增强的时期为负异常,有利于阿留申低压低频变化异常空间型的形成和维持。由瞬变热力强迫异常引起的温度倾向异常场表现为北太平洋中部以40°N为界南正—北负的空间分布,其南部正异常在一定程度上抑制和削弱了低频冷中心向南的扩张。  相似文献   

12.
王国民 《气象学报》1991,49(4):402-410
本文利用正压涡度方程模式研究了热带不同经度位置异常强迫激发的中纬响应类型与北半球冬季基本气流定常波结构的关系。发现对热带印度洋和太平洋的大部分地区,中纬的响应类型主要由基态定常波的结构决定,并且基态定常波通过向扰动转换动能维持了中纬的响应。通过这些结果解释了GCM研究中发现的中综异常响应类型对El Nino成熟期海表面温度异常位置变化的不敏感性。此外还讨论了观测和GCM中出现的热带印度洋——太平洋地区低频尺度上的纬向偶极强迫源对GCM响应结果的作用。  相似文献   

13.
瞬变天气涡旋对北大西洋涛动的增强效应   总被引:3,自引:2,他引:1  
使用NCEP/NCAR再分析资料计算了冬季北大西洋瞬变涡旋活动强度与北大西洋涛动(NAO)逐日指数的时间序列,结果发现:当涡旋活动强度出现峰值后会伴随NAO模态增强现象;而随着NAO的增强,涡旋能量同落.为了判断是否涡流相互作用将天气尺度的能量转换为低频尺度的能量,使用瞬变涡度通量来研究涡度与能量的传输.通过分析瞬变涡...  相似文献   

14.
刘爱鸣  林毅  吴幸毓 《气象》2010,36(9):29-35
利用热带气旋资料和天气图、卫星云图等观测资料,统计分析了1949-2008年入侵台湾岛及邻近区域的热带气旋出现的各类异常路径的时间、空间分布规律及成因。结果表明,异常路径的形成是环境流场和台湾地形共同作用的结果,在特定的环流形势下,台湾地形的影响,导致入侵这一带区域的热带气旋结构及其周围的气压场和流场发生变化,并可能诱生出地形槽或低压。热带气旋出现左折、右折、打转和诱生低压发展取代原热带气旋的异常路径,发生在不同地点的异常路径,地形和环境作用的主次关系不同。  相似文献   

15.
Dynamic and numerical methods are used to discuss the atmospheric response to SST thermal forcing. The results show that for planetary scale systems, the standing SST thermal forcing can quickly excite a stable atmospheric equilibrium state response, which is characterized by obvious large-scale teleconnection oscillation in east-west and south-north directions. For synoptic scale systems, the SST thermal forcing mainly excites the atmospheric low-frequency oscillation. Some basic relation and dynamic processes between SST thermal forcing and atmospheric response pattern are revealed and some new viewpoints are presented.  相似文献   

16.
This paper reviews the progress in our understanding of the atmospheric response to midlatitude oceanic fronts and eddies,emphasizing the Kuroshio-Oyashio Extension(KOE)region.Oceanic perturbations of interest consist of sharp oceanic fronts,temperature anomalies associated with mesoscale eddies,and to some extent even higher-frequency submesoscale variability.The focus is on the free atmosphere above the boundary layer.As the midlatitude atmosphere is dominated by vigorous transient eddy activity in the storm track,the response of both the time-mean flow and the storm track is assessed.The storm track response arguably overwhelms the mean-flow response and makes the latter hard to detect from observations.Oceanic frontal impacts on the mesoscale structures of individual synoptic storms are discussed,followed by the role of oceanic fronts in maintaining the storm track as a whole.KOE fronts exhibit significant decadal variability and can therefore presumably modulate the storm track.Relevant studies are summarized and intercompared.Current understanding has advanced greatly but is still subject to large uncertainties arising from inadequate data resolution and other factors.Recent modeling studies highlighted the importance of mesoscale eddies and probably even submesoscale processes in maintaining the storm track but confirmation and validation are still needed.Moreover,the atmospheric response can potentially provide a feedback mechanism for the North Pacific climate.By reviewing the above aspects,we envision that future research shall focus more upon the interaction between smaller-scale oceanic processes(fronts,eddies,submesoscale features)and atmospheric processes(fronts,extratropical cyclones etc.),in an integrated way,within the context of different climate background states.  相似文献   

17.
Interaction between synoptic eddy and low-frequency flow (SELF) has been the subject of many studies. In this study, we further examine the interaction by introducing a transformed eddy-potential-vorticity (TEPV) flux that is obtained from eddy-potential-vorticity flux through a quasi-geostrophic potential-vorticity inversion. The main advantage of using the TEPV flux is that it combines the effects of the eddy-vorticity and heat fluxes into the net acceleration of the low-frequency flow in such a way that the TEPV flux tends to be analogous to the eddy-vorticity fluxes in the barotropic framework. We show that the anomalous TEPV fluxes are preferentially directed to the left-hand side of the low-frequency flow in all vertical levels throughout the troposphere for monthly flow anomalies and for climate modes such as the Arctic Oscillation (AO). Furthermore, this left-hand preference of the TEPV flux direction is a convenient three-dimensional indicator of the positive reinforcement of the low-frequency flow by net eddy-induced acceleration. By projecting the eddy-induced net accelerations onto the low-frequency flow anomalies, we estimate the eddy-induced growth rates for the low frequency flow anomalies. This positive eddy-induced growth rate is larger (smaller) in the lower (upper) troposphere. The stronger positive eddy feedback in the lower troposphere may play an important role in maintaining an equivalent barotropic structure of the low-frequency atmospheric flow by balancing some of the strong damping effect of surface friction.  相似文献   

18.
赤道不稳定波(tropical instability waves)存在于热带东太平洋赤道附近, 通常于每年的春末夏初出现, 以约0.6 m/s速度向西传播, 波周期为20~40天左右, 波长约为1000~2000 km。本文利用一个全球高分辨率海气耦合模式对赤道不稳定波在赤道附近的热量输送进行分析, 表明赤道不稳定波产生指向赤道的热通量, 从而部分抵消了热带东太平洋地区由Ekman辐散和温度平流导致的强冷却效应, 维持热带地区的热量平衡。其对赤道冷舌区的增暖作用可以消除和减弱气候模式中热带东太平洋地区的系统性冷偏差, 能使冷舌的强度和分布得到合理的改善, 对气候模式的改进和发展具有潜在贡献。赤道不稳定波还可以改变赤道海洋上空低层大气层结稳定度, 导致近地层强的风场辐合辐散, 并进一步影响大气混合层的温度、 风场等气象要素。模拟分析结果还表明, 赤道不稳定波对大气强迫产生二次响应, 改变赤道上空逆温层的垂直位移和逆温强度。研究赤道不稳定波对热带海洋气候及其海气相互作用机理的理解具有重要意义。  相似文献   

19.
林爱兰  LI Tim  王璐  李春晖 《大气科学》2021,45(3):633-650
采用观测分析和数值试验等方法,分析夏季南亚高压与热带季节内振荡(ISO)之间的关系,并对两者之间的相互作用进行量化诊断,探讨其物理过程.主要结果表明:南亚高压ISO与热带ISO活动关系密切,当热带ISO处于印度洋位相(第1、2、3位相),则南亚高压东脊点位置偏西,当ISO处于太平洋位相(第5、6、7位相),则南亚高压东...  相似文献   

20.
The role of mesoscale oceanic eddies in driving the large-scale currents is studied in an eddy-resolving, double-gyre ocean model. The new diagnostic method is proposed, which is based on dynamical decomposition of the flow into the large-scale and eddy components. The method yields the time history of the eddy forcing, which can be used as additional, external forcing in the corresponding non-eddy-resolving model of the gyres. The main strength of this approach is in its dynamical consistency: the non-eddy-resolving solution driven by the eddy forcing history correctly approximates the original large-scale flow component. It is shown that statistical decompositions, which are based on space-time filtering diagnostics, are dynamically inconsistent. The diagnostics algorithm is formulated and tested, and the diagnosed eddies are analysed, both statistically and dynamically. It is argued that the main dynamic role of the eddies is to maintain the eastward-jet extension of the subtropical western boundary current (WBC). This is done largely by both the time–mean isopycnal-thickness flux and the relative-vorticity eddy flux fluctuations. The fluctuations drive large-scale flow through the nonlinear rectification mechanism. The relative-vorticity flux contributes mostly to the eastward jet meandering. Finally, eddy fluxes driven by both the eddies and the large-scale flow are found to be important. The latter is typically neglected in the analysis, but here it corresponds to important large-scale feedback on the eddies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号