首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, Nostoc commune (cyanobacterium) was used as an inexpensive and efficient biosorbent for Cd(II) and Zn(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Zn(II) biosorption such as pH 2.0–7.0, initial metal concentration 0.0–300 mg/L and contact time 0–120 min were studied. Optimum pH for removal of Cd(II) and Zn(II) was 6.0, while the contact time was 30 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by infrared (IR) technique. IR analysis of bacterial biomass revealed the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for biosorption of Cd(II) and Zn (II). The maximum biosorption capacities for Cd(II) and Zn(II) biosorption by N. commune calculated from Langmuir biosorption isotherm were 126.32 and 115.41 mg/g, respectively. The biosorption isotherm for two biosorbents fitted well with Freundlich isotherm than Langmuir model with correlation coefficient (r2 < 0.99). The biosorption kinetic data were fitted well with the pseudo‐second‐order kinetic model. Thus, this study indicated that the N. commune is an efficient biosorbent for the removal of Cd(II) and Zn(II) from aqueous solutions.  相似文献   

2.
In this study, the biosorption of Cd(II), Ni(II) and Pb(II) on Aspergillus niger in a batch system was investigated, and optimal condition determined by means of central composite design (CCD) under response surface methodology (RSM). Biomass inactivated by heat and pretreated by alkali solution was used in the determination of optimal conditions. The effect of initial solution pH, biomass dose and initial ion concentration on the removal efficiency of metal ions by A. niger was optimized using a design of experiment (DOE) method. Experimental results indicated that the optimal conditions for biosorption were 5.22 g/L, 89.93 mg/L and 6.01 for biomass dose, initial ion concentration and solution pH, respectively. Enhancement of metal biosorption capacity of the dried biomass by pretreatment with sodium hydroxide was observed. Maximal removal efficiencies for Cd(II), Ni(III) and Pb(II) ions of 98, 80 and 99% were achieved, respectively. The biosorption capacity of A. niger biomass obtained for Cd(II), Ni(II) and Pb(II) ions was 2.2, 1.6 and 4.7 mg/g, respectively. According to these observations the fungal biomass of A. niger is a suitable biosorbent for the removal of heavy metals from aqueous solutions. Multiple response optimization was applied to the experimental data to discover the optimal conditions for a set of responses, simultaneously, by using a desirability function.  相似文献   

3.
Biosorption potential of Cedrus deodara sawdust (CDS) in terms of sorption of Zn(II) ion across liquid phase has been evaluated in the present investigation. The surface of the CDS biomass before the sorption of Zn(II) ions seemed to be more porous, non‐crystalline and heterogeneous. The maximum uptake capacity of CDS was 97.39 mg g?1. Sorption of Zn(II) ion on the surface of CDS sawdust was maximum at pH 5, temperature 45°C, initial concentration of Zn(II) ion 100 mg L?1, biomass dose 1 g L?1, contact time 150 min, and agitation rate 160 rpm. Pseudo second‐order kinetics with the highest linear regression coefficient (R2 = 0.99), and lowest values of error functions, i.e., chi (χ2) and sum of square errors (SSE) against pseudo first‐order rate kinetics showed that the sorption of Zn(II) ion on the surface of CDS was mediated by chemosoprtive forces of attraction rather than physical adsorption. Mechanistically, relatively higher proportion of sorption of Zn(II) ion in early phase of contact time was profoundly explained by Bangham's equation and film diffusivity (Df). Intraparticle or pore diffusion (Dp) of Zn(II) ion inside the pores of CDS was rate limiting step at the later stage of contact time. Furthermore, the thermodynamic study on sorption of metal ion delineated the fact that the Zn(II) sorption on the surface of CDS was spontaneous, endothermic together with increased entropy at solid liquid interface.  相似文献   

4.
Four bacterial isolates (two resistant and two sensitive to chromium) were isolated from soil contaminated with tannery effluents at Jajmau (Kanpur), India, and were identified by 16S rDNA gene sequencing as Stenotrophomonas maltophilia, Exiguobacterium sp., Pantoea sp., and Aeromonas sp. Biosorption of chromium by dried and living biomasses was determined in the resistant and sensitive isolates. The effect of pH, initial metal concentration, and contact time on biosorption was studied. At pH 2.5 the living biomass of chromium resistant isolate Exiguobacterium sp. ZM‐2 biosorbed maximum amount of Cr6+ (29.8 mg/g) whereas the dried biomass of this isolate biosorbed 20.1 mg/g at an initial concentration of 100 mg/L. In case of chromate sensitive isolates, much difference was not observed in biosorption capacities between their dried and living biomasses. The maximum biosorption of Cr3+ was observed at pH 4.5. However, biosorption was identical in resistant and sensitive isolates. The data on chromium biosorption were analyzed using Langmuir and Freundlich isotherm model. The biosorption data of Cr6+ and Cr3+ from aqueous solution were better fitted in Langmuir isotherm model compared to Freundlich isotherm model. Metal recovery through desorption was observed better with dried biomasses compared to the living biomasses for both types of chromium ions. Bioaccumulation of chromate was found higher in chromate resistant isolates compared to the chromate sensitive isolates. Transmission electron microscopy confirmed the accumulation of chromium in cytoplasm in the resistant isolates.  相似文献   

5.
An eco‐friendly and inexpensive technique for wastewater treatment originated from inductively coupled plasma‐optical emission spectrometry (ICP‐OES) is presented within this paper. The proposed process comprised of loading waste crab shells in packed column for adsorption of heavy metal ions, followed by desorption using 0.01 M HCl. An exhaustive physical and chemical characterization of ICP‐OES wastewater revealed the complex nature of effluent, including the presence of 15 different metals and metalloid under strong acidic condition (pH 1.3). Based on the preliminary batch experiments, it was identified that solution pH played a major role in metal sequestration by crab shell with pH 3.5 identified as optimum pH. Rapid metal biosorption kinetics along with complete desorption and subsequent reuse for three cycles was possible with crab shell‐based treatment process. Continuous flow‐through column experiments confirmed the high performance of crab shell towards multiple metal ions with the column able to operate for 22 h at a flow rate of 10 mL/min before outlet concentration of arsenic reached 0.25 times of its inlet concentration. Other metal ions such as Cu, Cd, Co, Cr, Pb, Ni, Zn, Mn, Al, and Fe were only in trace levels in the treated water until 22 h. The performance of the treatment process was compared with trade effluent discharge standards, and the process flow diagram along with cost analysis was suggested.  相似文献   

6.
The complex micro-interfacial interaction theories of heavy metal ions such as Pb(Ⅱ)and Cd(Ⅱ)adsorption on fine sediment in aqueous solution were not systematically investigated.The aim of this work was to reflect the micro-interfacial adsorption characteristics.Sediment samples were collected from an estuary.The Isothermal and kinetics adsorption experiment were done to acquire the data.Isothermal,kinetics,film diffusion and intraparticle diffusion models were adopted to fit the adsorption experimental data.The results indicated that the Langmuir,Freundlich and Temkin models were suitable for analyzing the isothermal experimental data.The maximum adsorption capacities of Pb(Ⅱ)and Cd(Ⅱ)on the sediment were 1.1377 and 0.9821 mg·g-1,respectively.The qm and KL of the Langmuir model,Kf and nF of the Freundlich model,and b and A of the Temkin model all exhibited a power function relationship with the initial adsorbate concentration.The pseudo-second-order model provided a better fit for the experimental kinetics data compared with the fit of the pseudo-first-order and Elovich models.The pseudo-second-order parameters k2 and qe of Pb(Ⅱ)and qe of Cd(Ⅱ)both had a power function relationship with adsorption time,additionally,the k2 of Cd(Ⅱ)had an exponential function relationship with adsorption time.The liquid-film diffusion parameters kfd of Pb(Ⅱ)and Cd(Ⅱ)were 0.0569 and 0.1806 min1,respectively.The intraparticle diffusion parameter kid values of Pb(Ⅱ)and Cd(Ⅱ)were 0.0055 mg$g1$min1/2 and 0.0049 mg$g1$min1/2,respectively.The physical significance of the model parameters showed that Pb(Ⅱ)adsorption on sediment was stronger than Cd(Ⅱ).The results of this study provided a theoretical reference for the micro-interfacial mechanism of heavy metal ion adsorption on sediment.  相似文献   

7.
Zinc remediation of aqueous streams is of special concern due to its highly toxic and persistent nature. Conventional treatment technologies for the removal of zinc are not economical and further generate huge quantity of toxic chemical sludge. Biosorption is emerging as a potential alternative to the existing conventional technologies for the removal of metal ions from aqueous solutions. Mechanisms involved in the biosorption process include chemisorption, complexation, adsorption–complexation on surface and pores, ion exchange, microprecipitation, heavy metal hydroxide condensation onto the bio surface, and surface adsorption. Biosorption largely depends on parameters such as pH, the initial metal ion concentration, biomass concentration, presence of various competitive metal ions in solution, and to a limited extent on temperature. Biosorption using biomass such as agricultural wastes, industrial residues, municipal solid waste, biosolids, food processing waste, aquatic plants, animal wastes, etc., is regarded as a cost‐effective technique for the treatment of high volume and low concentration complex wastewaters containing zinc metal. Very few reviews are available where readers can get an overview of the sorption capacities of agro based biomasses used for zinc remediation together with the traditional remediation methods. The purpose of this review article is to provide the scattered available information on various aspects of utilization of the agro based biomasses for zinc metal ions removal. An extensive table summarizes the sorption capacities of various adsorbents. These biosorbents can be modified using various methods for better efficiency and multiple reuses to enhance their applicability at industrial scale. We have incorporated most of the valuable available literature on zinc removal from waste water using agro based biomasses in this review.  相似文献   

8.
The possible use of activated alumina powder (AAP) as adsorbent for Cr(III), Ni(II), and Cu(II) from synthetic solutions was investigated. The effect of various parameters on batch adsorption process such as pH, contact time, adsorbent dosage, particle size, temperature, and initial metal ions concentration were studied to optimize the conditions for maximum metal ion removal. Both higher (molar) and lower (ppm) initial metal ion concentration sets were subjected to adsorption on AAP. Adsorption process revealed that equilibrium was established in 50 min for Cr(III) at pH 4.70, 80 min for Ni(II) at pH 7.00, and 40 min for Cu(II) at pH 3.02. Percentage removal was found to be highest at 55°C for Cr(III) and Ni(II) with 420 µm and 45°C for Cu(II) with 250‐µm particle size AAP. A dosage of 2 g for Cr(III), 8 g for Ni(II), and 10 g Cu(II) gave promising data in the metal ion removal. The adsorption process followed Langmuir as well as Freundlich models. The thermodynamics of adsorption of these metal ions on activated aluminum indicated that the adsorption was spontaneous and endothermic in nature. Present study indicates that AAP can act as a promising adsorbent for industrial wastewater treatment.  相似文献   

9.
A simple, rapid, and accurate method was developed for separation and preconcentration of trace levels of iron(III) and zinc(II) ions in environmental samples. Methyl‐2‐(4‐methoxy‐benzoyl)‐3‐(4‐methoxyphenyl)‐3‐oxopropanoylcarbamate (MMPC) has been proposed as a new complexing agent for Fe(III) and Zn(II) ions using solvent extraction prior to their determination by flame atomic absorption spectrometry (FAAS). Fe(III) and Zn(II) ions can be selectively separated from Fe(II), Pb(II), Co(II), Cu(II), Mn(II), Cr(III), Ni(II), Cd(II), Ag(I), Au(III), Pd(II), Cr(VI), and Al(III) ions in the solution by using the MMPC reagent. The analytical parameters such as pH, sample volume, shaking time, amount of MMPC reagent, volume of methyl isobutyl ketone (MIBK), effect of ionic strength, and type of back extractant were investigated. The recovery values for Fe(III) and Zn(II) ions were greater than 95% and the detection limits for Fe(III) and Zn(II) ions were 0.26 and 0.32 µg L?1, respectively. The precision of the method as the relative standard deviation changed between 1.8 and 2.1%. Calibration curves have a determination coefficient (r2) of at least 0.997 or higher. The preconcentration factor was found to be 100. Accuracy of the method was checked by analyzing of a certified reference material and spiked samples. The developed method was applied to several matrices such as water, hair, and food samples.  相似文献   

10.
The potential use of spent coffee ground (SCG) for the removal of copper has been investigated as a low‐cost adsorbent for the biosorption of heavy metals. Adsorption batch experiments were conducted to determine isotherms and kinetics. The biosorption equilibrium data were found to fit well the Freundlich model and an experimental maximum biosorption capacity of copper ions 0.214 mmol/g was achieved. The biosorption kinetics of SCG was studied at different adsorbate concentrations (0.1–1.0 mM) and stirring speeds (100–400/min). The results showed an increase in the copper ion uptake with raising the initial metal concentration and the kinetic data followed the pseudo‐second order rate expression. The effect of stirring speed was a significant factor for the external mass transfer resistance at 100/min and coefficients were estimated by the Mathews and Weber model. Biosorption of copper ions onto SCG was observed to be related mainly with the release of calcium and hydrogen ions suggesting that biosorption performance by SCG can be attributed to ion‐exchange mechanism with calcium and hydrogen ions neutralizing the carboxyl and hydroxyl groups of the biomass.  相似文献   

11.
Leachate derived from bioleaching process contains high amount of metals that must be removed before discharging the water. Aspergillus fumigatus was isolated from a gold mine tailings and its ability to remove of As, Fe, Mn, Pb, and Zn from aqueous solutions and leachate of bioleaching processes was assessed. Batch sorption experiments were carried out to characterize the capability of fungal biomass (FB) and iron coated fungal biomass (ICFB) to remove metal ions in single and multi‐solute systems. The maximum sorption capacity of FB for As(III), As(V), Fe, Mn, Pb, and Zn were 11.2, 8.57, 94.33, 53.47, 43.66, and 70.4 mg/g, respectively, at pH 6. For ICFB, these values were 88.5, 81.3, 98.03, 66.2, 50.25, and 74.07 mg/g. Results showed that only ICFB was found to be more effective in removing metal ions from the leachate. The amount of adsorbed metals from the leachate was 2.88, 21.20, 1.91, 0.1, and 0.08 mg/g for As, Fe, Mn, Zn, and Pb, respectively. The FT‐IR analysis showed involvement of the functional groups of the FB in the metal ions sorption. Scanning electron microscopy revealed that surface morphological changed following metal ions adsorption. The study showed that the indigenous fungus A. fumigatus was able to remove As, Fe, Mn, Pb, and Zn from the leachate of gold mine tailings and therefore the potential for removing metal ions from metal‐bearing leachate.  相似文献   

12.
This paper discusses about the adsorption of metal ions such as Cu(II), Cd(II), Zn(II), and Ni(II) from aqueous solution by sulfuric acid treated cashew nut shell (STCNS). The adsorption process depends on the solution pH, adsorbent dose, contact time, initial metal ions concentration, and temperature. The adsorption kinetics was relatively fast and equilibrium was reached at 30 min. The adsorption equilibrium follows Langmuir adsorption isotherm model. The maximum adsorption capacity values of the modified cashew nut shell (CNS) for metal ions were 406.6 mg/g for Cu(II), 436.7 mg/g for Cd(II), 455.7 mg/g for Zn(II), and 456.3 mg/g for Ni(II). The thermodynamic study shows the adsorption of metal ions onto the STCNS was spontaneous and exothermic in nature. The kinetics of metal ions adsorption onto the STCNS followed a pseudo‐second‐order kinetic model. The external mass transfer controlled metal ions removal at the earlier stages and intraparticle diffusion at the later stages of adsorption. A Boyd kinetic plot confirms that the external mass transfer was the slowest step involved in the adsorption of metal ions onto the STCNS. A single‐stage batch adsorber was designed using the Langmuir adsorption isotherm equation.  相似文献   

13.
Potential remediation of surface water contaminated with linear alkylbenzene sulfonates (LAS) and zinc (Zn (II)) by sorption on Spirulina platensis was studied using batch techniques. Results show that LAS can be biodegraded by Spirulina platensis, and its biodegradation rate after 5 days was 87%, 80%, and 70.5% when its initial concentration was 0.5, 1, and 2 mg/L, respectively. The maximum Zn (II) uptake capacity of Spirulina platensis was found to be 30.96 mg/g. LAS may enhance the maximum Zn (II) uptake capacity of Spirulina platensis, which can be attributed to an increase in bioavailability due to the presence of LAS. The biodegradation rates of LAS by Spirulina platensis increased with Zn (II) and reached the maximum when Zn (II) was 4 mg/L. The joint toxicity test showed that the combined effect of LAS and Zn (II) was Synergistic. LAS can enhance the biosorption of Zn (II), and reciprocally, Zn (II) can enhance LAS biodegradation.  相似文献   

14.
This paper presents a biosorption procedure for the preconcentration of Pb2+ ions using Saccharomyces cerevisiae biomass. The influence of several factors including pH, biomass dosage, contact time, and temperature on biosorption efficiency were optimized. At optimum value of all the equilibrium, thermodynamic, and kinetic parameters of Pb2+ ion biosorption was investigated by testing the Langmuir and Freundlich models and first and second order kinetic models were applied. The biosorption capacity of S. cerevisiae biomass was determined 89.6 mg/g, while the retained Pb2+ ions by S. cerevisiae were reversibly eluted using 5 mol/L HNO3. Due to the high stability of S. cerevisiae the applied biomass can be used successively ten times with a slightly decrease (about 20%) in the recovery of Pb2+ ions. The calculated thermodynamic parameters, ΔG°, ΔH°, and ΔS° showed that the biosorption of Pb2+ ion onto S. cerevisiae biomass was feasible, spontaneous, and endothermic under examined conditions. The results of kinetic analysis showed that the biosorption processes of Pb2+ ions onto S. cerevisiae biomass followed pseudo second order kinetics.  相似文献   

15.
In order to investigate the pollution levels, sources and ecological risks of arsenic (As) and heavy metals (Cr, Ni, Cu, Zn, Pb and Cd) in inshore sediments of the Yellow River estuary, the surface sediment in areas of inshore coastal waters were sampled in October 2014 as the flow-sediment regulation project (FSRP) was implemented for 13 years. Results showed that the concentrations of As and heavy metals in inshore sediments of the Yellow River estuary were in the order of Zn?>?Cr?>?Cu?>?Ni?>?Pb?>?As?>?Cd. Higher levels of As, Cr, Ni, Cu, Zn and Pb generally occurred in fine-grained sediments of the Yellow River estuary and the southeast region, which was consistent with the spatial distribution of clay. In contrast, higher concentrations of Cd were generally observed in northwest area of the Yellow River estuary and near the Qingshuigou estuary, which showed similarly spatial distribution with that of sand. The sediment quality guidelines (SQGS) and geoaccumulation indices (Igeo) indicated that the inshore sediments were polluted by Cu, Cd, As, Pb and Zn, and, among them, Cd pollution was more serious. Ecological risk indices (E r i ) demonstrated low risks for Cr, Ni, Cu, Zn, Pb and As, and high potential toxicity by Cd. The integrated ecological risk index implied that 6.8% of stations presented moderate risk, 4.5% of stations exhibited disastrous risk, and 88.7% of stations demonstrated considerable risk. Principal component analysis indicated that Ni, Cu, Zn, Pb and As might originate from common pollution sources, while Cr and Cd might share another similar sources. With the continuous implementation of FSRP, As and heavy metal levels in inshore sediments of the Yellow River estuary could be classified as stage I (2002–2010) and stage II (2010–2014). In the stage I, As, Cr, Ni, Cu, Zn and Pb levels fluctuated but decreased significantly, whereas Cd concentrations showed little variation. In the stage II, As and heavy metal levels significantly increased although some little fluctuations occurred. The continuous accumulation of As and heavy metals (especially for Cd) in inshore sediments of the Yellow River estuary would occur again as the FSRP was implemented for 9 years (since 2010). The ecotoxicological risk of Cd, As, Ni and Cu in inshore sediments might be more serious since the accumulation of the four elements would be continuously occurred in future years. Next step, there will be long-term potential consequences for marine organism if effective measures are not taken to control the loadings of metal pollutants into estuary.  相似文献   

16.
17.
Bioremediation of Zn(II) by biosorption across aqueous phase on to surface of eucalyptus leaf powder has been investigated in present research work. The adsorptive potential of eucalyptus leaf powder was evaluated as function of pH, temperature, contact time, agitation rate and particle size. Maximum metal ion uptake and percentage removal capacity of eucalyptus leaf powder were 23.5 mg g−1 and 94%, respectively, at optimized pH 5, 20 ± 1°C, contact time 6 h, particle size 0.5 mm and agitation rate 200 rpm. The biomass surface analysis revealed the fact that the biomass surface was heterogeneous and porous in nature. The functional groups like amine, amide, carboxyl, hydroxyl, and methyl groups, significantly important for metal ion binding were present on biomass surface in tremendous amount. Additionally, the Fourier transformation IR spectrum analysis of acid and base activated eucalyptus leaf biomass ruled out all the possibilities of the presence of surface functional groups mentioned above. The reaction rate was studied by applying two rate limiting models pseudo first and pseudo second order. Pseudo second order model was found to be more suitable (R2 = 0.998) in comparison to pseudo first order (R2 = 0.724). Adsorption equilibrium of batch stirred reaction data fitting shows the dominance of Langmuir isotherm (R2 = 0.99) against Freundlich isotherm (R2 = 0.887) model with equipartitional involvement of both film and intra particle diffusion as rate limiting steps at differential status of contact time.  相似文献   

18.
Removal of Al, As, Cd, total Cr (Tot. Cr), Cu, Total Fe (Tot. Fe), Mn, Ni, Pb, Sb, Sn, and Zn from urban effluent by wastewater treatment plants (WWTPs) operated under five‐stage Bardenpho® process were investigated and water soluble metals in the dewatered sludge were quantified. Samples were collected from two WWTPs on a weekly basis over an approximately 2.5‐year time span. Tot. Fe and Al were the most abundant, As, Pb, Ni, Cu, and Cd were the least abundant metals in the influents of both WWTPs. Removal efficiencies above 75% were achieved for Tot. Cr, Tot. Fe, Al, and Cu, whereas, no significant removal was observed for As, Cd, Pb, Sb, and Sn. Removal of Tot. Cr, Cu, Tot. Fe, Zn, Al, Mn, and Ni were influenced by influent suspended solids concentrations, and of Tot. Cr, Zn, and Cd were influenced by their initial content in the influent. Zn removal efficiency of biological nutrient removal (BNR) system in this study was higher and Cd removal efficiency was lower than that of conventional activated sludge reported in the literature. No remarkable difference for metals such as Cu, Mn, Ni, and Pb was observed between the removal efficiencies of conventional system and BNR system.  相似文献   

19.
The response of metal accumulation in coral Tubastraea coccinea to various degrees of metal enrichment was investigated from the Yin-Yang Sea (YYS) receiving abandoned mining effluents, the Kueishan Islet (KI) hydrothermal vent field, and the nearshore area of remoted Green Island (GI). The concentrations of most dissolved metals were highest in seawater at YYS, followed by KI, and then GI, showing the effects of anthropogenic and venting inputs on metal levels. Five metals (Co, Fe, Mn, Ni, and Zn) yielded significant differences (p < 0.05) among the skeleton samples. We identified similar patterns in the metal–Ca ratios, indicating that the elevated metals in skeletons was a consequence of external inputs. The coral tissues were relatively sensitive in monitoring metal accumulation, showing significant differences among three locations for Cd, Co, Cu, Fe, Pb, Ni, and Zn. Specific bioconcentration factors provided strong support for the differential metal accumulation in skeletons and tissues.  相似文献   

20.
Batch biosorption experiments were carried out for the removal of Congo red from aqueous solution using native and pretreated mycelial pellets/biomass of Trametes versicolor. The effect of process parameters such as contact time, dye concentration, and pH on the extent of Congo red biosorption has been investigated. Higher dye concentrations resulted in lower biosorption. Increases in biomass dosage led to increases in the levels of biosorption. Biosorption kinetics and equilibrium data are essential basic requirements to develop an effective and accurate design model for the removal of the dye. A kinetic study showed that the biosorption of the dye on fungal biomass was a gradual process. Pseudo‐first‐order, pseudo‐second‐order, and Bangham's model were used to fit the experimental data. The results of the kinetic studies showed that the second‐order kinetic model fitted well for the present experimental data. Equilibrium isotherms were analyzed by Langmuir, Freundlich, Dubnin‐Radushkevich, and Temkin isotherms. The biosorption equilibrium data obeyed the Langmuir and Temkin isotherms well. Acidic pH was favorable for the biosorption of the dye. Studies on the pH effect and desorption show that chemisorption seems to play a major role in the biosorption process. Among the native and pretreated biomass studied, autoclaved biomass showed a better biosorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号