首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 923 毫秒
1.
Field‐ and laboratory‐scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi‐arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h?1 with a duration of 1 to 2 hours. Time‐series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size‐selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport‐limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size‐selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Fine grained (80 µm) magnetite was introduced onto a semi‐arid grassland hillslope in 1992, as part of a set of rainfall‐simulation experiments. Using measurements of magnetic susceptibility, the median distance travelled by these magnetite grains during subsequent natural runoff events in the 16‐year period up to 2008 was estimated. Coupling this estimate to direct measurements of sediment flux obtained during the rainfall‐simulation experiments has enabled estimation of the erosion rate over this period. The estimated average erosion rate of between 2·61 × 10?2 and 4·36 × 10?2 kg m?1 year?1, is equivalent to a rate of ground lowering between 0·020 and 0·033 mm year?1. This estimate is consistent with (in the sense of being less than) an estimate of total sediment detachment over the same period. The rate of erosion measured using this travel‐distance approach is an order of magnitude less that obtained from a study based on 137Cs in a nearby catchment, and compatible with the longevity of continents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Measurements of temporal variations in soil detachability under different land uses are badly needed to develop new algorithms or evaluate the existing ones for temporal adjustment of soil detachability in continuous soil erosion models. Few studies have been conducted in the Loess Plateau to quantify temporal variations in detachment rate of runoff under different land uses. The objectives of this study were to investigate the temporal variations of soil detachment rate under different land uses and to further identify the potential factors causing the change in detachment rate in the Loess Plateau. Undisturbed soil samples were collected in the fields of arable land (millet, soybean, corn, and potato), grassland, shrub land, wasteland, and woodland and tested in a laboratory flume under a constant hydraulic condition. The measurements started in mid‐April and ended in early October, 2006. The results showed that soil detachment rate of each land use fluctuated considerably over time. Distinctive temporal variation in detachment rate was found throughout the summer growing season of measurement in each land use. The maximum detachment rates of different land uses varied from 0·019 to 0·490 kg m–2 s–1 and the minimum detachment rates ranged from 0·004 to 0·092 kg m–2 s–1. Statistical analysis using a paired‐samples t‐test indicated that variations in soil detachment rate differed significantly at the 0·05 level between land uses in most cases. The major factors responsible for the temporal variation of soil detachment were tillage operations (such as planting, ploughing, weeding, harvesting), soil consolidation, and root growth. The influence of tillage operations on soil detachment depended on the degree of soil disturbance caused by the operations. The consolidation of the topsoil over time after tillage was reflected by increases in soil bulk density and soil cohesion. As soil bulk density and cohesion increased, detachment rate decreased. The impact of root density was inconclusive in this study. Further studies are needed to quantify the effects of root density on temporal variations of soil detachment. This work provides useful information for developing temporal adjustments to soil detachment rate in continuous soil erosion models in the Loess Plateau. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Splash detachment by raindrops was measured using a factorial experiment involving three soils (sandy loam, clay loam and clay) and two organic materials (cow dung and groundnut haulms) applied at five levels (0, 2, 4, 6 and 8 per cent by mass). A simulated rainfall intensity of 145 mm h?1 for 10 min duration was used for the tests. Detachment was described in terms of the direct effects and the first and second order interactions of the variables mentioned above. Results indicated that mean splash detachment was reduced significantly (P < 0·01) from 1·97 kg m?2 in the sandy loam to 0·67 kgm?2 in the clay soil. For each soil type, detachment was reduced significantly (P < 0.01) with increasing levels of added organic matter. Groundnut haulms produced lower values of detachment than cow dung. There were also significant interaction effects between the study variables. These interactions were used to describe the effect of added organic materials on splash detachment. For each soil type and organic material, negative exponential relationships were established to relate splash detachment to levels of added organic matter.  相似文献   

5.
Field studies of rainsplash erosion   总被引:1,自引:0,他引:1  
Studies on sandy soils of the Cottenham Series in mid-Bedfordshire confirm in the field the relationships between splash erosion, rainfall energy and ground slope obtained in the laboratory experiments of other workers. Only 0·06 per cent of the rainfall energy contributes to splash erosion and rates are low, attaining a maximum of 0·082 kg m?2 y?1 on a slope of 11°. The major role of splash action is in the detachment of soil particles prior to their removal by overland flow.  相似文献   

6.
A new approach is proposed to simulate splash erosion on local soil surfaces. Without the effect of wind and other raindrops, the impact of free‐falling raindrops was considered as an independent event from the stochastic viewpoint. The erosivity of a single raindrop depending on its kinetic energy was computed by an empirical relationship in which the kinetic energy was expressed as a power function of the equivalent diameter of the raindrop. An empirical linear function combining the kinetic energy and soil shear strength was used to estimate the impacted amount of soil particles by a single raindrop. Considering an ideal local soil surface with size of 1 m × 1 m, the expected number of received free‐falling raindrops with different diameters per unit time was described by the combination of the raindrop size distribution function and the terminal velocity of raindrops. The total splash amount was seen as the sum of the impact amount by all raindrops in the rainfall event. The total splash amount per unit time was subdivided into three different components, including net splash amount, single impact amount and re‐detachment amount. The re‐detachment amount was obtained by a spatial geometric probability derived using the Poisson function in which overlapped impacted areas were considered. The net splash amount was defined as the mass of soil particles collected outside the splash dish. It was estimated by another spatial geometric probability in which the average splashed distance related to the median grain size of soil and effects of other impacted soil particles and other free‐falling raindrops were considered. Splash experiments in artificial rainfall were carried out to validate the availability and accuracy of the model. Our simulated results suggested that the net splash amount and re‐detachment amount were small parts of the total splash amount. Their proportions were 0·15% and 2·6%, respectively. The comparison of simulated data with measured data showed that this model could be applied to simulate the soil‐splash process successfully and needed information of the rainfall intensity and original soil properties including initial bulk intensity, water content, median grain size and some empirical constants related to the soil surface shear strength, the raindrop size distribution function and the average splashed distance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Rainfall erosivity represents the primary driver for particle detachment in splash soil erosion. Several raindrop erosivity indices have been developed in order to quantify the potential of rainfall to cause soil erosion. Different types of rainfall simulators have been used to relate rainfall characteristics to soil detachment. However, rainfall produced by different rainfall simulators has different characteristics, specifically different relationships between rainfall intensity and rainfall erosivity. For this reason, the effect of rainfall characteristics produced by a dripper‐type rainfall simulator on splash soil erosion (Ds) has been investigated. The simulated rainfall kinetic energy (KE) and drop size distribution (DSD) were measured using piezoelectric transducers, modified from the Vaisala RAINCAP® rain sensor. The soil splash was evaluated under various simulated rainfall intensities ranging from 10 to 100 mm h?1 using the splash‐cup method. The simulated rainfall intensity (I) and kinetic energy relationship (IKE) was found to be different from natural rainfall. The simulated rainfall intensity and splash soil erosion relationship (IDs) also followed this same trend. The IKE relationship was found to follow the natural rainfall trend until the rainfall intensity reached 30 mm h?1 and above this limit the KE started to decrease. This emphasizes the importance of the IKE relationship in determining the IDs relationship, which can differ from one rainfall simulator to another. Ds was found to be highly correlated with KE (r = 0·85, P < 0·001), when data produced by the rainfall intensity ranged from 10 to 100 mm h?1. However, when the threshold rainfall intensity (30 mm h?1) was considered, the correlation coefficient further improved (r = 0·89, P = 0·001). Accordingly, to improve the soil splash estimation of simulated rainfall under various rainfall intensities the I–KE characterization relationship for rainfall simulators has to be taken into account. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Soil loss continues to threaten Java's predominantly bench‐terraced volcanic uplands. Sediment transport processes on back‐sloping terraces with well‐aggregated clay‐rich oxisols in West Java were studied using two different techniques. Splash on bare, cropped, or mulched sub‐horizontal (2–3°) terrace beds was studied using splash cups of different sizes, whereas transport of sediment on the predominantly bare and steep (30–40/deg ) terrace risers was measured using a novel device combining a Gerlach‐type trough with a splash box to enable the separate measurement of transport by wash and splash processes. Measurements were made during two consecutive rainy seasons. The results were interpreted using a recently developed splash distribution theory and related to effective rainfall erosive energy. Splash transportability (i.e. transport per unit contour length and unit erosive energy) on the terrace risers was more than an order of magnitude greater than on bare terrace beds (0·39–0·57 versus 0·013–0·016 g m J?1). This was caused primarily by a greater average splash distance on the short, steep risers (>11 cm versus c. 1 cm on the beds). Splashed amounts were reduced by the gradual formation of a protective ‘pavement’ of coarser aggregates, in particular on the terrace beds. Soil aggregate size exhibited an inverse relationship with detachability (i.e. detachment per unit area and unit erosive energy) and average splash length, and therefore also with transportability, as did the degree of canopy and mulch cover. On the terrace risers, splash‐creep and gravitational processes transported an additional 6–50% of measured rain splash, whereas transport by wash played a marginal role. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
In this study our main objective was to quantify water interrill erosion in the sloping lands of Southeast Asia, one of the most bio‐geochemically active regions of the world. Investigations were performed on a typical hillslope of Northern Laos subjected to slash and burn agriculture practiced as shifting cultivation. Situations with different periods of the shifting cultivation cycle (secondary forest, upland rice cultivation following a four‐year fallow period and three‐year continuous upland rice cultivation) and soil orders (Ultisols, Alfisols, Inceptisols) were selected. One metre square micro‐plots were installed to quantify the soil material removed by either detachment of entire soil aggregate or aggregate destruction, and the detached material transported by thin sheet flow, the main mechanisms of interrill erosion. In addition, laboratory tests were carried out to quantify the aggregate destruction in the process of water erosion by slaking, dispersion and mechanical breakdown. The average runoff coefficient (R) evaluated throughout the 2002 rainy season was 30·1 per cent and the interrill erosion was 1413 g m?2 yr?1 for sediments and 68 g C m?2 yr?1 for soil organic carbon, which was relatively high. Among the mechanisms of interrill water erosion, aggregate destruction was low and mostly caused by mechanical breakdown due to raindrops, thus leading to the conclusion that detachment and further transport by the shallow runoff of macro‐aggregates predominates. R ranged from 23·1 to 35·8 per cent. It decreased with the proportion of mosses on the soil surface and soil surface coverage, and increased with increasing proportion of structural crust, thus confirming previous results. Water erosion varied from 621 to 2433 g m?2 yr?1 for sediments and from 31 to 146 g C m?2 yr?1 for soil organic carbon, and significantly increased with increasing clay content of the surface horizon, probably due to the formation of easily detachable and transportable sand‐size aggregates, and proportion of macro‐aggregates not embedded in the soil matrix and prone to transport. In addition, water erosion decreased with increasing proportion of structural crusts, probably due to their higher hardness, and when cultivation follows a fallow period rather than after a long period of cultivation due to the greater occurrence of algae on the soil surface, which affords physical protection and greater aggregate stability through binding and gluing. This study based on simultaneous field and laboratory investigations allowed successful identification and quantification of the main erosion mechanisms and controlling factors of interrill erosion, which will give arguments to further set up optimal strategies for sustainable use of the sloping lands of Southeast Asia. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
In recent years, high‐molecular‐weight anionic polyacrylamides (PAMs) have been tested on a variety of soils, primarily in temperate climates. However, little information is available regarding the effectiveness of PAM for preventing soil loss through runoff in tropical settings. Screening tests were performed using three negatively charged PAMs and one positively charged PAM on five Hawaii soils (two Oxisols, one Vertisol, and two Aridisols) to determine erosion loss, sediment settling, and aggregate stability. A laboratory‐scale rainfall simulator was used to apply erosive rainfall at intensities from 5 to 8·5 cm h?1 at various PAM doses applied in both dry and solution forms. Soil detachment due to splash and runoff, as well as the runoff and percolate water volumes, were measured for initial and successive storms. The impact of PAM on particle settling and aggregate stability was also evaluated for selected soil‐treatment combinations. Among the PAMs, Superfloc A‐836 was most effective, and significantly reduced runoff and splash sediment loss for the Wahiawa Oxisol and Pakini Andisol at rates varying between 10 and 50 kg ha?1. Reduced runoff and splash sediment loss were also noted for PAM Aerotil‐D when applied in solution form to the Wahiawa Oxisol. Significant reductions in soil loss were not noted for either the Lualualei Vertisol or the Holomua Oxisol. It is believed that the high montmorillonite content of the Lualualei Vertisol and the low cation‐exchange capacity of the Holomua Oxisol diminished the effectiveness of the various PAMs tested. The polymers were also found to enhance sediment settling of all soils and helped improve their aggregate stability. This screening study shows the potential use of PAM for tropical soils for applications such as infiltration enhancement, runoff reduction, and enhanced sedimentation of detention ponds. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Several studies illustrate the wind and water erosion‐reducing potential of semi‐permanent microbiotic soil crusts in arid and semi‐arid desert environments. In contrast, little is hitherto known on these biological crusts on cropland soils in temperate environments where they are annually destroyed by tillage and quickly regenerate thereafter. This study attempts to fill the research gap through (a) a field survey assessing the occurrence of biological soil crusts on loess‐derived soils in central Belgium in space and time and (b) laboratory flume (2 m long) experiments simulating concentrated runoff on undisturbed topsoil samples (0.4 × 0.1 m2) quantifying the microbiotic crust effect on soil erosion rates. Three stages of microbiotic crust development on cropland soils are distinguished: (1) development of a non‐biological surface seal by raindrop impact, (2) colonization of the soil by algae and gradual development of a continuous algal mat and (3) establishment of a well‐developed microbiotic crust with moss plants as the dominant life‐form. As the silt loam soils in the study area seal quickly after tillage, microbiotic soil crusts are more or less present during a large part of the year under maize, sugar beet and wheat, representing the main cropland area. On average, the early‐successional algae‐dominated crusts of stage 2 reduce soil detachment rates by 37%, whereas the well‐developed moss mat of stage 3 causes an average reduction of 79%. Relative soil detachment rates of soil surfaces with microbiotic crusts compared with bare sealed soil surfaces are shown to decrease exponentially with increasing microbiotic cover (b = 0·024 for moss‐dominated and b = 0·006 for algae‐dominated crusts). In addition to ground surface cover by vegetation and crop residues, microbiotic crust occurrence can therefore not be neglected when modelling small‐scale spatial and temporal variations in soil loss by concentrated flow erosion on cropland soils in temperate environments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The mid‐ to high‐boreal forest in Canada occupies the discontinuous permafrost zone, and is often underlain by glaciolacustrine sediments mantled by a highly porous organic mat. The result is a poorly drained landscape dominated by wetlands. Frost‐table dynamics and surface storage conditions help to control runoff contributions from various landscape elements, hydrological linkages between these elements, and basin streamflow during spring snowmelt. Runoff components and pathways in a forested peatland basin were assessed during two spring snowmelts with contrasting input and basin conditions. Runoff from relatively intense melt (up to 16 mm day?1) on slopes with limited soil thawing combined with large pre‐melt storage in surface depressions to produce high flows composed primarily of meltwater (78% of the 0·29 m3 s?1 peak discharge) routed over wetland surfaces and through permeable upper peat layers. Melt intensity was less in the subsequent year (maximum of 10 mm day?1) and active layer development was relatively greater (0·2 m deeper at the end of spring melt), resulting in less slope runoff. Coupling of reduced slope contributions with lower storage levels in basin wetlands led to relatively subdued streamflows dominated by older water (73% of the 0·09 m3 s?1 peak discharge) routed through less‐permeable deeper peat layers and mineral soil. Interannual differences in runoff conditions provide important insight for the development of distributed hydrological models for boreal forest basins and into potential influences on biogeochemical cycling in this landscape under a warming climate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
For interrill erosion, raindrop‐induced detachment and transport of sediment by rainfall‐disturbed sheet flow are the predominant processes, while detachment by sheet flow and transport by raindrop impact are negligible. In general, interrill subprocesses are inter‐actively affected by rainfall, soil and surface properties. The objective of this work was to study the relationships among interrill runoff and sediment loss and some selected para‐meters, for cultivated soils in central Greece, and also the development of a formula for predicting single storm sediment delivery. Runoff and soil loss measurement field experiments have been conducted for a 3·5‐year period, under natural storms. The soils studied were developed on Tertiary calcareous materials and Quaternary alluvial deposits and were textured from sandy loam to clay. The second group of soils showed greater susceptibility to sealing and erosion than the first group. Single storm sediment loss was mainly affected by rain and runoff erosivity, being significantly correlated with rain kinetic energy (r = 0·64***), its maximum 30‐minute intensity (r = 0·64***) and runoff amount (r = 0·56***). Runoff had the greatest correlation with rain kinetic energy (r = 0·64***). A complementary effect on soil loss was detected between rain kinetic energy and its maximum 30‐minute intensity. The same was true for rain kinetic energy and topsoil aggregate instability, on surface seal formation and thus on infiltration characteristics and overland flow rate. Empirical analysis showed that the following formula can be used for the successful prediction of sediment delivery (Di): Di = 0·638βEI30tan(θ) (R2 = 0·893***), where β is a topsoil aggregate instability index, E the rain kinetic energy, I30 the maximum 30‐minute rain intensity and θ the slope angle. It describes soil erodibility using a topsoil aggregate instability index, which can be determined easily by a simple laboratory technique, and runoff through the product of this index and rain kinetic energy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Rates of splash detachment from a sandy soil of the Cottenham Series, subjected to a five-minute design storm of 50 mm/h with a kinetic energy of 127 J/m2 and a median volume drop size of 3·2 mm supplied from a rotating-disc rainfall simulator, are determined without a plant cover and with the cover of a single Brussels sprouts plant. Measurements are made at regular intervals throughout the growing season. Plant canopies of 10 to 25 per cent result in reductions of 10 to 25 per cent in rainfall volume and 10 to 81 per cent in rainfall energy. The volume and energy of the rain beneath the plant are significantly (P < 0·05) correlated with its number of leaves (r = ?0·84 and ?0·92 respectively for n = 49). No reduction was observed in the rate of splash detachment which averages 1·2 kg/m2 for the design storm with and without the plant. The detachment rate was found rather surprisingly to be inversely related to the energy of the rainfall under the plant and positively related to the number of leaves. As the number of leaves increases, so does the detachment rate per unit of rainfall energy.  相似文献   

15.
Simulations using a mechanistic model of raindrop driven erosion in rain‐impacted flow were performed with particles travelling by suspension, raindrop induced saltation and flow driven saltation. Results generated by both a high intensity storm, and a less intense one, indicate that, because of the effect of flow depth on the delivery of raindrop energy to the bed, there is a decline in sediment concentration, and hence soil loss per unit area, with slope length when particles are transported by raindrop induced saltation. However, that decline is reversed when the critical velocities that lead to flow driven saltation are episodically exceeded during an event. The simulations were performed on smooth surfaces and a single drop size but the general relationships are likely to apply for rain made up of a wide range of drop size. Although runoff is not always produced uniformly, as a general rule, flow velocities increase with slope length so that, typically, the distance particles travel before being discharged during an event increase with slope length. The effect of slope length on soil loss per unit area is often considered to vary with slope length to a power greater than zero and less that 1·0. The simulations show that effect of slope length on sediment discharge is highly dependent on the variations in runoff response resulting from variations in rainfall duration‐intensity‐infiltration conditions rather than plot length per se. Consequently, predicting soil loss per unit area using slope length with positive powers close to zero when sheet erosion occurs may not be as effective as commonly expected. Erosion by rain‐impacted flow is a complex process and that complexity needs to be considered when analysing the results of experiments associated with rain‐impacted flow under both natural and artificial conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Ten representative research sites were selected in eastern Spain to assess soil erosion rates and processes in new citrus orchards on sloping soils. The experimental plots were located at representatives sites on limestone, in areas with 498 to 715 mm year?1 mean annual rainfall, north‐facing slopes, herbicide treated, and new (less than 3 years old) plantations. Ten rainfall simulation experiments (1 h at 55 mm h?1 on 0·25 m2 plots) were carried out at each of the 10 selected study sites to determine the interill soil erosion and runoff rates. The 100 rainfall simulation tests (10 × 10 m) showed that ponding and runoff occurred in all the plots, and quickly: 121 and 195 s, respectively, following rainfall initiation. Runoff discharge was one third of the rainfall, and sediment concentration reached 10·4 g L?1. The soil erosion rates were 2·4 Mg ha?1 h?1 under 5‐year return period rainfall thunderstorms. These are among the highest soil erosion rates measured in the western Mediterranean basin, similar to badland, mine spoil and road embankment land surfaces. The positive relationship between runoff discharge and sediment concentration (r2 = 0·83) shows that the sediment availability is very high. Soil erosion rates on new citrus orchards growing on sloped soils are neither tolerable nor sustainable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Unpaved roads are believed to be the primary source of terrigenous sediments being delivered to marine ecosystems around the island of St John in the eastern Caribbean. The objectives of this study were to: (1) measure runoff and suspended sediment yields from a road segment; (2) develop and test two event‐based runoff and sediment prediction models; and (3) compare the predicted sediment yields against measured values from an empirical road erosion model and from a sediment trap. The runoff models use the Green–Ampt infiltration equation to predict excess precipitation and then use either an empirically derived unit hydrograph or a kinematic wave to generate runoff hydrographs. Precipitation, runoff, and suspended sediment data were collected from a 230 m long, mostly unpaved road segment over an 8‐month period. Only 3–5 mm of rainfall was sufficient to initiate runoff from the road surface. Both models simulated similar hydrographs. Model performance was poor for storms with less than 1 cm of rainfall, but improved for larger events. The largest source of error was the inability to predict initial infiltration rates. The two runoff models were coupled with empirical sediment rating curves, and the predicted sediment yields were approximately 0·11 kg per square meter of road surface per centimetre of precipitation. The sediment trap data indicated a road erosion rate of 0·27 kg m?2 cm?1. The difference in sediment production between these two methods can be attributed to the fact that the suspended sediment samples were predominantly sand and silt, whereas the sediment trap yielded mostly sand and gravel. The combination of these data sets yields a road surface erosion rate of 0·31 kg m?2 cm?1, or approximately 36 kg m?2 year?1. This is four orders of magnitude higher than the measured erosion rate from undisturbed hillslopes. The results confirm the importance of unpaved roads in altering runoff and erosion rates in a tropical setting, provide insights into the controlling processes, and provide guidance for predicting runoff and sediment yields at the road‐segment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Although obvious in the field, the impact of road building on hydrology and gullying in Ethiopia has rarely been analysed. This study investigates how road building in the Ethiopian Highlands affects the gully erosion risk. The road between Makalle and Adwa in the highlands of Tigray (northern Ethiopia), built in 1993–1994, caused gullying at most of the culverts and other road drains. While damage by runoff to the road itself remains limited, off‐site effects are very important. Since the building of the road, nine new gullies were created immediately downslope of the studied road segment (6·5 km long) and seven other gullies at a distance between 100 and 500 m more downslope. The road induces a concentration of surface runoff, a diversion of concentrated runoff to other catchments, and an increase in catchment size, which are the main causes for gully development after road building. Topographic thresholds for gully formation are determined in terms of slope gradient of the soil surface at the gully head and catchment area. The influence of road building on both the variation of these thresholds and the modification of the drainage pattern is analysed. The slope gradient of the soil surface at the gully heads which were induced by the road varies between 0·06 and 0·42 m m?1 (average 0·15 m m?1), whereas gully heads without influence of the road have slope gradients between 0·09 and 0·52 m m?1 (average 0·25 m m?1). Road building disturbed the equilibrium in the study area but the lowering of topographic threshold values for gullying is not statistically significant. Increased gully erosion after road building has caused the loss of fertile soil and crop yield, a decrease of land holding size, and the creation of obstacles for tillage operations. Hence roads should be designed in a way that keeps runoff interception, concentration and deviation minimal. Techniques must be used to spread concentrated runoff in space and time and to increase its infiltration instead of directing it straight onto unprotected slopes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
In conjunction with available climate data, surface runoff is investigated at 12 gauges in the Quesnel watershed of British Columbia to develop its long‐term (1926–2004) hydroclimatology. At Quesnel itself, annual mean values of air temperature, precipitation and runoff are 4·6 °C, 517 and 648 mm, respectively. Climate data reveal increases in precipitation, no significant trend in mean annual air temperature, but an increasing trend in mean minimum temperatures that is greatest in winter. There is some evidence of decreases in winter snow depth. On the water year scale (October–September), a strong positive correlation is found between discharge and precipitation (r = 0·70, p < 0·01) and a weak negative correlation is found between precipitation and temperature (r = ? 0·36, p < 0·01). Long‐term trends using the Mann‐Kendall test indicate increasing annual discharge amounts that vary from 8 to 14% (12% for the Quesnel River, p = 0·03), and also a tendency toward an earlier spring freshet. River runoff increases at a rate of 1·26 mm yr?1 m?1 of elevation from west to east along the strong elevation gradient in the basin. Discharge, temperature and precipitation are correlated with the large‐scale climate indices of the Pacific Decadal Oscillation (PDO) and El‐Niño Southern Oscillation (ENSO). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
David Dunkerley 《水文研究》2008,22(22):4415-4435
In hydrology and geomorphology, less attention has been paid to rain event properties such as duration, mean and peak rain rate than to rain properties such as drop size or kinetic energy. A literature review shows a lack of correspondence between natural and simulated rain events. For example, 26 studies that report event statistics from substantial records of natural rain reveal a mean rain rate of just 3·47 mm h?1 (s.d. 2·38 mm h?1). In 17 comparable studies dealing with extreme rain rates including events in cyclonic, tropical convective, and typhoon conditions, a mean maximum rain rate (either hourly or mean event rain rate) of 86·3 mm h?1 (s.d. 57·7 mm h?1) is demonstrated. However, 49 studies using rainfall simulation involve a mean maximum rain rate of 103·1 mm h?1 (s.d. 81·3 mm h?1), often sustained for > 1 h, exceeding even than of extreme rain events, and nearly 30 times the mean rain rate in ordinary, non‐exceptional, rain events. Thus rainfall simulation is often biased toward high rain rates, and many of the rates employed (in several instances exceeding 150 mm h?1) appear to have limited relevance to ordinary field conditions. Generally, simulations should resemble natural rain events in each study region. Attention is also drawn to the raindrop arrival rate at the surface. In natural rain, this is known to vary from < 100 m?2 s?1 to > 5000 m?2 s?1. Arrival rate may need to be added to the list of parameters that must be reproduced realistically in rainfall simulation studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号