首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although Singapore is located in a low‐seismicity region, huge but infrequent Sumatran subduction earthquakes might pose structural problems to medium‐ and high‐rise buildings in the city. Based on a series of ground motion simulations of potential earthquakes that may affect Singapore, the 1833 Sumatran subduction earthquake (Mw=9.0) has been identified to be the worst‐case scenario earthquake. Bedrock motions in Singapore due to the hypothesized earthquake are simulated using an extended reflectivity method, taking into account uncertainties in source rupture process. Random rupture models, considering the uncertainties in rupture directivity, slip distribution, presence of asperities, rupture velocity and dislocation rise time, are made based on a range of seismologically possible models. The simulated bedrock motions have a very long duration of about 250 s with a predominant period between 1.8 and 2.5 s, which coincides with the natural periods of medium‐ and high‐rise buildings widely found in Singapore. The 90‐percentile horizontal peak ground acceleration is estimated to be 33 gal and the 90‐percentile horizontal spectral acceleration with 5% damping ratio is 100 gal within the predominant period range. The 90‐percentile bedrock motion would generate base shear force higher than that required by the current design code, where seismic design has yet to be considered. This has not taken into account effects of local soil response that might further amplify the bedrock motion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
More than 30 buildings around Taiwan have been selected to monitor the floor responses under seismic excitation. The structural array monitoring system in each building controls at most 27 channels of accelerometers distributed in several floors. Those buildings were triggered by many events during the past five years of operation. In each building, the records at the basement can be considered as the ground excitation, and the others at the upper floors are the structural responses. The frequency transfer functions of those buildings can be identified by ARX models, and then the fundamental vibration periods are estimated. The identified fundamental vibration periods using different events are compared in order to ensure the reliability of system identification. An empirical formula in predicting the fundamental vibration period is presented through the regression analysis to the identified fundamental vibration periods of 21 reinforced concrete (RC) moment‐resisting frame (MRF) buildings. It is found that the height of a building plays an important role in predicting the fundamental vibration period, compared with the length, width, and time after completion of the building. It is also found that the RC MRF buildings in Taiwan tend to be stiffer than those in the U.S. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Full‐scale in situ ambient vibration tests have been performed in different regions of China since 2008. Reliable data on 35 buildings in the Sichuan province and 18 buildings in Shanghai have been used for identifying the structural dynamic properties. Every building was tested twice, at time intervals of 1 to 2 years. This paper first describes the statistical analysis results of the measured records and then the time–frequency domain analysis on dynamic responses of a specific monitored building subjected to strong motion. Furthermore, the estimated dynamic characteristics of the buildings are presented. The damping ratio shows a period‐dependent characteristic, and the natural periods of buildings in Sichuan shifted after 2 years. Subsequent discussion on the natural period change phenomenon reveals that the natural period changes are affected by a number of factors, including story number, construction year, loading history, and observation time intervals. The long‐term time effects on concrete, the self‐healing ability of cracked concrete, and the change in soil condition are discussed to explain the natural period wandering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Most buildings in Singapore are lightly reinforced concrete structures, which are mainly designed for gravity loading only, because Singapore is an island country located in a low‐to‐moderate seismic region. The dynamic properties of a typical high‐rise residential building with a long, narrow rectangular floor plan are studied using both experimental and numerical methods. The effects of the brick infill walls and the flexible diaphragms on the dynamic characteristics of the building are discussed in detail. The results from the ambient vibration tests are correlated with the numerical results of three different finite element models with different levels of sophistication. They include a bare frame model, a frame model with brick infill walls, and a frame model with both brick infill walls and flexible diaphragms. The dynamic properties of the third model match very well with the measured results in terms of both the natural frequencies and the mode shapes. The correlation results demonstrate the respective effects of the brick infill walls and the flexible diaphragms on the dynamic characteristics of the narrow‐rectangle building structure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates the seismic performance of moment-resisting frame steel buildings with multiple underground stories resting on shallow foundations. A parametric study that involved evaluating the nonlinear seismic response of five, ten and fifteen story moment-resisting frame steel buildings resting on flexible ground surface, and buildings having one, three and five underground stories was performed. The buildings were assumed to be founded on shallow foundations. Two site conditions were considered: soil class C and soil class E, corresponding to firm and soft soil deposits, respectively. Vancouver seismic hazard has been considered for this study. Synthetic earthquake records compatible with Vancouver uniform hazard spectrum (UHS), as specified by the National Building Code of Canada (NBCC) 2005, have been used as input motion. It was found that soil–structure interaction (SSI) can greatly affect the seismic performance of buildings in terms of the seismic storey shear and moment demand, and the deformations of their structural components. Although most building codes postulate that SSI effects generally decrease the force demand on buildings, but increase the deformation demand, it was found that, for some of the cases considered, SSI effects increased both the force and deformation demand on the buildings. The SSI effects generally depend on the stiffness of the foundation and the number of underground stories. SSI effects are significant for soft soil conditions and negligible for stiff soil conditions. It was also found that SSI effects are significant for buildings resting on flexible ground surface with no underground stories, and gradually decrease with the increase of the number of underground stories.  相似文献   

6.
汶川地震黄土地区强地震动加速度峰值(PGA)较小,然而震害却较为严重,局部场地震害和地震动放大效应显著。选取四川、甘肃及宁夏境内的部分强震动记录,探讨传播距离和场地条件对地震动的影响规律,重点研究黄土地区地震动幅值、频谱、持时特征以及对建筑结构的潜在影响,从地震动特征角度分析该地区震害相对较重的原因。结果表明:汶川地震黄土地区地震动速度峰值较大,地震动中频分量和中长周期成分较为突出;黄土地区自振周期为0.3~1s以及3~4s(尤其是此周期内30~40层)的结构物地震反应将显著放大;设计地震分组为第三组的Ⅲ类黄土场地,加速度反应谱拟合曲线在周期1~3.5s谱值明显高于规范设计谱;黄土场地地表地震动拥有更长持时。  相似文献   

7.
Resonance period is a key parameter in the seismic design of a structure, thus dynamic parameters of buildings in Beirut (Lebanon) were investigated based on ambient vibration method for risk and vulnerability assessment. Lebanon is facing high seismic hazard due to its major faults, combined to a high seismic risk caused by dense urbanization in addition to the lack of a seismic design code implementation. For this study, ambient vibration recordings have been performed on 330 RC buildings, period parameters extracted and statistically analyzed to identify correlations with physical building parameters (height, horizontal dimensions, age) and site characteristics (rock sites or soft sites). The study shows that (1) the building height or number of floors (N) is the primary statistically robust parameter for the estimation of the fundamental period T; (2) the correlation between T and N is linear and site dependent: T ≈ N/23 for rock sites and N/18 for soft sites; (3) the measured damping is inversely proportional to the period: the taller the building the lower is the damping; (4) a significant overestimation of the period exists in current building codes. However part of the large discrepancy with building code recommendations may be due to the very low level of loading.  相似文献   

8.
Results of a detailed statistical study of constant relative strength inelastic displacement ratios to estimate maximum lateral inelastic displacement demands on existing structures from maximum lateral elastic displacement demands are presented. These ratios were computed for single‐degree‐of‐freedom systems with different levels of lateral strength normalized to the strength required to remain elastic when subjected to a relatively large ensemble of recorded earthquake ground motions. Three groups of soil conditions with shear wave velocities higher than 180m/s are considered. The influence of period of vibration, level of lateral yielding strength, site conditions, earthquake magnitude, distance to the source, and strain‐hardening ratio are evaluated and discussed. Mean inelastic displacement ratios and those associated with various percentiles are presented. A special emphasis is given to the dispersion of these ratios. It is concluded that distance to the source has a negligible influence on constant relative strength inelastic displacement ratios. However, for periods smaller than 1s earthquake magnitude and soil conditions have a moderate influence on these ratios. Strain hardening decreases maximum inelastic displacement at a fairly constant rate depending on the level of relative strength for periods of vibration longer than about 1.0s while it decreases maximum inelastic displacement non‐linearly as the period of vibration shortens and as the relative‐strength ratio increases for periods of vibration shorter than 1.0s. Finally, results from non‐linear regression analyses are presented that provide a simplified expression to be used to approximate mean inelastic displacement ratios during the evaluation of existing structures built on firm sites. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
A representative attenuation relationship is one of the key components required in seismic hazard assessment of a region of interest. Attenuation relationships for peak ground acceleration, peak ground velocity and response spectral accelerations for Sumatran megathrust earthquakes, covering Mw up to 9.0, are derived based on synthetic seismograms obtained from a finite‐fault kinematic model. The relationships derived are for very hard rock site condition and for a long‐distance range between 200 and 1500 km. They are then validated with recorded data from giant earthquakes on the Sumatran megathrust occurring since year 2000. A close examination of the recorded data also shows that spectral shapes predicted by most of the existing attenuation relationships and that specified in the IBC code are not particularly suitable for sites where potential seismic hazard is dominated by large‐magnitude, distant, earthquakes. Ground motions at a remote site are typically signified by the dominance of long‐period components with periods longer than 1 s, whereas the predominant periods from most of the existing attenuation relationships and the IBC code are shorter than 0.6 s. The shifting of response spectrum towards longer period range for distant earthquakes should be carefully taken into account in the formulation of future seismic codes for Southeast Asia, where many metropolises are located far from active seismic sources. The attenuation relationship derived in the present study can properly reproduce the spectral shape from distant subduction earthquakes, and could hopefully give insights into the formulation of future seismic codes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Bangkok, the capital city of Thailand, is located at a remote distance from seismic sources. However, it has a substantial risk from these distant earthquakes due to the ability of the underlying soft clay to amplify ground motions. It is therefore imperative to conduct a detailed seismic hazard assessment of the area. Seismic microzonation of big cities, like Bangkok, provides a basis for site‐specific hazard analysis, which can assist in systematic earthquake mitigation programs. In this study, a seismic microzonation map for the greater Bangkok area is constructed using microtremor observations. Microtremor observations were carried out at more than 150 sites in the greater Bangkok area. The predominant periods of the ground were determined from the horizontal‐to‐vertical (H/V) spectral ratio technique. A microzonation map was then developed for the greater Bangkok area based on the observations. Moreover, the transfer functions were calculated for the soil profile at eight sites, using the computer program SHAKE91, to validate the results from the microtremor analysis. The areas near the Gulf of Thailand, underlaid by a thick soft clay layer, were found to have long natural periods ranging from 0.8s to 1.2s. However, the areas outside the lower central plain have shorter predominant periods of less than 0.4s. The study shows that there is a great possibility of long‐period ground vibration in Bangkok, especially in the areas near the Gulf of Thailand. This may have severe effects on long‐period structures, such as high‐rise buildings and long‐span bridges. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Elastic fundamental frequency is a key-parameter of simplified seismic design and vulnerability assessment methods. Empirical relationships exist in codes to estimate this frequency but they miss experimental data to validate them accounting for national feature of building design and, above all, corresponding uncertainties. Even if resonance frequency extracted from ambient vibrations may be larger than the elastic frequency (at yield) generally used in earthquake engineering, ambient vibration recordings may provide a large set of data for statistical analysis of periods versus building characteristics relationships. We recorded ambient vibrations and estimated the fundamental frequency of about 60 buildings of various types (RC and masonry) in Grenoble City (France). These data complete the set existing yet, made of 26 RC-buildings of Grenoble (Farsi and Bard 2004) and 28 buildings in Nice (France) (Dunand 2005). Statistical analysis of these experimental data was performed for fundamental frequencies of RC shear wall structures and the results are compared with existing relationships. Only building height or number of stories has a statistical relevancy to estimate the resonance frequency but the variability associated to the proposed relationships is large. Moreover, we compared the elastic part of capacity curves of RC and masonry buildings used in the European Risk-UE method for vulnerability assessment with the experimental frequencies. The variability is also large and the curves may not be consistent with French existing buildings.  相似文献   

12.
In cities and urban areas, building structures located at close proximities inevitably interact under dynamic loading by direct pounding and indirectly through the underlying soil. Majority of the previous adjacent building pounding studies that have taken the structure–soil–structure interaction (SSSI) problem into account have used simple lumped mass–spring–dashpot models under plane strain conditions. In this research, the problem of SSSI‐included pounding problem of two adjacent symmetric in plan buildings resting on a soft soil profile excited by uniaxial earthquake loadings is investigated. To this end, a series of SSSI models considering one‐directional nonlinear impact elements between adjacent co‐planar stories and using a method for direct finite element modeling of 3D inelastic underlying soil volume has been developed to accurately study the problem. An advanced inelastic structural behavior parameter, the seismic damage index, has been considered in this study as the key nonlinear structural response of adjacent buildings. Based on the results of SSSI and fixed base case analyses presented herein, two main problems are investigated, namely, the minimum building separation distance for pounding prevention and seismic pounding effects on structural damage in adjacent buildings. The final results show that at least three times, the International Building Code 2009 minimum distance for building separation recommended value is required as a clear distance for adjacent symmetric buildings to prevent the occurrence of seismic pounding. At the International Building Code‐recommended distance, adjacent buildings experienced severe seismic pounding and therefore significant variations in storey shear forces and damage indices. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The damage distribution in Adra town (south‐eastern Spain) during the 1993 and 1994 Adra earthquakes (5.0 magnitude), that reached a maximum intensity degree of VII (European Macroseismic Scale (EMS scale)), was concentrated mainly in the south‐east zone of the town and the most relevant damage occurred in reinforced concrete (RC) buildings with four or five storeys. In order to evaluate the influence of ground condition on RC building behaviour, geological, geomorphological and geophysical surveys were carried out, and a detailed map of ground surface structure was obtained. Short‐period microtremor observations were performed in 160 sites on a 100m × 100m dimension grid and Nakamura's method was applied in order to determine a distribution map of soil predominant periods. Shorter predominant periods (0.1–0.3 s) were found in mountainous and neighbouring zones and larger periods (greater than 0.5 s) in thicker Holocene alluvial fans. A relationship T = (0.049 ± 0.001)N, where T is the natural period of swaying motion and N is the number of storeys, has been empirically obtained by using microtremor measurements at the top of 38 RC buildings (ranging from 2 to 9 storeys). 1‐D simulation of strong motion on different soil conditions and for several typical RC buildings were computed, using the acceleration record in Adra town of the 1993 earthquake. It is noteworthy that all the aforementioned results show the influence of site effects in the degree and distribution of observed building damage. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A building with a seismic isolation system, in an earthquake, is recognized as producing substantially smaller accelerations and deformations compared with a building that use other systems. This type of system is therefore expected to better protect the building's nonstructural components, equipment, and other contents that are essential for the activities conducted in the building. Unlike many available studies on building responses, only a small number of studies on a buildings' nonstructural component responses are available, and no study has directly addressed building performance with regard to nonstructural component protection. This paper therefore measures the performance of various seismically isolated buildings. Specifically, the effects of important structural parameters, namely, isolation stiffness, isolation damping ratio, and number of stories on the response of base‐isolated structures are investigated parametrically. Ground motions with 2% exceedence in 50years Maximum Considered Earthquake (MCE) are used. Performance is compared with that of fixed‐base structures in order to present data that will be useful in justifying the more costly technology. The buildings are 3, 9, and 20 stories, represented by MDOF shear‐beam models. As examples of displacement‐sensitive and acceleration‐sensitive components, partition walls and ceilings are considered, respectively. The Pacific Earthquake Engineering Research Center performance‐based earthquake engineering methodology is adopted to evaluate the failure return periods of the examples based on their available fragility curves. In addition, the curves are varied hypothetically to understand the sensitivity of the return period to the curve features. Then, the median and dispersion of fragility curves required to satisfy the components' desired failure return period are obtained. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The accurate analysis of the seismic response of isolated structures requires incorporation of the flexibility of supporting soil.However,it is often customary to idealize the soil as rigid during the analysis of such structures.In this paper,seismic response time history analyses of base-isolated buildings modelled as linear single degree-of-freedom(SDOF) and multi degree-of-freedom(MDOF) systems with linear and nonlinear base models considering and ignoring the flexibility of supporting soil are conducted.The flexibility of supporting soil is modelled through a lumped parameter model consisting of swaying and rocking spring-dashpots.In the analysis,a large number of parametric studies for different earthquake excitations with three different peak ground acceleration(PGA) levels,different natural periods of the building models,and different shear wave velocities in the soil are considered.For the isolation system,laminated rubber bearings(LRBs) as well as high damping rubber bearings(HDRBs) are used.Responses of the isolated buildings with and without SSI are compared under different ground motions leading to the following conclusions:(1) soil flexibility may considerably influence the stiff superstructure response and may only slightly influence the response of the flexible structures;(2) the use of HDRBs for the isolation system induces higher structural peak responses with SSI compared to the system with LRBs;(3) although the peak response is affected by the incorporation of soil flexibility,it appears insensitive to the variation of shear wave velocity in the soil;(4) the response amplifications of the SDOF system become closer to unit with the increase in the natural period of the building,indicating an inverse relationship between SSI effects and natural periods for all the considered ground motions,base isolations and shear wave velocities;(5) the incorporation of SSI increases the number of significant cycles of large amplitude accelerations for all the stories,especially for earthquakes with low and moderate PGA levels;and(6) buildings with a linear LRB base-isolation system exhibit larger differences in displacement and acceleration amplifications,especially at the level of the lower stories.  相似文献   

16.
Evaluation of the degrees of structural damage suffered by high‐rise residential buildings after being subjected to strong ground motions is extremely important to the development of life continuity planning for building residents. However, these evaluations cannot be based on strong‐motion records alone, because earthquake observation equipment is not installed in most such buildings in Japan. In this study, we propose simple equations for estimating the stiffness degradation rate and the peak inter‐story drift ratio (PIDR) by using ambient vibration records instead of strong‐motion records when high‐rise RC buildings are subjected to a severe earthquake. More specifically, we propose one equation that relates the square root of the stiffness degradation rate, which is the ratio of natural frequencies at the maximum response to the preliminary tremor response (elastic state), in strong‐motion records with the ratio of natural frequencies identified from ambient vibrations before and after damage was suffered. We also propose an equation that relates the PIDR with the stiffness degradation rate on the basis of the stiffness‐degrading bilinear restoring force characteristic derived from the strong‐motion records of 13 high‐rise buildings for the 1995 Hyogoken‐Nanbu Earthquake (Mw 6.9) and the 2011 Tohoku‐Oki Earthquake (Mw 9.0). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
On September 19 and 20, 1985, two strong subduction interface earthquakes struck Mexico City leading to a large stock of damaged, or even collapsed, reinforced concrete (RC) building structures located in soft soil sites of the former lake-bed zone. The aim of this study is to gain further understanding on the effects of soft-soil seismic sequences on the seismic response of RC framed-buildings. This investigation employed artificial sequences since only two real sequences were gathered during the 1985 earthquakes. The nonlinear response, in terms of peak and residual lateral inter-story drift demands of four RC buildings having 4, 8, 12, and 16 stories, was evaluated. Results show that the relationship of the damaged period of the building (i.e. period of the building after the mainshock) to the predominant period of the aftershock, which is a measure of its frequency content, has a significant impact in the building response.  相似文献   

18.
In the last decade, two tall buildings in Singapore were instrumented with accelerometers and anemometers for the original purpose of identifying the characteristics and effects of wind loading. During the monitoring it became clear that the largest acceleration responses should result from ground motions due to earthquakes having magnitudes between 6 and 8 and epicentres at least 350 km distant. The paper describes the strategy for identifying and capturing the signals from distant tremors, which depends on tracking the RMS response levels in the second vibration mode. Characteristics of some recorded signals are given. While response levels are generally small, the frequency content coincides with the range of fundamental mode frequencies for high rise residential buildings. The validity of using a tall building as a ‘weak‐motion’ seismograph is discussed by considering the mode shape of the building and the measured transfer function between basement and roof responses. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Recently, several new optimum loading patterns have been proposed by researchers for fixed‐base systems while their adequacy for soil–structure systems has not been evaluated yet. Through intensive dynamic analyses of multistory shear‐building models with soil–structure interaction subjected to a group of 21 artificial earthquakes adjusted to soft soil design spectrum, the adequacy of these optimum patterns is investigated. It is concluded that using these patterns the structures generally achieve near optimum performance in some range of periods. However, their efficiency reduces as soil flexibility increases especially when soil–structure interaction effects are significant. In the present paper, using the uniform distribution of damage over the height of structures, as the criterion, an optimization algorithm for seismic design of elastic soil–structure systems is developed. The effects of fundamental period, number of stories, earthquake excitation, soil flexibility, building aspect ratio, damping ratio and damping model on optimum distribution pattern are investigated. On the basis of 30,240 optimum load patterns derived from numerical simulations and nonlinear statistical regression analyses, a new lateral load pattern for elastic soil–structure systems is proposed. It is a function of the fundamental period of the structure, soil flexibility and structural slenderness ratio. It is shown that the seismic performance of such a structure is superior to those designed by code‐compliant or recently proposed patterns by researchers for fixed‐base structures. Using the proposed load pattern in this study, the designed structures experience up to 40% less structural weight as compared with the code‐compliant or optimum patterns developed based on fixed‐base structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The paper deals with an application of neural networks for detection of natural periods of vibrations of prefabricated, medium height buildings. The neural network technique is also used to simulate the dynamic response at selected floor of one of the analysed buildings subject to seismic loading induced by explosives in a nearby quarry. Both the training and testing patterns were formulated on the basis of measurements performed on actual structures. The results of neural network identification of natural periods of the considered buildings obtained with different soil, geometrical and stiffness parameters are compared with the results of experiments. The application of back-propagation neural networks enables us to identify the natural periods of the buildings with accuracy quite satisfactory for engineering practice. The experimental and generated data of vibration displacements are compared and much clearer comparison is given on the phase plane: displacements versus velocities. It was stated that a good generalization takes place both with respect to displacements and velocities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号