首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 386 毫秒
1.
Horizontal trenches (HTs) are constructed during the waste filling for leachate recirculation in bioreactor landfills. Leachate distribution depends on HT configuration (i.e., spacing between successive HTs), leachate injection rate, modes of injection, and hydraulic properties and MSW heterogeneity. Presently, the effects of these variables on the moisture distribution have not been studied systematically. This study provides a systematic evaluation of the effect of the HTs variables on the moisture distribution and pore fluid pressures. A two-phase flow model is used to model a bioreactor landfill having an HT leachate injection system. It quantifies the effects of the unsaturated hydraulic properties and MSW heterogeneity, trench configuration, leachate injection flux, and mode of injection on hydraulic behaviour. The results show that unsaturated hydraulic conductivity and MSW heterogeneity significantly shape the zone of influence and excess pore pressures. Under heterogeneous-anisotropic conditions, the leachate migrates more laterally and the developed pore-pressures are lower than for homogeneous MSW. A closely-spaced, multi-level, staggered HT system is found to provide uniform and adequate moisture distribution in MSW. An intermittent mode of injection that alternates between the shallow and deep trenches with a higher leachate injection flow rate is found to be effective to control the excess pore pressures.  相似文献   

2.
In bioreactor landfills, different configurations of closely spaced horizontal trench (HT) systems are often considered as leachate recirculation systems to achieve uniform and rapid distribution of moisture in municipal solid waste (MSW). In this study, a numerical two-phase flow modelling was adopted to study the effects of geometric configuration of HT systems on the moisture distribution in MSW, and the stability of a simplified bioreactor landfill slope during continuous and intermittent leachate recirculation. Transient variations in pore water and capillary pressures in MSW were assessed, and slope stability analyses were performed using strength reduction technique. MSW was considered as heterogeneous and anisotropic with varied unit weight and saturated hydraulic conductivity. The results demonstrated that geometric configurations of HT systems significantly affected the moisture distribution, generation and distribution of pore water and capillary pressures in MSW, and considerably influenced the mechanical stability of bioreactor landfill slope. It was concluded that staggered configuration of closely spaced HT systems with intermittent sequences of leachate recirculation and subsequent gravity drainage in alternate shallow and deep HT layers should be adopted as they produce uniform moisture distribution and ensure the mechanical stability of landfill slope due to low induced pore pressures near side slope. Overall, this study presents a significant contribution to the understanding of the basic mechanisms controlling the geotechnical stability of bioreactor landfills during leachate operations. Furthermore, the capability of the adopted commercial code was verified with complexities related to bioreactors behaviour. However, further research is needed to validate the model based on field monitoring data at actual bioreactor landfills.  相似文献   

3.
Drainage blankets (DB) are used for leachate recirculation in bioreactor landfills and consist of highly permeable material placed over a large area of the landfill with the leachate injection pipe embedded in the material at specified locations. DBs are generally installed at different depth levels during the waste filling operations. Very limited information is reported on performance of DBs, and that which exists is based on a small number of field monitoring and modeling studies. A rational method for the design of landfills using DBs has not been developed. This study performs a parametric analysis based on a validated two-phase flow model and presents design charts to guide the design of DBs for given hydraulic properties of MSW, the leachate injection rate and the dimensions and locations of the DB as measured from the leachate collection and recirculation system (LCRS) located at the bottom of the landfill cell. Numerical simulations were performed for the two established MSW conditions: homogeneous–isotropic and heterogeneous–anisotropic waste. The optimal levels of leachate saturation, wetted width, wetted area and developed pore water and pore gas pressures were determined, and design charts using the normalized parameters were developed. An example is presented on the use of design charts for typical field application.  相似文献   

4.
Bioreactor landfills are operated for rapid stabilization of waste, increased landfill gas generation for cost-effective energy recovery, gain in landfill space, enhanced leachate treatment, and reduced post closure maintenance period. The fundamental process of waste stabilization in bioreactor landfill is recirculation of generated leachate back into the landfills. This creates a favorable environment for rapid microbial decomposition of the biodegradable solid waste. In order to better estimate the generated leachate and design of leachate recirculation system, clear understanding of the permeability of the Municipal Solid Waste (MSW) with degradation and the factors influencing the permeability is necessary. The objective of the paper is to determine the changes in hydraulic properties of MSW in bioreactor landfill with time and decomposition. Four small-scale bioreactor landfills were built in laboratory and samples were prepared to represent each phase of decomposition. Then, the changes in hydraulic properties of MSW in bioreactor landfill with time and decomposition were determined. A series of constant head permeability tests were performed on the samples generated in laboratory scale bioreactor landfills to determine variation of permeability of MSW with degradation. The test results indicated that the permeability of MSW in bioreactor landfills decreases with decomposition. Based on the test results, the permeability of MSW at the first phase of degradation was estimated as 0.0088 cm/s at density 700 kg/m3. However, with degradation, permeability decreased to 0.0013 cm/s at the same density, for MSW at Phase IV.  相似文献   

5.
Bioreactor landfills are operated to enhance refuse decomposition, gas production, and waste stabilization. The major aspect of bioreactor landfill operation is the recirculation of collected leachate back through the refuse mass. Due to the presence of additional leachate and accelerated decomposition, the characteristics of Municipal Solid Waste (MSW) in bioreactor landfills are expected to change. About 50% of the continental United States comes under the designated seismic impact zone. The federal regulations have focused increase attention on seismic design of solid waste fills, and have mandated that the solid waste landfills located in the seismic impact zones should be designed to resist the earthquake. Accordingly, assessment of dynamic properties of landfills is one of the major geotechnical tasks in landfill engineering. In order to understand the changes in dynamic properties of bioreactor waste mass with time and decomposition, four small scale bioreactor landfills were simulated in laboratory and samples were prepared to represent each phase of decomposition. The state of decomposition was quantified by methane yield, pH, and volatile organic content (VOC). A number of Resonant Column (RC) tests were performed to evaluate the dynamic properties (stiffness and damping) of MSW. The test results indicated that the normalized shear modulus reduction and damping curves are significantly affected by the degree of decomposition. The shear modulus increased from 2.11 MPa in Phase I to 12.56 MPa in Phase IV. The increase was attributed to the breakdown of fibrous nature of solid waste particles as it degrades. Therefore, considering MSW properties to be uniform throughout the bioreactor landfill is not a reasonable assumption and the shear modulus reduction curves should be evaluated based on the degree of MSW decomposition, rather than the sample composition itself.  相似文献   

6.
垃圾土蠕变-降解特性的室内试验研究   总被引:1,自引:0,他引:1  
通过室内蠕变-降解对比试验,研究了城市固体废弃物(MSW)的长期变形过程,详细地分析了MSW应变、沉降速率以及孔隙比随时间的变化规律。试验结果显示,考虑有机物降解情况下沉降速率与时间在双对数坐标下呈线性关系;不同的生物降解条件下MSW的变形特性表现出不同的规律。研究表明,MSW的蠕变变形是应力与有机物生物降解耦合作用的结果,采用室内蠕变-降解试验可以很好地模拟垃圾土的沉降变形过程,为室内进一步研究垃圾土的蠕变降解特性提供了很好的依据。  相似文献   

7.
The primary objective of bioreactor landfill is to achieve adequate and rapid distribution of moisture in landfilled municipal solid waste (MSW) to accelerate the anaerobic biodegradation of the organic fraction within MSW. A horizontal trench system (HT) is commonly adopted for leachate distribution in MSW under pressurized conditions. However, this approach should be implemented carefully due to the potential instability of landfill slopes that comes from the generation and distribution of excessive pore fluid pressures. In this study, HT design charts are presented that determine the optimal location of horizontal trench systems from the side slope (i.e., minimum lateral setback distance) under continuous leachate addition with maximum applied injection pressures, for which the landfill slopes remain stable [factor of safety (FOS) where FOS ≥ 1.5]. Use of any higher injection pressure and/or shorter lateral setback distance of HT than the one presented in the design charts would result in an unacceptable design of the bioreactor side slope (FOS < 1.5). The design chart was developed based on a parametric study that used a numerical two-phase flow model that involved different slope configurations and landfill waste depths. MSW heterogeneity and anisotropy, as well as unsaturated hydraulic properties, were taken into consideration in these simulations. Transient changes in pore water and gas pressures due to leachate recirculation were accounted for dually in the slope stability computations. The importance of these design charts is illustrated using a practical example. Site-specific conditions and the expertise and prior experience of a designer or operator must also be adequately considered and utilized with the design charts presented here for the safe design of a horizontal trench system in a bioreactor landfill.  相似文献   

8.
为了加速填埋场降解的稳定化,渗滤液回灌常被应用在工程实践中。使用竖井进行回灌是较为有效的方式之一。伴随着液体的注入,由于对流的产生,垃圾土温度势必会发生改变。基于无锡填埋场注水试验,对该现场试验过程中垃圾土温度的改变进行模拟。为此,建立了考虑渗透系数和孔隙率随深度变化的渗流模型,以及考虑渗流影响的热对流-热传导模型,并利用数值计算方法进行求解。在对比计算值和试验值之后,发现所建立的模型能较好地模拟注水期间渗滤液水位和垃圾土温度的变化规律。结果表明:在离注水井超过6 m处的位置,显现的液位相对滞后,至少滞后0.15 d,而且距离越远滞后的时间越长;在液位以下,注水井周围的垃圾土温度均低于初始温度。但是在径向上远离注水井3.6 m之外的垃圾土温度并不是全低于初始温度,在新老垃圾土交界处之上2 m范围内,会出现温度高于初始温度的现象,温度差可达3 ℃;新填垃圾土的已降解时长对单井注水工况下温度分布的影响较为显著。  相似文献   

9.
施建勇  王娟 《岩土力学》2012,33(11):3208-3212
填埋是污泥消化处置的方法之一,由于污泥的工程特性较特殊,填埋会引发很多环境岩土工程问题。考虑到填埋工程会进行分层碾压铺填,在标准击实试验的击实功下制备试样,通过污泥与垃圾土混合后的直接剪切试验、渗透特性试验,考虑淋滤液和降解产气压力共同影响,进行边坡稳定分析。结果表明:污泥和垃圾混合后的强度比垃圾土的强度低,比污泥的强度高,改善了污泥的强度特性;污泥掺入垃圾后的渗透系数与垃圾土的渗透系数相当,没有劣化垃圾土的渗透特性,但比污泥的渗透系数有显著提高;随着污泥掺量的增加,边坡安全系数会先提高后降低,因此,应结合试验和稳定计算结果,确定实际工程的污泥掺入比;考虑降解产气对边坡稳定的影响,安全系数会降低约15%~20%。  相似文献   

10.
张文杰  杨金康 《岩土力学》2019,40(5):1847-1853
生活垃圾具有大孔隙特性,垃圾中水分运动常表现出优先流特征。针对垃圾组成复杂、难以切片的特点,设计了一种能方便地得到垃圾染色剖面的试验方法。使用填埋场不同深度处的垃圾样进行染色示踪试验,对染色后的垃圾柱分别进行水平切片和竖向切片。基于数字图像处理技术,研究了垃圾中优先流特征。垃圾中大孔隙多、基质少,染色模式与土中不同,基质部分的染色比例较高。试验所得的染色面积比和染色深度能反映出垃圾中优先流的明显程度,染色面积比与参与优先流的大孔隙比例有关,染色面积比越大,优先流越明显,而染色深度与基质流比例有关,上部垃圾中基质流比例越低,入渗深度越深。不同入渗强度的试验结果表明,入渗强度越大时垃圾中优先流程度越高;不同初始含水率的试验结果表明,初始含水率高的垃圾试样中优先流更明显;不同埋深垃圾试样的试验结果表明,浅层垃圾中更易产生优先流。竖向切片与水平向切片所得规律完全一致,试验方法在实现垃圾染色示踪和切片研究的同时,未改变垃圾中优先流原有规律,准确揭示了垃圾中优先流特征。  相似文献   

11.
扰动结构性软土地基的沉降特性分析   总被引:3,自引:3,他引:0  
王军  高玉峰 《岩土力学》2006,27(8):1384-1388
天然软黏土一般都具有一定的结构性,地基处理会改变结构性软土的工程特性。对比扰动软土原位和室内压缩曲线,分析了扰动软土的沉降机理及其压缩性的上下限,给出了考虑扰动影响的结构性软土沉降计算公式。算例分析表明,在孔隙比e0和0.42e0之间所对应的应力水平范围内,扰动会增加地基沉降量,附加沉降量大小与应力水平、扰动度直接相关,通常在0.1~0.3 m之间,但随着应力水平的提高,不同扰动度的结构性软土地基的最终沉降量将趋于相同,得出的有关结论具有工程参考价值。  相似文献   

12.
已关闭的淮南大通垃圾填埋场建场24 a,最大堆填高度为15 m,垃圾最大填埋龄期达24 a。通过钻孔获取不同深度的6个垃圾样,土工试验结果表明:填埋场内垃圾最小孔隙比为1.18,最大孔隙比为2.53,塑料和纸张类含量对试样孔隙比影响较大;经过24 a的扩散,渗滤液透过了10 m厚的天然致密粘土层而对地下水体产生了污染;实测填埋场垃圾体内气体中CH4的最高体积分数达2.8654%,CH4/CO2比值在0.773~1.79;填埋体内最高温度大约发生在垃圾进场40 d后,达到56℃。针对垃圾填埋场固液气热特性,提出了填埋场治理措施的建议。   相似文献   

13.
Use of fly ash locked in the ash ponds in geotechnical applications such as stowing or backfilling of the mines is an attractive alternative to solve the disposal problem. Before it is used as a stowing or backfilling material, the response of the fly ash?to imposed load must be determined in order to assess its load taking ability. The present study examines the effect of time and incremental load on the consolidation characteristics of the sedimented stowed pond ash using a fixed ring consolidometer. The important parameters, viz. rate of settlement, consolidation coefficients and void ratio, etc. of the hydraulically stowed pond ash collected after 7, 14, 21, 28 and 35?days of stowing under step incremental loads are determined. The study revealed that 60.42–84.87% settlement of the sedimented stowed pond ash takes place in the initial 1?min of the loading. In addition, it is observed that the coefficient of consolidation of the sedimented stowed pond ash, which varies in the range of 0.0195–0.1882?cm2/min, is comparatively low and decreases with the increment of applied load and time. This indicates that the structures lying above the stowed pond ash mass will undergo gradual settling and not suffer large deformation.  相似文献   

14.
城市垃圾填埋场有机物降解沉降模型的研究   总被引:15,自引:4,他引:11  
张振营  陈云敏 《岩土力学》2004,25(2):238-241
研究城市垃圾填埋场的有机物降解沉降是非常重要的,有机物的降解沉降是填埋场的主要沉降,并且降解沉降将持续很长一段时间,较大的沉降能够导致防渗系统的渗漏并损坏覆盖系统。由于垃圾的非均匀性,其土工特性随地域及时间而改变,所以,计算垃圾填埋场的降解沉降是比较困难的。在试验及理论推导的基础上,提出了一种有机物的降解沉降模型,该模型参数较少,利用该模型预测了天子岭垃圾填埋场的库容及有机物的降解沉降。  相似文献   

15.
Prediction of long‐term settlement and control of gas pollution to the environment are two principle concerns during the management of municipal solid waste (MSW) landfills. The behavior of settlement and gas flow in MSW landfills is complicated due to the combined effect of mechanical deformation of the solid skeleton and continuous biodegradation of the waste. A one‐dimensional settlement and gas flow model is presented in this paper, which is capable of predicting time evolution of settlement as well as temporal and spatial distribution of gas pressure within multi‐layered landfills under a variety of operating scenarios. The analytical solution to the novel model is evaluated with numerical simulation and field measurements. The resulting efficiency and accuracy highlight the capability of the proposed model to reproduce the settlement behavior and gas flow in MSW landfills. The influences of operating conditions and waste properties on settlement and gas pressure are examined for typical MSW landfills. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
垃圾填埋场对周边地质环境影响与防治对策   总被引:5,自引:0,他引:5  
垃圾填埋场对周边地质环境的污染越来越受到研究人员的重视,其影响因素复杂,不仅与MSW的性质有关,还与垃圾填埋场的类型及其所处地质环境有密切关系。为分析垃圾填埋场中的渗滤液、重金属以及其他有害物质对周边地质环境(地下水环境、土壤环境)的影响规律,对大量相关文献和实验资料进行研究分析。研究结果表明:渗滤液是垃圾填埋场影响周围地质环境最为重要的因素,对渗滤液污染地表水及地下水情况和防治方法进行了探讨;同样渗滤液也是重金属污染土壤的载体,重金属在土壤剖面中的滞留量一般随深度的增加而逐渐减少;重金属对土壤的污染具有积累性和滞后性特点,随着填埋时间的延长污染加重。最后,根据其污染途径和污染规律,提出了相应具体防治对策。  相似文献   

17.
The present article discusses an overview on the contamination of non-segregated open municipal solid waste (MSW) in and around a dumping site at Garchuk in Guwahati city, Assam, India. Analysis showed depth-wise variations in the concentrations of selected heavy metals in MSW and their subsequent accumulations with increasing depths. Zinc was the most abundant heavy metal in MSW. Six-step selective sequential extractions revealed that most of the heavy metals in MSW were in the residual phase except zinc. Analysis of the leachate from MSW showed high concentrations of fluoride, chloride, ammonium–nitrogen and the ratio of biological oxygen demand/chemical oxygen demand. Concentrations of all the heavy metals in the leachates were higher than the Indian national effluent standards. High amounts of biological oxygen demand, heavy metals, total and fecal coliforms in water samples from the adjoining water body (Deepor Beel, a Ramsar site) of the MSW dumping site indicated its unsuitability for domestic use. Principle component analysis showed that influence of MSW leachate was the major source of water contamination in Deepor Beel. Though accumulation of heavy metals in different vegetables growing in MSW dumping site did not exceed the recommended maximum intake, it was a significant additional source of heavy metals in cooked human diet.  相似文献   

18.
桩土应力比是桩网复合地基或路基设计的重要控制参数,受土拱效应、拉膜效应和桩土相互作用及其耦合作用的综合影响,为此,本文首先引入几何同心拱模型,考虑桩土差异沉降与土拱发挥程度的关系,建立了新型桩网复合地基土拱效应分析模型,并根据水平加筋网变形特征将水平加筋网变形曲面视为球面与柱面的组合,建立了反映桩土差异沉降影响的拉膜效应分析模型。然后,考虑桩土相互作用及桩土差异沉降,建立了考虑路基填土、网、桩土加固区耦合作用的桩网复合地基荷载传递分析模型,进而提出了其桩土应力比分析新方法。该方法不仅能反映土拱效应、拉膜效应和桩土相互作用对桩土应力比的影响,而且还能反映桩土差异沉降对三者发挥程度的影响。最后,通过工程实例计算以及与现有同类相关方法的比较分析,表明了本文分析模型与方法的可行性与合理性。  相似文献   

19.
基于分段线性方法,建立了饱和软土一维自重固结模型(简称SWC模型)。该模型能考虑自重固结过程中土体的大变形效应和材料参数的非线性变化。将该模型的计算结果与相关解析解、现场试验及室内试验结果进行了对比验证,证明了SWC模型能准确计算出大变形和非线性条件下饱和软土的自重固结过程,包括沉降量、平均固结度、孔隙比分布和超孔隙水压力分布等参数随时间的变化过程。随后,以现场试验为基础,采用SWC模型对饱和软土自重固结的4个主要影响因素(即土体初始高度、边界排水条件、初始孔隙比和土粒相对密度)进行了参数分析。结果表明,上述4个参数对软土自重固结过程均具有重要影响:土体初始高度越高,则自重固结沉降量和最终平均应变值越大;边界排水条件对土体自重固结的速度有重要影响,但不影响自重固结的最终沉降量;初始孔隙比越大,则自重固结沉降量越大,其完成自重固结所需时间越短;土粒相对密度越大,则土体的最终沉降量越大,完成自重固结所需时间越短。  相似文献   

20.
城市生活垃圾填埋场地基沉降和垃圾堆体沉降受到的影响因素多,现行规范的计算方法直接采用与实际相差较大,为减少不均匀沉降对垃圾防渗层的影响、准确确定垃圾储量和保证垃圾堆体的稳定,开展垃圾填埋场沉降研究具有重要意义。垃圾填埋场沉降变形包括地基沉降和垃圾堆体沉降,垃圾堆体沉降又分为主沉降和次沉降,主沉降完成时间短于次沉降。通过对陕西省宝鸡市垃圾填埋场地基土进行沉降计算,最大沉降差超过100 mm,对垃圾防渗层不利影响较大;而对垃圾堆体沉降计算,修正后的计算值与沉降观测值非常接近。考虑不同地区地层差异和垃圾成分差异,积累沉降观测资料具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号