首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 307 毫秒
1.
Assessment of soil erosion risk using SWAT model   总被引:3,自引:2,他引:1  
Soil erosion is one of the most serious land degradation problems and the primary environmental issue in Mediterranean regions. Estimation of soil erosion loss in these regions is often difficult due to the complex interplay of many factors such as climate, land uses, topography, and human activities. The purpose of this study is to apply the Soil and Water Assessment Tool (SWAT) model to predict surface runoff generation patterns and soil erosion hazard and to prioritize most degraded sub-catchment in order to adopt the appropriate management intervention. The study area is the Sarrath river catchment (1,491 km2), north of Tunisia. Based on the estimated soil loss rates, the catchment was divided into four priority categories for conservation intervention. Results showed that a larger part of the watershed (90 %) fell under low and moderate soil erosion risk and only 10 % of the watershed was vulnerable to soil erosion with an estimated sediment loss exceeding 10 t?ha?1?year?1. Results indicated that spatial differences in erosion rates within the Sarrath catchment are mainly caused by differences in land cover type and gradient slope. Application of the SWAT model demonstrated that the model provides a useful tool to predict surface runoff and soil erosion hazard and can successfully be used for prioritization of vulnerable areas over semi-arid catchments.  相似文献   

2.
Soil erosion due to surface water is a standout among the serious threat land degradation problem and an hazard environmental destruction. The first stage for every kind of soil conservation planning is recognition of soil erosion status. In this research, the usability of two new techniques remote sensing and geographical information system was assessed to estimate the average annual specific sediments production and the intensity erosion map at two sub-basins of DEZ watershed, southwest of Lorestan Province, Iran, namely Absorkh and Keshvar sub-basins with 19,920 ha, using Modified Pacific Southwest Inter-Agency Committee (MPSIAC) soil erosion model. At the stage of imagery data processing of IRS-P6 satellite, the result showed that an overall accuracy and kappa coefficient were 90.3% and 0.901, respectively, which were considered acceptable or good for imagery data. According to our investigation, the study area can be categorized into three level of severity of erosion: moderate, high, and very high erosion zones. The amount of specific sediments and soil erosion predicted by MPSIAC model was 1374.656 and 2396.574 m3 km?2 year?1, respectively. The areas situated at the center and south parts of the watershed were subjected to significant erosion because of the geology formation and ground cover, while the area at the north parts was relatively less eroded due to intensive land cover. Based on effective of nine factors, the driving factors from high to low impact included: Topography > Land use > Upland erosion > Channel erosion > Climate > Ground cover > Soil > Runoff > Surface geology. The measured sediment yield of the watershed in the hydrometric station (Keshvar station) was approximately 2223.178 m3 km?2 year?1 and comparison of the amount of total sediment yield predicted by model with the measured sediment yield indicated that the MPSIAC model 38% underestimated the observed value of the watershed.  相似文献   

3.
Undulating landscapes of Chhotanagpur plateau of the Indian state of Jharkhand suffer from soil erosion vulnerability of varying degrees. An investigation was undertaken in some sections of the Upper Subarnarekha River Basin falling within this state. An empirical equation known as Universal Soil Loss Equation (USLE) was utilized for estimating the soil loss. Analysis of remote sensing satellite data, digital elevation model (DEM) and geographical information system (GIS)–based geospatial approach together with USLE led to the soil erosion assessment. Erosion vulnerability assessment was performed by analyzing raster grids of topography acquired from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global DEM data. LANDSAT TM and ETM+ satellite data of March 2001 and March 2011 were used for inferring the land use–land cover characteristics of the watershed for these years, respectively. USLE equation was computed within the GIS framework to derive annual soil erosion rates and also the areas with varying degrees of erosion vulnerability. Erosion vulnerability units thus identified covered five severity classes of erosion ranging from very low (0–5 ton ha?1 yr?1) to very severe (> 40 ton ha?1 yr?1). Results indicated an overall increase of erosion in the year 2011 as compared to the erosion computed for the year 2001. Maximum soil erosion rate during the year 2001 was found up to 40 ton ha?1 yr?1, whereas this went up to 49.80 ton ha?1 yr?1 for the year 2011. Factors for the increase in overall erosion could be variation in rainfall, decrease in vegetation or protective land covers and most important but not limited to the increase in built-up or impervious areas as well.  相似文献   

4.
In recent times, soil erosion interlocked with land use and land cover (LULC) changes has become one of the most important environmental issues in developing countries. Evaluation of this complex interaction between LULC change and soil erosion is indispensable in land use planning and conservation works. This paper analysed the impact of LULC change on soil erosion in the north-western highland Ethiopia over the period 1986–2016. Rib watershed, the area with dynamic LULC change and severe soil erosion problem, was selected as a case study site. Integrated approach that combined geospatial technologies with revised universal soil loss equation model was utilized to evaluate the spatio-temporal dynamics of soil loss over the study period. Pixel-based overlay of soil erosion intensity maps with LULC maps was carried out to understand the change in soil loss due to LULC change. Results showed that the annual soil loss in the study area varied from 0 to 236.5 t ha?1 year?1 (tons per hectare per year) in 1986 and 0–807 t ha?1 year?1 in 2016. The average annual soil loss for the entire watershed was estimated about 40 t ha?1 year?1 in 1986 comparing with 68 t ha?1 year?1 in 2016, a formidable increase. Soil erosion potential that was estimated to exceed the average soil loss tolerance level increased from 34.5% in 1986 to 66.8% in 2016. Expansion of agricultural land at the expense of grassland and shrubland was the most detrimental factor for severe soil erosion in the watershed. The most noticeable change in soil erosion intensity was observed from cropland with mean annual soil loss amount increased to 41.38 t ha?1 year?1 in 2016 from 26.60 in 1986. Moreover, the most successive erosion problems were detected in eastern, south-eastern and northern parts of the watershed. Therefore, the results of this study can help identify the soil erosion hot spots and conservation priority areas at local and regional levels.  相似文献   

5.
Rapid population growth in sub-Saharan West Africa and related cropland expansion were shown in some places to have increased focused recharge through ponds, raising the water table. To estimate changes in diffuse recharge, the water content and matric potential were monitored during 2009 and 2010, and modeling was performed using the Hydrus-1D code for two field sites in southwest Niger: (1) fallow land and (2) rainfed millet cropland. Monitoring results of the upper 10 m showed increased water content and matric potential to greater depth under rainfed cropland (>2.5 m) than under fallow land (≤1.0 m). Model simulations indicate that conversion from fallow land to rainfed cropland (1) increases vadose-zone water storage and (2) should increase drainage flux (~25 mm year?1) at 10-m depth after a 30–60 year lag. Therefore, observed regional increases in groundwater storage may increasingly result from diffuse recharge, which could compensate, at least in part, groundwater withdrawal due to observed expansion in irrigated surfaces; and hence, contribute to mitigate food crises in the Sahel.  相似文献   

6.
Effects of land use changes on soil erosion in a fast developing area   总被引:1,自引:0,他引:1  
Land use changes extensively affect soil erosion, which is a great environmental concern. To evaluate the effect of land use change on soil erosion in fast economic developing areas, we studied land use changes of Guangdong, China, from 2002 to 2009 using remote sensing and estimated soil erosion using the Universal Soil Loss Equation. We calculated the areas and percentage of each land use type under different erosion intensity and analyzed soil erosion changes caused by transitions of land use types. In addition, the impact of land use change on soil erosion in different river catchments was studied. Our results show that forest and wasteland land conversions induce substantial soil erosion, while transition from wasteland to forest retards soil loss. This suggests that vegetation cover changes significantly influence soil erosion. Any conversion to wasteland causes soil erosion, whereas expansion of forests and orchards mitigates it. The most significant increase in soil erosion from 2002 to 2009 was found in the Beijiang catchment corresponding to the transition from forest/orchard to built-up and wasteland. Soil erosion in the Xijiang catchment accelerated in this period due to the enormous reduction in orchard land. In Hanjiang catchment, erosion was alleviated and vegetation coverage greatly expanded owing to considerable transitions from wasteland and cropland to orchards. Field investigations validated our estimations and proved the applicability of this method. Measures including protecting vegetation, strict control of mining as well as reasonable urban planning should be taken to prevent successive soil erosion.  相似文献   

7.
In this study, the environmental radioactivity measurements for Tokat and Sivas provinces in the northeast of Turkey were performed. Using gamma ray spectrometry, the activity concentrations of natural radionuclides in soil and travertine samples (232Th, 226Ra, and 40K) were determined. The annual effective dose equivalent, the absorbed doses rate in air, the radium equivalent, and the external hazard index were obtained from these activities. The activity concentrations vary from 9.09 to 17.04 Bq kg?1 for 232Th, from 36.53 to 76.95 Bq kg?1 for 226Ra, and from 216.56 to 576.59 Bq kg?1 for 40K in soil samples. The activity concentrations in travertines vary from 15.99 to 21.01 Bq kg?1 for 232Th, from 19.89 to 67.71 Bq kg?1 for 226Ra, and from 179.89 to 314.43 Bq kg?1 for 40K. The average dose rate in air for soil and travertine samples was 43.41 and 41.05 nGy h?1 respectively. The obtained results are presented and compared with other studies, and the results of this study are lower than the international recommended value (55 nGy h?1) given by UNSCEAR ( 2000). The results show that the region has a background radiation level within the natural limits.  相似文献   

8.
Desertification is the major environmental threat in the arid and semiarid regions. The soil-adjusted vegetation index (SAVI) was used as an indicator to monitor the desertification change in Egypt. A multi-temporal satellite data of moderate-resolution imaging spectroradiometer were used to estimate SAVI and land surface temperature. Also, Global Multi-resolution Terrain Elevation Data 2010 and climatic data were used for the analysis. This research focuses on assessing the trend of the vegetation cover change in the seasons of January, March, June, September, and December for the years 2002, 2005, 2008, and 2011. The magnitude of the vegetation cover change in periods 2002–2005, 2005–2008, and 2008–2011 at ≤100 and >100 m elevation was analyzed. A major increase in the vegetation cover that occurred in the period 2002–2005 was about 3,400 km2, as a result of two national megaprojects (Toshka Project and El-Salam Canal). In contrast, vegetation cover decreased by 5,500 km2 in March during the period 2005–2008, coinciding with the period when the management of the megaprojects failed. Vegetation cover changed again by 1,500 km2 in the period of 2008–2011, and the vegetated areas in the Nile Delta were affected by the sea level rising which was responsible for the soil salinization. Three sites were chosen in this investigation (Kom Ombo, El-Oweinat, and Nile Delta) in order to observe the difference of desertification dynamics and to understand the relationship between the vegetation cover distribution and other environmental variables. Anti-desertification policies and advanced agricultural management are highly required in Egypt to decrease any environmental crises and food shortage.  相似文献   

9.
This paper presents the environmental impacts caused by surface mining and the ecological rehabilitation of Haikou phosphate deposits, Kunming, China. Surface mining entails the removal of the overburden to expose bare rock surfaces, not only causing destruction of pre-existing vegetation, but also occupying large areas of land for dumping the spoil. Severe environmental impacts are caused, e.g. rock desertification, poor forest stand structure, loss of biodiversity, aesthetic depreciation of the landscape, and the potential hazard of landslide and ground erosion. Ecological restoration has been conducted in a demonstration area since 1989 by means of control of geological hazards and revegetation of the disturbed areas. On-site dumping of waste rock for restoration of the abandoned mine area was adopted, providing a new mode of mining reclamation with high economic, environmental, and social value. Countermeasures for prevention and control of landslides included cut and fill technology, drainage, safety netting protection, retaining wall construction, and vegetation cover. By recruiting native plant species to the mine site and planting a forest imitating a natural mixed forest, the mine area was successfully revegetated.  相似文献   

10.
Watershed degradation due to soil erosion and sedimentation is considered to be one of the major environmental problems in Iran. In order to address the critical conditions of watershed degradation in arid and semiarid regions, a study based on the Modified Pacific Southwest Inter-Agency Committee (MPSIAC) model was carried out at Golestan watershed, northeast of Iran. The model information layers comprising nine effective factors in erosion and sedimentation at the watershed site were obtained by digitalization and spatial interpolation of the basic information data in a GIS program. These factors are geology, soil, climate, runoff, topography, land cover, land use, channel, and upland erosion. The source data for the model were obtained from available records on rainfall and river discharge and sediment, topography, land use, geology, and soil maps as well as field surveys and laboratory analysis. The results of the MPSIAC model indicated that 60.75 % (194.4 km2) and 54.97 % (175.9 km2) of the total watershed area were classified in the heavy sedimentation and erosion classes, and the total basin sediment yield and erosion were calculated as 4,171.1 and 17,813.4 m3 km?2 year?1, respectively. In the sensitivity analysis, it was found that the most sensitive parameters of the model in order of importance were topography (slope), land cover and use, runoff, and channel erosion (R 2?=?0.92–0.94), while geology, climate (rainfall), soil, and upland erosion factors were found to have moderate effect to the model output (R 2?=?0.74–0.59).  相似文献   

11.
Tchabal Gangdaba (TG) volcanic massif, which is a part of the continental sector of the Cameroon Volcanic Line (CVL), is dated between 34.4 and 25.1 Ma. It displays mafic lavas (picrobasalt and basanite, 41–43 wt % SiO2) and felsic lavas (rhyolite, 68–73 wt % SiO2). The lack of intermediate rocks evidences a pronounced Daly gap between 43 and 68 wt % SiO2, which corresponds to an important time span of 3.4 Ma. It is interpreted as due to extensive fractional crystallization under peculiar thermodynamical conditions. Felsic lavas yield strong negative anomalies in Ba, Sr and Eu (0.1?206Pb/204Pb?207Pb/204Pb?208Pb/204Pb?相似文献   

12.
Fine sediment inputs can alter estuarine ecosystem structure and function. However, natural variations in the processes that regulate sediment transport make it difficult to predict their fate. In this study, sediments were sampled at different times (2011–2012) from 45 points across intertidal sandflat transects in three New Zealand estuaries (Whitford, Whangamata, and Kawhia) encompassing a wide range in mud (≤63 μm) content (0–56 %) and macrofaunal community structure. Using a core-based erosion measurement device (EROMES), we calculated three distinct measures of sediment erosion potential: erosion threshold (? c ; N m?2), erosion rate (ER; g m?2 s?1), and change in erosion rate with increasing bed shear stress (m e ; g N?1 s?1). Collectively, these measures characterized surface (? c and ER) and sub-surface (m e ) erosion. Benthic macrofauna were grouped by functional traits (size and motility) and data pooled across estuaries to determine relationships between abiotic (mud content, mean grain size) and biotic (benthic macrofauna, microbial biomass) variables and erosion measures. Results indicated that small bioturbating macrofauna (predominantly freely motile species <5 mm in size) destabilized surface sediments, explaining 23 % of the variation in ? c (p ≤ 0.01) and 59 % of the variation in ER (p ≤ 0.01). Alternatively, mud content and mean grain size cumulatively explained 61 % of the variation in m e (p ≤ 0.01), where increasing mud and grain size stabilized sub-surface sediments. These results highlight that the importance of biotic and abiotic predictors vary with erosion stage and that functional group classifications are a useful way to determine the impact of benthic macrofauna on sediment erodibility across communities with different species composition.  相似文献   

13.
Studies on denudation processes and soil loss rates can provide insight into the landscape evolution, climate change, and human activities, as well as on land degradation risk. The aims of this study were to analyze the space–time distribution of denudation processes and evaluate the soil loss changes occurred during the period 1955–2016 by using an approach integrating geomorphological, geospatial and modeling analysis. The study area is a representative stream catchment of the Crati Valley (Calabria, southern Italy), which is affected by severe erosion processes. The combined use of aerial photographs interpretation, field survey, geostatistics, and GIS processing has allowed to characterize the types of denudation processes and land use change in space and time. Revised universal soil loss equation implemented in GIS environment was used to estimate the space–time pattern of soil loss and the soil erosion rates for each investigated year. The results showed that from 1955 to 2016, the study area was highly affected by denudation processes, mainly related to landslides and water erosion (slope wash erosion and gully erosion). Comparison of denudation processes maps showed that the total area affected by erosion processes has increased by about 31% and the distribution of geomorphic processes and their space–time evolution resulted from the complex interrelation between geoenvironmental features and human activities. The main land use changes concerned a decrease in areas covered by woodland, scrubland and pasture and an increase in croplands and barren lands that favored erosion processes. The most susceptible areas to soil loss in both years were mapped, and the mean soil loss rates for the study area were 6.33 Mg ha?1 y?1 in 1955 and 10.38 Mg ha?1 y?1 in 2016. Furthermore, the soil loss in 2016 has increased by about 64% compared to 1955. Finally, the results showed that integrating multi-temporal analysis of denudation processes, land use changes and soil loss rates might provide significant information on landscape evolution which supports decision makers in defining soil management and conservation practices.  相似文献   

14.
The present study provides assessment of wasteland development in Bihar State based on satellite data. Wasteland covers 6.90 % (6,501 km2) of the state area and exhibits dominance of waterlogged areas in North Bihar (25.28 %) and scrubland (26.61 %) in South Bihar. The waterlogged areas in the state are dominantly associated with northern Bihar plains (94 %) with minor development (6 %) in southern Bihar plains. Such unequal distribution of waterlogged land areas in northern and southern Bihar plains is largely governed by high cumulative discharge generated in the large catchment area in Himalayan mountain ranges in the upland areas of northern Bihar plains in contrast to low cumulative discharge generated within small catchments in the Chota Nagpur Plateau in the southern Bihar plains. It is evaluated that the relief and groundwater level define the primary controlling factors, whereas rainfall, watershed area, and upland/plain ratio exert secondary control. Lower relief areas with high rainfall exhibit high soil moisture thereby inducing conditions of waterlogging. The study signifies the potential of satellite image-based evaluation of waterlogging through the use of Digital Elevation Model, Tropical Rainfall Measuring Mission-based rainfall measurement, and temporal waterlogging assessment together with other terrain parameters for conceptual understanding of waterlogging in northern Bihar plains.  相似文献   

15.
Estimation of soil erosion using RUSLE in Caijiamiao watershed,China   总被引:4,自引:1,他引:3  
Jinghu Pan  Yan Wen 《Natural Hazards》2014,71(3):2187-2205
Soil erosion is a serious environmental and production problem in China. In particular, natural conditions and human impact have made the Chinese Loess Plateau particularly prone to intense soil erosion area. To decrease the risk on environmental impacts, there is an increasing demand for sound, and readily applicable techniques for soil conservation planning in this area. This work aims at the assessment of soil erosion and its spatial distribution in hilly Loess Plateau watershed (northwestern China) with a surface area of approximately 416.31 km2. This study was conducted at the Caijiamiao watershed to determine the erosion hazard in the area and target locations for appropriate initiation of conservation measures using the revised universal soil loss equation (RUSLE). The erosion factors of RUSLE were collected and processed through a geographic information system (GIS)-based approach. The soil erosion parameters were evaluated in different ways: The R-factor map was developed from the rainfall data, the K-factor map was obtained from the soil map, the C-factor map was generated based on Landsat-5 Thematic Mapper image and spectral mixture analysis, and a digital elevation model with a spatial resolution of 25 m was derived from topographic map at the scale of 1:50,000 to develop the LS-factor map. Support practice P factor was from terraces that exist on slopes where crops are grown. By integrating the six-factor maps in GIS through pixel-based computing, the spatial distribution of soil loss in the study area was obtained by the RUSLE model. The results showed that spatial average soil erosion at the watershed was 78.78 ton ha?1 year?1 in 2002 and 70.58 ton ha?1 year?1 in 2010, while the estimated sediment yield was found to be 327.96 × 104 and 293.85 × 104 ton, respectively. Soil erosion is serious, respectively, from 15 to 35 of slope degree, elevation area from 1,126 to 1,395 m, in the particular area of soil and water loss prevention. As far as land use is concerned, soil losses are highest in barren land and those in waste grassland areas are second. The results of the study provide useful information for decision maker and planners to take appropriate land management measures in the area. It thus indicates the RUSLE–GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a river watershed scale on a cell basis in Chinese Loess Plateau and for planning of conservation practices.  相似文献   

16.
The installation of a rural settlement complex in the watershed stream Indaiá has promoted changes in land-use and vegetation cover dynamics; however, the effects of intensive agriculture and cattle farming in rural settlements on soil loss rates are not well known. Predictive models implemented in geographic information systems have proven to be effective tools for estimating erosive processes. The erosion predictive model Revised Universal Soil Loss Equation (RUSLE) is a useful tool for analyzing, establishing and managing soil erosion. RUSLE has been widely used to estimate annual averages of soil loss, by both interrill and rill erosion, worldwide. Therefore, the aim of this work was to estimate the soil loss in the watershed stream Indaiá, using the RUSLE model and geoprocessing techniques. To estimate soil loss, the following factors were spatialized: erosivity (R), erodibility (K), topography (LS), land-use and management (C) and conservation practices (P); the annual soil loss values were calculated using the RUSLE model equation. The estimated value of soil loss in the hydrographic basin ranged from 0 to 4082.16 Mg ha?1 year?1 and had an average value of 47.81 Mg ha?1 year?1. These results have demonstrated that 68.16 % of the study area showed little or no soil loss based on the Food and Agriculture Organization’s (FAO 1980) classification. When comparing the average value of soil loss obtained using the RUSLE model with the Natural Potential for Erosion, a 16-fold reduction in soil was found, which highlighted the fact that vegetation cover (C factor) has a greater influence than other factors (R, K and LS) on soil loss prediction attenuation. These results lead to the conclusion that soil loss occurs by different methods in each settlement in the basin and that erosive processes modeled by geoprocessing have the potential to contribute to an orderly land management process.  相似文献   

17.
Three Gorges Reservoir in China was running since June 2003, and its impacts on soil erosion (SE) and soil conservation (SC) have attracted major public attentions. We quantified the soil conservation service of ecosystems in the Three Gorges Reservoir Area (TGRA) based on a GIS platform using the universal soil loss equation. We revealed the changes of spatial and temporal patterns of soil conservation (SC) and soil erosion (SE) after project construction as well as impact factors on local SE and SC. Results showed that the total amounts and mean capacity of soil conservation services in the TGRA were 15.38-billion t a?1 and 2134.73 t ha?1 a?1, respectively. Northeast reservoir area owned better services than the southwest, and the regions with a capacity of >5000 t ha?1 a?1 were primary located in mountain areas. An increasing trend in SC appeared in the TRGA and “with increasing SC” totaled 22690.5 km2 (38.9%), while the areas “with decreasing SC” amounted to 3460.4 km2 (5.9%) between 2000 and 2010. Moreover, the pattern of changing SC was continuous in this area. The spatial characteristics of soil conservation service in the TGRA were primarily affected by slope, climate and terrain features. In addition, the reforestation and/or forest protection would contribute to soil erosion control in the TGRA. The results revealed a great spatial heterogeneity of soil conservation service in this region, which may provide useful suggestions for land management, soil erosion control and ecosystem protection in the TGRA in China.  相似文献   

18.
Estimation of spatial extent of soil erosion, one of the most serious forms of land degradation, is critical because soil erosion has serious implications on soil fertility, water ecosystem, crop productivity and landscape beauty. The primary objective of the current study was to assess and map the soil erosion intensity and sedimentation yield of Potohar region of Pakistan. Potohar is the rainfed region with truncated and complex topography lying at the top of the Indus Basin, the world’s largest irrigation networks of canals and barrages. Spatially explicit Revised Universal Soil Loss Equation (RUSLE) Model integrated with Remote Sensing-GIS techniques was used for detecting/mapping of erosion prone areas and quantification of soil losses. The results show that the Potohar region is highly susceptible to soil erosion with an average annual soil loss of 19 tons ha?1 year?1 of which the maximum erosion (70–208 tons ha?1 year?1) was near the river channels and hilly areas. The sediment yield due to the erosion is as high as 148 tons ha?1 year?1 with an average of 4.3 tons ha?1 year?1. It was found that 2.06% of the total area falls under severe soil erosion, 13.34% under high erosion, 15.35% under moderate soil erosion while 69.25% of the area lies in the low (tolerable) soil erosion. Chakwal and Jhelum districts of the region are seriously affected by erosion owing to their topography and soil properties. The information generated in this study is a step forward towards proper planning and implementation of strategies to control the erosion and for protection of natural resources. It is, hence, necessary that suitable water harvesting structures be made to control water to prevent soil erosion and provision of water in the lean season in this region. Tree plantation and other erosion control practices such as strip cropping can also minimize soil erosion in this region.  相似文献   

19.
Soil quality evaluation under different land management practices   总被引:5,自引:0,他引:5  
Sustainable agricultural production requires prudent management backed by reliable information that accurately elucidates the complex relationships between land management practices and soil quality trends. Therefore, this study investigates the influence of management on soil properties acquired at different depths, and yields, at five different field sites within Ohio, USA. The principal management systems considered were no till with or without manure and cover crops, natural vegetation (NV) or forest, and conventional tillage (CT) defined as farms with surface residue cover (<30 %). Analyses of variance (ANOVA), correlation analyses, stepwise regression, and the principal component analyses (PCA) were used to elucidate and model the link between four different management practices and the soil physical and chemical properties. The ANOVA results indicate that the available water capacity and electrical conductivity (EC) were the major variables affected by management. In contrast, soil pH, bulk density (ρ b), porosity, soil organic carbon (SOC), and total nitrogen (TN), were invariable with management, yet only pH and EC did not significantly vary with the interaction of soil type and management effects. In comparison, the PCA results suggest that SOC, TN, porosity, ρ b, and EC were the major determining factors controlling yield variability. Interestingly, the derived models revealed that the highest yields, notably 10 and 2.7 Mg ha?1 for corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) occurred in soils under CT management. Quantifying the nexus between soil properties and management choices as demonstrated in this study, can provide critical insight for sustainable agricultural production.  相似文献   

20.
Seagrasses provide a number of critical ecosystem services, including habitat for numerous species, sediment stabilization, and shoreline protection. Ariel photography is a useful tool to estimate the areal extent of seagrasses, but recent innovations in radiometrically calibrated sensors and algorithm development have allowed identification of benthic types and retrieval of absolute density. This study demonstrates the quantitative ability of a high spatial resolution (1 m) airborne hyperspectral sensor (3.2 nm bandwidth) in the complex coastal waters of Saint Joseph’s Bay (SJB). Several benthic types were distinguished, including submerged and floating aquatic vegetation, benthic red algae, bare sand, and optically deep water. A total of 23.6 km2 of benthic vegetation was detected, indicating no dramatic change in vegetation area over the past 30 years. SJB supported high seagrass density at depths shallower than 2 m with an average leaf area index of 2.0?±?0.6 m2 m?2. Annual seagrass production in the bay was 13,570 t C year?1 and represented 41 % of total marine primary production. The effects of coarser spatial resolution were investigated and found to reduce biomass retrievals, underestimate productivity, and alter patch size statistics. Although data requirements for this approach are considerable, water column optical modeling may reduce the in situ requirements and facilitate the transition of this technique to routine monitoring efforts. The ability to quantify not just areal extent but also productivity of a seagrass meadow in optically complex coastal waters can provide information on the capacity of these environments to support marine food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号