首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
D. J. Booker  M. J. Dunbar 《水文研究》2008,22(20):4049-4057
Using a dataset of gauged river discharges taken from sites in England and Wales, linear multilevel models (also known as mixed effects models) were applied to quantify the variability in discharge and the discharge‐hydraulic geometry relationships across three nested spatial scales. A jackknifing procedure was used to test the ability of the multilevel models to predict hydraulic geometry, and therefore width, mean depth and mean velocity, at ungauged stations. These models provide a framework for making predictions of hydraulic geometry parameters, with associated levels of uncertainty, using different levels of data availability. Results indicate that as one travels downstream along a river there is greater variability in hydraulic geometry than is the case between rivers of similar sizes. This indicates that hydraulic geometry (and therefore hydrology) is driven by catchment area, to a greater extent than by natural geomorphological variations in the streamwise direction at the mesoscale, but these geomorphological variations can still have a major impact on channel structure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
《水文科学杂志》2013,58(2):401-408
Abstract

Knowledge of peak discharge is essential for safe and economical planning and design of hydraulic structures. In India, as in most developing countries, the majority of river basins are either sparsely gauged or not gauged at all. The gauged records are also of short length (generally 15–30 years), therefore development of robust models is necessary for estimation of streamflows. Various studies reveal that flood estimation through channel geometry is an alternative method for ungauged catchments. It is appropriate for use where flow characteristics are poorly related to catchment area and other catchment characteristics. In the present study, stream geometry parameters for 42 river sites in central-south India were used; calibration equations were developed with data for 35 stations and tested on data for the remaining seven stations. The relationships developed between mean discharge and channel geometry parameters provide an alternative technique for estimation of mean annual channel discharge.  相似文献   

3.
This research builds on the concept of hydraulic geometry and presents a methodology for estimating bankfull discharge and the hydraulic geometry coefficients and exponents for a station using limited data; only stage‐discharge and Landsat imagery. The approach is implemented using 82 streamflow gauging locations in the Amazon Basin. Using the estimated values for the hydraulic geometry relations, bankfull discharge, discharge data above bankfull and upstream drainage area at each site, relationships for estimating channel and floodplain characteristics as a function of drainage area are developed. Specifically, this research provides relationships for estimating bankfull discharge, bankfull depth, bankfull width, and floodplain width as a function of upstream drainage area in the Amazon Basin intended for providing reasonable cross‐section estimates for large scale hydraulic routing models. The derived relationships are also combined with a high resolution drainage network to develop relationships for estimating cumulative upstream channel lengths and surface areas as a function of the specified minimum channel width ranging from 2 m to 1 km (i.e. threshold drainage areas ranging from 1 to 431,000 km2). At the finest resolution (i.e. all channels greater than 2 m or a threshold area of 1 km2), the Amazon Basin contains approximately 4.4 million kilometers of channels with a combined surface area of 59,700 km2. The intended use of these relationships is for partitioning total floodable area (channels versus lakes and floodplain lakes) obtained from remote sensing for biogeochemical applications (e.g. quantifying CO2 evasion in the Amazon Basin). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A comparison has been made between the hydraulic geometry of sand‐ and gravel‐bed rivers, based on data from alluvial rivers around the world. The results indicate a signi?cant difference in hydraulic geometry among sand‐ and gravel‐bed rivers with different channel patterns. On this basis, some diagrams for discrimination of meandering and braided channel patterns have been established. The relationships between channel width and water discharge, between channel depth and water discharge, between width–depth ratio and water discharge and between channel slope and water discharge can all be used for channel pattern discrimination. The relationship between channel width and channel depth can also be used for channel pattern discrimination. However, the accuracy of these relationships for channel pattern discrimination varies, and the depth–discharge relationship is a better discriminator of pattern type than the classic slope–discharge function. The cause for this difference has been explained qualitatively. To predict the development of channel patterns under different natural conditions, the pattern discriminator should be searched on the basis of independent or at least semi‐independent variables. The relationship between stream power and bed material grain size can be used to discriminate channel patterns, which shows a better result than the discriminator using the slope–discharge relationship. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Rivers in the Mediterranean region often exhibit an intermittent character. An understanding and classification of the flow regimes of these rivers is needed, as flow patterns control both physicochemical and biological processes. This paper reports an attempt to classify flow regimes in Mediterranean rivers based on hydrological variables extracted from discharge time series. Long‐term discharge records from 60 rivers within the Mediterranean region were analysed in order to classify the streams into different flow regime groups. Hydrological indices (HIs) were derived for each stream and principal component analysis (PCA) and then applied to these indices to identify subsets of HIs describing the major sources of variations, while simultaneously minimizing redundancy. PCA was performed for two groups of streams (perennial and temporary) and for all streams combined. The results show that whereas perennial streams are mainly described by high‐flow indices, temporary streams are described by duration, variability and predictability indices. Agglomerative cluster analysis based on HIs identified six groups of rivers classified according to differences in intermittency and variability. A methodology allowing such a classification for ungauged catchments was also tested. Broad‐scale catchment characteristics based on digital elevation, climate, soil and land use data were derived for each long‐term station where these data were available. By using stepwise multiple regression analysis, statistically significant relationships were fitted, linking the three selected hydrological variables (mean annual number of zero‐flow days, predictability and flashiness) to the catchment characteristics. The method provides a means of simplifying the complexity of river systems and is thus useful for river basin management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Mountain rivers can be subject to strong constraints imposed by changes in gradient and grain size supplied by processes such as glaciation and rockfall. Nonetheless, adjustments in the channel geometry and hydraulics of mountain rivers at the reach scale can produce discernible patterns analogous to those in fully alluvial rivers. Mountain rivers can differ in that imposed reach‐scale gradient is an especially important control on reach‐scale channel characteristics, as indicated by examination of North St Vrain Creek in Colorado. North St Vrain Creek drains 250 km2 of the Rocky Mountains. We used 25 study reaches within the basin to examine controls on reach‐scale channel geometry. Variables measured included channel geometry, large woody debris, grain size, and mean velocity. Drainage area at the study reaches ranged from 2·2 to 245 km2, and gradient from 0·013 to 0·147 m m?1. We examined correlations among (1) potential reach‐scale response variables describing channel bankfull dimension and shape, hydraulics, bedform wavelength and amplitude, grain size, ?ow resistance, standard deviation of hydraulic radius, and volume of large woody debris, and (2) potential control variables that change progressively downstream (drainage area, discharge) or that are likely to re?ect a reach‐speci?c control (bed gradient). We tested the hypothesis that response variables correlate most strongly with local bed gradient because of the segmented nature of mountain channels. Results from simple linear regression analyses indicate that most response variables correlate best with gradient, although channel width and width/depth ratio correlate best with discharge. Multiple regression analyses using Mallow's Cp selection criterion and log‐transformation of all variables produced similar results in that most response variables correlate strongly with gradient. These results suggest that the hypothesis is partially supported: channel bed gradient is likely to be a good predictor for many reach‐scale response variables along mountain rivers, but discharge is also an important predictor for some response variables. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
This paper, the first of two, hypothesizes that: (1) the temporal variation of stream power of a river channel at a given station with varying discharge is accomplished by the temporal variation in channel form (flow depth and channel width) and hydraulic variables, including energy slope, flow velocity and friction; (2) the change in stream power is distributed among the changes in flow depth, channel width, flow velocity, slope, and friction, depending on the boundary conditions that the channels has to satisfy. The second hypothesis is a result of the principle of maximum entropy and the theory of minimum energy dissipation or its simplified minimum stream power. These two hypotheses lead to families of at‐a‐station hydraulic geometry relations. The conditions under which these families of relations can occur in the field are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
G. Kaless  L. Mao  M. A. Lenzi 《水文研究》2014,28(4):2348-2360
Downstream hydraulic geometry relationships describe the shape of alluvial channels in terms of bankfull width, flow depth, flow velocity, and channel slope. Recent investigations have stressed the difference in spatial scales associated with these variables and thus the time span required for their adjustment after a disturbance. The aim of this study is to explore the consequences in regime models considering the hypothesis that while channel width and depth adjust quickly to changes in water and sediment supply, reach slope requires a longer time span. Three theoretical models were applied. One model incorporates an extremal hypothesis (Millar RG. 2005. Theoretical regime equations for mobile gravel‐bed rivers with stable banks. Geomorphology 64 : 207–220), and the other two are fully physically based (Ikeda S, Parker G, Kimura Y. 1988. Stable width and depth of straight gravel rivers with heterogeneous bed materials. Water Resources Research 24 : 713–722; Parker G, Wilcock PR, Paola C, Dietrich W, Pitlick J. 2007. Physical basis for quasi universal relations describing bankfull hydraulic geometry of single‐thread gravel‐bed rivers. Journal of Geophysical Research 112 , DOI: 10.1029/2006JF000549). In order to evaluate the performance of models introducing the slope as an independent variable, we propose two modifications to previous models. The performance of regime models was tested against published data from 142 river reaches and new hydraulic geometry data from gravel‐bed rivers in Patagonia (Argentina) and north‐eastern Italy. Models that assume slope as a control (Ikeda et al., 1988; or Millar, 2005) predict channel depth and width reasonably well. Parker et al.'s (2007) model improved predictions because it filters the scatter in slope data with a relation slope–discharge. The extremal hypothesis model of Millar (2005) predicts comparably to the other physically based models. Millar's model was chosen to describe the recent changes in the Piave and Brenta rivers due to human intervention – mainly in‐channel gravel mining. The change in sediment supply and recovery was estimated for these rivers. This study supports the interpretation that sediment supply is the key factor guiding morphological changes in these rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The spatial variability of two fundamental morphological variables is investigated for rivers having a wide range of discharge (five orders of magnitude). The variables, water‐surface width and average depth, were measured at 58 to 888 equally spaced cross‐sections in channel links (river reaches between major tributaries). These measurements provide data to characterize the two‐dimensional structure of a channel link which is the fundamental unit of a channel network. The morphological variables have nearly log‐normal probability distributions. A general relation was determined which relates the means of the log‐transformed variables to the logarithm of discharge similar to previously published downstream hydraulic geometry relations. The spatial variability of the variables is described by two properties: (1) the coefficient of variation which was nearly constant (0·13–0·42) over a wide range of discharge; and (2) the integral length scale in the downstream direction which was approximately equal to one to two mean channel widths. The joint probability distribution of the morphological variables in the downstream direction was modelled as a first‐order, bivariate autoregressive process. This model accounted for up to 76 per cent of the total variance. The two‐dimensional morphological variables can be scaled such that the channel width–depth process is independent of discharge. The scaling properties will be valuable to modellers of both basin and channel dynamics. Published in 2002 John Wiley & Sons, Ltd.  相似文献   

10.
The flow magnitude and timing from hydroelectric dams in the Snake River Basin of the Pacific north‐western US is managed in part for the benefit of salmon. The objective of this research was to evaluate the effects of Hells Canyon Dam discharge operations on hydrologic exchange flows between the river and riverbed in Snake River fall Chinook salmon spawning areas. Interactions between river water and pore water within the upper 1 m of the riverbed were quantified through the use of self‐contained temperature and water level data loggers suspended inside of piezometers. The data were recorded at 20 min intervals over a period of 200 days when the mean daily discharge was 218–605 m3 s?1, with hourly stage changes as large as 1·9 m. Differences in head pressure between the river and riverbed were small, often within ± 2 cm. Measured temperature gradients in the riverbed indicated significant interactions between the surface and subsurface water. At the majority of sites, neither hydraulic nor temperature gradients were significantly affected by either short‐ or long‐term changes in discharge operations from Hells Canyon Dam. Only 2 of 14 study sites exhibited acute flux reversals between the river and riverbed resulting from short‐term, large magnitude changes in discharge. The findings suggest that local scale measurements may not be wholly explanatory of the hydrological exchange between the river and riverbed. The processes controlling surface water exchange at the study sites are likely to be bedform‐induced advective pumping, turbulence at the riverbed surface, and large‐scale hydraulic gradients along the longitudinal profile of the riverbed. By incorporating the knowledge of hydrological exchange processes into water management planning, regional agencies will be better prepared to manage the limited water resources among competing priorities that include salmon recovery, flood control, irrigation supply, hydropower production, and recreation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
12.
In hydrology, the storage‐discharge relationship is a fundamental catchment property. Understanding what controls this relationship is at the core of catchment science. To date, there are no direct methods to measure water storage at catchment scales (101–103 km2). In this study, we use direct measurements of terrestrial water storage dynamics by means of superconducting gravimetry in a small headwater catchment of the Regen River, Germany, to derive empirical storage‐discharge relationships in nested catchments of increasing scale. Our results show that the local storage measurements are strongly related to streamflow dynamics at larger scales (> 100 km2; correlation coefficient = 0.78–0.81), but at small scale, no such relationship exists (~ 1 km2; correlation coefficients = ?0.11). The geologic setting in the region can explain both the disconnection between local water storage and headwater runoff, and the connectivity between headwater storage and streams draining larger catchment areas. More research is required to understand what controls the form of the observed storage‐discharge relationships at the catchment scale. This study demonstrates that high‐precision gravimetry can provide new insights into the complex relationship between state and response of hydrological systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Conservative solute injections were conducted in three first-order montane streams of different geological composition to assess the influence of parent lithology and alluvial characteristics on the hydrological retention of nutrients. Three study sites were established: (1) Aspen Creek, in a sandstone–siltstone catchment with a fine-grained alluvium of low hydraulic conductivity (1·3×10−4 cm/s), (2) Rio Calaveras, which flows through volcanic tuff with alluvium of intermediate grain size and hydraulic conductivity (1·2×10−3 cm/s), and (3) Gallina Creek, located in a granite/gneiss catchment of coarse, poorly sorted alluvium with high hydraulic conductivity (4·1×10−3 cm/s). All sites were instrumented with networks of shallow groundwater wells to monitor interstitial solute transport. The rate and extent of groundwater–surface water exchange, determined by the solute response in wells, increased with increasing hydraulic conductivity. The direction of surface water–groundwater interaction within a stream was related to local variation in vertical and horizontal hydraulic gradients. Experimental tracer responses in the surface stream were simulated with a one-dimensional solute transport model with inflow and storage components (OTIS). Model-derived measures of hydrological retention showed a corresponding increase with increasing hydraulic conductivity. To assess the temporal variability of hydrological retention, solute injection experiments were conducted in Gallina Creek under four seasonal flow regimes during which surface discharge ranged from baseflow (0·75 l/s in October) to high (75 l/s during spring snowmelt). Model-derived hydrological retention decreased with increasing discharge. The results of our intersite comparison suggest that hydrological retention is strongly influenced by the geologic setting and alluvial characteristics of the stream catchment. Temporal variation in hydrological retention at Gallina Creek is related to seasonal changes in discharge, highlighting the need for temporal resolution in studies of the dynamics of surface water–groundwater interactions in stream ecosystems. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
Nearby catchments in the same landscape are often assumed to have similar specific discharge (runoff per unit catchment area). Five years of streamflow from 14 nested catchments in a 68 km2 landscape was used to test this assumption, with the hypothesis that the spatial variability in specific discharge is smaller than the uncertainties in the measurement. The median spatial variability of specific discharge, defined as subcatchment deviation from the catchment outlet, was 33% at the daily scale. This declined to 24% at a monthly scale and 19% at an annual scale. These specific discharge differences are on the same order of magnitude as predicted for major land‐use conversions or a century of climate change. Spatial variability remained when considering uncertainties in specific discharge, and systematic seasonal patterns in specific discharge variation further provide confidence that these differences are more than just errors in the analysis of catchment area, rainfall variability or gauging. Assuming similar specific discharge in nearby catchments can thus lead to spurious conclusions about the effects of disturbance on hydrological and biogeochemical processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
A new temperature based method to separate rain and snow   总被引:2,自引:0,他引:2  
Stefan W. Kienzle 《水文研究》2008,22(26):5067-5085
This paper presents the development and testing of a new method to estimate daily snowfall from precipitation and associated temperature records. The new method requires two variables; the threshold mean daily air temperature at which 50% of precipitation is considered snow, and the temperature range within which mixed precipitation can occur. Sensitivity analyses using 15 climate stations across south‐western Alberta, Canada, and ranging from prairie to alpine regions investigates the sensitivity of those two variables on mean annual snowfall (MAS), the coefficient of determination, and the MAS‐weighted coefficient of determination. Existing methods, including the static threshold method, one linear transition method used by Quick and Pipes, and the Leavesley method employed in the PRMS hydrological modelling system are compared with the new method, using a total of 963 years of daily data from the 15 climate stations used for the sensitivity analyses. Four different approaches to using the two input variables (threshold temperature and range) were tested and statistically compared: mean annual variables based on the 15 stations, mean annual variables for each station, mean monthly variables for each station, and a sine curve representing seasonal variation of the variables. In almost all cases the proposed new method resulted in higher MAS‐weighted coefficients of determination, and, on average, they were significantly different from those of other methods. The paper concludes with a decision tree to help decide which method and approach to apply under a variety of data availabilities. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a study on the characteristics of multiple time scales of bankfull discharge and its delayed response to changes of flow conditions using continuous wavelet analysis for data from selected hydrological stations in the Yellow River basin. Results showed that bankfull discharge series had one or two dominant time scales. For example, the Huayuankou station in the lower reach of the Yellow River had two dominant time scales of 19-20 years and 545 years. The dominant time scales of the bankfull discharge series were generally consistent with the dominant time scales of water discharge and sediment concentration series, indicating that the channel morphology inherits the characteristics of the hydrological system in terms of multiple time scales. In addition, the wavelet coefficients of the bankfull discharge series had a phase difference in relation to those of the sediment concentration series, with a delay time that varied from 3 to 16 years at different sites. This delay time or relaxation time is a result of the delayed response of bankfull discharge to flow conditions, which was significant for channel adjustments in response to changes of flow conditions. The findings of the multiple time scales and the delayed response are of importance for further study of channel morphology of fluvial systems.  相似文献   

18.
In this study, we propose to identify morphological and hydraulic characteristics related to overbank flows in the water level time‐series available at many gauged stations. The results obtained at 13 river stations (the catchment sizes vary from 10 to 1700 km2 with contrasted geology, land use and rainfalls regime) show that overflow mechanisms at the river‐reach scale can be systematically identified in the water level frequency distribution estimated with the peaks‐over‐threshold (POT) method. A first level (Lts1) was in the range of the incipient flooding onto the floodplain. Even if the definition of this level is variable in terms of flooded area at the reach scale, this method can be useful in providing a first estimation of the bankfull level for many gauged stations, without complex and costly field surveys. A second level (Lts2) was systematically detected on average 38 cm above the topographic flat floodplain elevation. The Lts2 inflection in the water‐level frequency distribution is assumed to reflect a composite effect of catchment hydrology and local hydraulics and channel geometry, without possibility to make a clear distinction between both processes at the moment. The local or reach scale effect would probably play an essential role in the frequency distribution as flood attenuation at catchment scale may explain the inflection Lts2 at only three sites. In light of the knowledge acquired in laboratory flumes with compound channels, most of the time Lts2 level would correspond to the level of resumption of flow both in the main channel and the floodplain. Once this method is validated in various physiographic contexts, it should apply to many hydrometric stations for both synchronic (e.g. regional analysis) and diachronic analysis (e.g. evolution over time of the bankfull discharge) to evaluate anthropic impacts on river morphology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Scaling relationships between water turnover or discharge and water system size may help to reveal and understand general patterns and processes in regional and global hydrological systems. In the present study, we derived global as well as climate‐specific scaling relationships between average or maximum river discharge and catchment area, main‐stem length and precipitation, based on data from 663 monitoring stations worldwide. Data were retrieved from a Global Runoff Data Centre (GRDC) database. The scaling relationships were established with ordinary least square (OLS) and standard major axis (SMA) regressions. The focus was on the SMA regressions because this method provides better estimates of the slope. The overall empirical regressions derived were highly significant (p < 0.01). Average discharge (Q) and maximum discharge (Qmax) scaled to catchment area (A) with SMA slopes of 1.23 (r2 = 0.40) and 0.99 (r2 = 0.41), respectively. Average discharge (Q) scaled to length (L) with a slope of 2.16 (r2 = 0.40), while catchment area (A) scaled to main‐stem length (L) with a slope of 1.76 (r2 = 0.91). The addition of precipitation (P), yielding a multiple regression of discharge versus catchment area and precipitation, improved the explained variability to r2 = 0.56 and r2 = 0.52 for average and maximum discharge, respectively. Slopes of climate zone‐specific regressions tended to be similar to the slopes of the overall relationships. The uncertainties of the regressions were discussed and, where possible, compared to regressions derived in other studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Equatorial glacier‐fed streams present unique hydraulic patterns when compared to glacier‐fed observed in temperate regions as the main variability in discharge occurs on a daily basis. To assess how benthic fauna respond to these specific hydraulic conditions, we investigated the relationships between flow regime, hydraulic conditions (boundary Reynolds number, Re*), and macroinvertebrate communities (taxon richness and abundance) in a tropical glacier‐fed stream located in the high Ecuadorian Andes (> 4000 m). Both physical and biotic variables were measured under four discharge conditions (base‐flow and glacial flood pulses of various intensities), at 30 random points, in two sites whose hydraulic conditions were representative to those found in other streams of the study catchment. While daily glacial flood pulses significantly increased hydraulic stress in the benthic habitats (appearance of Re* > 2000), low stress areas still persisted even during extreme flood events (Re* < 500). In contrast to previous research in temperate glacier‐fed streams, taxon richness and abundance were not significantly affected by changes in hydraulic conditions induced by daily glacial flood pulses. However, we found that a few rare taxa, in particular rare ones, preferentially occurred in highly stressed hydraulic habitats. Monte‐Carlo simulations of benthic communities under glacial flood reduction scenarios predicted that taxon richness would be significantly reduced by the loss of high hydraulic stress habitats following glacier shrinking. This pioneer study on the relationship between hydraulic conditions and benthic diversity in an equatorial glacial stream evidenced unknown effects of climate change on singular yet endangered aquatic systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号