首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Gully and badland erosion constitute important land‐degradation processes with severe on‐site and off‐site effects above all in sedimentary deposits and alluvial soils of the arid and semi‐arid regions. Agricultural use of the affected land is impeded both by the irreversible loss of topsoil and the morphological dissection of the terrain. In various badland regions around the world, a solution to the latter problem is attempted by infilling of gullies and levelling of badland topography in order restore a morphology suitable for agricultural cultivation. Gully and badland levelling for agricultural reclamation has been conducted for decades in the large ravine lands of India. This study aims at analysing the distribution and dynamics of land levelling within the Chambal badlands in Morena district, Madhya Pradesh, between 1971 and 2015. Using high to medium resolution satellite images from the Corona, Landsat, Aster and RapidEye missions and a multi‐temporal classification approach, we have mapped and quantified areas that were newly levelled within eight observation periods. We analysed the spatial relation of levelled land to several physical and socio‐economic factors that potentially influence the choice of reclamation site by employing geographic information system (GIS) analysis methods and results from focus‐group discussions in selected villages. Results show that nearly 38 km2 or 23% of the badlands in the study area have been levelled within 45 years. The levelling rate generally increases during the observation period, but the annual variability is high. We have found spatial relationships to badland morphology, vicinity of existing cropland and proximity to villages and drainage lines. From a socio‐economic point of view, availability of financial and technical means, access rights to the badland and ownership issues play an important role. Considering studies on soil degradation caused by levelling of badlands in other regions, the sustainability of the newly reclaimed fields in the Chambal badlands is questionable. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
This article discusses the existing problems associated with reclaimed land in the area of the Antaibao Opencast Coal Mine, which is located in the semi‐arid region of northwest China. The following eight indicators of the suitability of the reclaimed land were developed based on the theory of soil genesis and landscape ecology: the thickness of the effective soil layer, composition of the soil surface, vegetation index, types of covering vegetation, slope of the terrain, time of reclamation, area of the evaluation unit, and the shape index of the evaluation unit. The suitability evaluation indexes of the reclaimed land were determined using the 3S technology and fuzzy evaluation methods, which revealed that the suitability of the reclaimed land in the study area could be divided into six grades and two categories, land suitable for farming, and land suitable for trees or grass. The suitability evaluation indicators and evaluation methods developed to evaluate reclaimed land in this study will be beneficial to the large‐scale rapid monitoring and the effective management of reclaimed land in the opencast mine area.  相似文献   

3.
Evaluation of historic range of variability (HRV) is an effective tool for determining baseline conditions and providing context to researchers and land managers seeking to understand and enhance ecological function. Incorporating HRV into restoration planning acknowledges the dynamic quality of landscapes by allowing variability and disturbance at reasonable levels and permitting riverine landscapes to adapt to the physical processes of their watersheds. HRV analysis therefore represents a practical (though under‐utilized) method for quantifying process‐based restoration goals. We investigated HRV of aggradational processes in the subalpine Lulu City wetland in Rocky Mountain National Park to understand the impacts of two centuries of altered land use and to guide restoration planning following a human‐caused debris flow in 2003 that deposited up to 1 m of sand and gravel in the wetland. Historic aerial photograph interpretation, ground penetrating radar surveys, and trenching, coring, and radiocarbon dating of valley‐bottom sediments were used to map sediment deposits, quantify aggradation rates, and identify processes (in‐channel and overbank fluvial deposition, direct hillslope input, beaver pond filling, peat accumulation) creating alluvial fill within the wetland. Results indicate (i) the Lulu City wetland has been aggrading for several millennia, (ii) the aggradation rate of the past one to two centuries is approximately six times higher than long‐term pre‐settlement averages, (iii) during geomorphically active periods, short‐term aggradation rates during the pre‐settlement period were probably much higher than the long‐term average rate, and (iv) the processes of aggradation during the last two centuries are the same as historic processes of aggradation. Understanding the HRV of aggradation rates and processes can constrain management and restoration scenarios by quantifying the range of disturbance from which a landscape can recover without active restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Relationships between the surface area and age of alluvial deposits were used to estimate the residence time of alluvium in the 2205 km2 Waipaoa River basin, New Zealand. The contemporary Waipaoa River is an efficient transporter of sediment to the continental shelf, but the basin has been characterized by rapid channel and valley aggradation in the historic period, and by extensive mid‐ to late Holocene alluvial storage in the lower reaches. The area‐weighted mean age of alluvial deposits in the lower part of the river basin is ~4400 yr. These deposits comprise terrace remnants isolated by downcutting, and Holocene to Recent sediments that are potentially remobilizable by the modern river. Even though the amount of storage is small relative to downstream transport, the majority of the potentially remobilizable alluvium is likely to remain in storage for >100 yr, and its half‐life (time for 50 per cent removal) is >2000 yr. Within the confines of the flfloodplain, the apparent ‘loss’ of older deposits is due primarily to burial, but losses of the most recent deposits are due almost entirely to remobilization (30–40 per cent), with the remainder preserved in the alluvial record for at least 104 yr. Most of this sediment is likely to remain in storage until there is a shift to a degradational state. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates the interplay of the hydrogeological characteristics, soil properties and recent land reclamation projects on the distribution of waterlogging and salinization within the Farafra Oasis. The multi‐temporal remote sensing data and field observations show that new reclaimed areas have been recently cultivated in distant areas from the old agricultural land. These new cultivations have developed widespread waterlogging, seepage channels and soil salinization. Analyses of the Shuttle Radar Topography Mission digital elevation model (DEM) showed that both old and new agricultural areas are located within same closed drainage basin. The fluvial channels of these catchments, which were developed during wet climatic pluvial, have largely been obliterated by the prevailing aridity and often buried under aeolian deposits. However, the new cultivations have been developed on the fingertips of these fluvial channels, while the old fields occupy the low‐level playas. The soil of the new cultivated areas is mainly lithic with a high calcium carbonate content, thus limiting the downward percolation of excess irrigation water and therefore developing perched water table and seepage through the palaeo‐channels. The automatically extracted drainage networks from DEM resemble fluvial patterns and coincide with the seepage channels slowly heading toward old cultivation. The inactive alluvial channels and landforms have to be considered when planning for new cultivation in dryland catchments to better control waterlogging and salinization hazard. It is highly recommended that newly developed seepage channels have to be detected and intercepted before reaching old agriculture areas. Therefore, the ‘dry‐drainage’ concept can be implemented as the seepage water can be conveyed into nearby playas reserved for evaporation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Major rivers have traditionally been linked with important human settlements throughout history. The growth of cities over recent river deposits makes necessary the use of multidisciplinary approaches to characterize the evolution of drainage networks in urbanized areas. Since under‐consolidated fluvial sediments are especially sensitive to compaction, their spatial distribution, thickness, and mechanical behavior must be studied. Here, we report on subsidence in the city of Seville (Southern Spain) between 2003 and 2010, through the analysis of the results obtained with the Multi‐Temporal InSAR (MT‐InSAR) technique. In addition, the temporal evolution of the subsidence is correlated with the rainfall, the river water column and the piezometric level. Finally, we characterize the geotechnical parameters of the fluvial sediments and calculate the theoretical settlement in the most representative sectors. Deformation maps clearly indicate that the spatial extent of subsidence is controlled by the distribution of under‐consolidated fine‐grained fluvial sediments at heights comprised in the range of river level variation. This is clearly evident at the western margin of the river and the surroundings of its tributaries, and differs from rainfall results as consequence of the anthropic regulation of the river. On the other hand, this influence is not detected at the eastern margin due to the shallow presence of coarse‐grain consolidated sediments of different terrace levels. The derived results prove valuable for implementing urban planning strategies, and the InSAR technique can therefore be considered as a complementary tool to help unravel the subsidence tendency of cities located over under‐consolidated fluvial deposits. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Land reclamation may have a significant influence on groundwater regimes. Analytical solutions have been developed in the past to study the impact of land reclamation on a steady‐state groundwater flow and transient flow in fill materials, assuming that the reclamation site consists of a single zone of uniform hydraulic parameters. In this paper, we derive analytical solutions to describe the transient water table change in response to multi‐stage land reclamation where the fill material is uniform in each stage but the hydraulic conductivity of the fill material varies from stage to stage. By introducing the method of separation of variables, we develop a transient analytical solution to study the impact of land reclamation consisting of fill material with different hydraulic properties on groundwater dynamics. The results show that the water table first increases significantly into the reclaimed zone following the fill material deposition, and then the increase gradually propagates into the original aquifer. The change of water table in the original aquifer mainly depends on the value of hydraulic conductivity of the fill materials. Examples in this paper illustrate how the aquifer system experiences a long time unsteady‐state flow as a result of the reclamation, and it takes at least tens of years for the system to approach a new equilibrium. It is suggested that for a large‐scale reclamation project, the response of the groundwater regime to reclamation should be carefully studied. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Land reclamation has become one of the great concerns of many coastal states for its serious environmental and ecological effects. User charge is an effective market-based approach for regulating land reclamation. The user change should be designed to reflect the full effect of converting sea to land to ensure sustainable use of marine resources. In this paper, we present an ecological-economic framework to estimate the user charge that covers both the ecological damages and the rent associated with the reclaimed land. We apply the framework to Xiamen’s West Sea. Results of the case study suggest that the rents of reclaimed land for industrial and commercial uses are 49 yuan/m2 and 1,066–2,704 yuan/m2, respectively. The unit value of ecological damages of land reclamation is 605 yuan/m2. The present user charge is too low to regulate excessive land reclamation. The user charge for land reclamation in the study area should be modified to 653 yuan/m2 for industrial uses and 35–40% of adjacent land prices for commercial uses.  相似文献   

9.
The application of interferometric synthetic aperture radar (InSAR) has been increasingly used to improve capabilities to model land subsidence in hydrogeologic studies. A number of investigations over the last decade show how spatially detailed time‐lapse images of ground displacements could be utilized to advance our understanding for better predictions. In this work, we use simulated land subsidences as observed measurements, mimicking InSAR data to inversely infer inelastic specific storage in a stochastic framework. The inelastic specific storage is assumed as a random variable and modeled using a geostatistical method such that the detailed variations in space could be represented and also that the uncertainties of both characterization of specific storage and prediction of land subsidence can be assessed. The ensemble Kalman filter (EnKF), a real‐time data assimilation algorithm, is used to inversely calibrate a land subsidence model by matching simulated subsidences with InSAR data. The performance of the EnKF is demonstrated in a synthetic example in which simulated surface deformations using a reference field are assumed as InSAR data for inverse modeling. The results indicate: (1) the EnKF can be used successfully to calibrate a land subsidence model with InSAR data; the estimation of inelastic specific storage is improved, and uncertainty of prediction is reduced, when all the data are accounted for; and (2) if the same ensemble is used to estimate Kalman gain, the analysis errors could cause filter divergence; thus, it is essential to include localization in the EnKF for InSAR data assimilation.  相似文献   

10.
Evidence of ancient liquefaction-in duced features is presented in the area of the 2003 Zemmouri earthquake (M w 6.8). This earthquake was related to an offshore unknown 50-km long fault. A 0.55-m coseismic coastal uplift was generated and extensive liquefaction has been induced in the most susceptible area which correspond to the seaside and along the hydrographic network, mainly the Sebaou and Isser valley rivers. Field investigations allowed us to identify past liquefaction traces in the Quaternary deposits. The observed features are represented by sand dikes, sills, and sand vents as well as well-preserved sand boiled volcanoes. In this work, we also describe the alluvial environment, the hosted localized stratigraphic layer, the morphology and the geometry of the observed features, as well as the observed deformation (settlement) of the hosted layers that are among characteristics of the seismically induced features as described in worldwide examples. Our observations represent a step towards paleoseismological studies in the region knowing that the May 21st 2003 Zemmouri earthquake is produced by an offshore fault where a direct study of the seismogenic fault is inaccessible.  相似文献   

11.
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid‐pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR‐derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.  相似文献   

12.
广东地区河流阶地和冲积扇沉积物中砂岩砾石风化晕随时间增厚。风化晕生长速度呈指数衰减,并拟合于下列公式:T 1485D4.13这里T=时间,以年表示,D=沉积物表部约50块砾石风化晕厚度的加权平均值,以毫米表示。利用风化晕厚度确定出广东地区河流第一和第二级阶地分别为1000—13300年和8600—26500年,肇庆盆地北部山前地带第Ⅰ和第Ⅱ级冲积扇分别为51500年和24400年。同时,在构造地貌变形分析的基础上,估算出本区三条主要北东向断裂带在晚更新世—中全新世的垂直断层作用速度为0.6—1.6毫米/年,中全新世甚或晚更新世晚期以来的活动速度极小  相似文献   

13.
Lithalsas of the Great Slave Lowland, Northwest Territories, occur within fine‐grained glaciolacustrine, lacustrine, and alluvial deposits. Detailed investigations of a lithalsa revealed that it is composed of ice‐rich sediments with ice lenses up to 0.2 m thick below 4 m depth. The observed ice accounted for about 2 m of the 4 m between the top of the lithalsa and adjacent terrain. The ice is isotopically similar to modern surface water, but enriched in δ18O relative to local precipitation. Total soluble cation concentrations are low in the basal, Shield‐derived and unweathered glaciolacustrine sediments of the lithalsa. Higher concentrations in the overlying Holocene‐aged lacustrine and alluvial deposits may be due to greater ion availability in Holocene surface waters. Increasing Cl and Na+ concentrations in clays at depth likely relate to exclusion and migration of these dissolved ions in pore water during ice lens formation though total soluble cations remain comparatively low. The lithalsa developed 700 to 300 cal yr BP. A conceptual model of lithalsa formation and landscape evolution illustrates that this feature and more than 1800 other lithalsas in the region have developed in association with Holocene terrestrial emergence following lake‐level recession. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
The daily GPS height series of the Medicina station were analyzed for the period July 1996–September 2001. The station is located in the middle Po Plain on fine-grained alluvial deposits. A seasonal oscillation in the order of 18 mm (peak-to-peak amplitude) is present in the data. This crustal deformation has been modeled by including variations in the atmospheric, oceanic and hydrologic mass. The vertical positions can also be affected significantly by soil consolidation. Geotechnical parameters derived by in situ tests and laboratory analyses of the clayey soil collected at Medicina allowed the estimate of the soil settlement relevant to the seasonal oscillation of the surficial water table. Thermal expansion of the geodetic monument has to be taken into account in the case of high-precision vertical positioning. In this work models both for the soil consolidation and the thermal expansion effects are provided. The continuous gravity observations collected at Medicina by means of a superconducting gravimeter also exhibit a marked seasonal oscillation, which has been interpreted as the sum of loading and Newtonian attraction effects, as well as of the contribution due to soil consolidation. Especially the study concerning the soil consolidation effect has allowed a better insight on the seasonal vertical movements occurring at the Medicina station by providing quantitative information on soil behavior due to change of effective pressures. The results can be applied to those stations characterized by similar fine-grained soils and surficial hydrogeology.  相似文献   

15.
The application of geomorphic principles to land reclamation after surface mining has been reported in the literature since the mid‐1990s, mostly from Australia, Canada and the USA. This paper discusses the reclamation problems of contour mining and quarries on slopes, where steep gradients are prone to both mass movement and water erosion. To address these problems simultaneously, a geomorphic model for reclaiming surface mined slopes is described. Called the ‘highwall–trench–concave slope’ model, it was first applied in the 1995 reclamation of a quarry on a slope (La Revilla) in Central Spain. The geomorphic model does not reproduce the original topography, but has two very different sectors and objectives: (i) the highwall–trench sector allows the former quarry face to evolve naturally by erosion, accommodating fallen debris by means of a trench constructed at the toe of the highwall; (ii) the concave‐slope base sector, mimicking the landforms of the surrounding undisturbed landscape, promotes soil formation and the establishment of self‐sustaining, functional ecosystems in the area protected from sedimentation by the trench. The model improves upon simple topographic reconstruction, because it rebuilds the surficial geology architecture and facilitates re‐establishment of equilibrium slopes through the management and control of geomorphic processes. Thirteen years of monitoring of the geomorphic and edaphic evolution of La Revilla reclaimed quarry confirms that the area is functioning as intended: the highwall is backwasting and material is accumulating at the trench, permitting the recovery of soils and vegetation on the concave slope. However, the trench is filling faster than planned, which may lead to run‐off and sedimentation on the concave slope once the trench is full. The lesson learned for other scenarios is that the model works well in a two‐dimensional scheme, but requires a three‐dimensional drainage management, breaking the reclaimed area into several watersheds with stream channels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 μg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers.  相似文献   

17.
Guo H  Jiao JJ 《Ground water》2007,45(3):362-367
Land reclamation in coastal areas may have a significant effect on local ground water systems. Steady-state analytic solutions based on Dupuit and Ghyben-Herzberg assumptions are derived to evaluate this effect. Two situations are considered, both with ground water flow resulting from precipitation recharge: the coastal aquifer of an extensive landmass and an island. The results show that after reclamation, the water table rises and the salt water-fresh water interface moves seaward. The degree of these changes depends on the extent of reclamation and the hydraulic conductivity of the fill material. For the island situation, the reclamation displaces the ground water divide and changes the ground water conditions in the entire island. An unintended advantage of the reclamation is an increase of fresh ground water resource because the reclaimed land can be an additional aquifer and rain recharge takes place over a larger area.  相似文献   

18.
土石坝(超)深厚覆盖层地基中的深埋细粒土抗地震残余变形能力较差,尤其是在土层厚度较大时,覆盖层地基连同坝体在强震作用下可能会产生较大的地震沉陷。针对我国西部某大型土石坝工程,对超深厚覆盖层地基中深埋粉砂层土的地震残余变形特性进行三轴试验研究。研究表明:试验土料级配曲线与相应土层各钻孔平均级配曲线很接近,试验土料的颗粒级配对实际土层的颗粒组成特性具有代表性;试验土料的地震残余变形特性主要受土体密度、固结条件和围压力条件等控制,尤其是固结比对土体地震残余变形特性影响较大;各因素对土体残余体积变形特性和轴向变形特性的影响规律有所差异。  相似文献   

19.
为克服InSAR观测汶川地震同震形变场的邻轨不连续问题,提出联合GPS观测值与邻轨平滑约束的同震位移校正方法,采用GPS观测形变去除PALSAR轨道误差引入的残留平地相位,基于形变平滑条件校正邻轨干涉相位的不连续性.ALOS/PALSAR干涉处理结果表明,校正后同震形变场的准确度与平滑性得以显著提高,InSAR高相干点残差达3.6 cm,校正后精度提高约60%,低相干点精度提高约40%,校正后形变场的邻接平滑因子标准差减小约33%,验证了轨道误差校正与邻轨平滑约束方法的准确性与可靠性.进一步基于弹性半空间位错模型的断层滑移反演结果表明,断层滑移主要分布于映秀、北川和青川地区,集中于地壳深度0~16 km范围,最大滑动量(位于北川县城)约为9.0 m,GPS反演模型残差为5.5 cm,InSAR反演模型残差达9.2 cm,InSAR反演精度约有30%的显著提高,由模型反演计算得到的地震矩为8.0469×1020 N·m.  相似文献   

20.
River basins in south‐western USA are some of the most extensively studied arid land fluvial systems in the world. Since the early 1960s their hydro‐climatic histories have been reconstructed from the analysis of alluvial cut‐and‐fill cycles, while from the late 1970s there have been investigations of slackwater deposits and palaeostage indicators for large floods in stable‐boundary bedrock reaches. However, no studies have regionally integrated Holocene fluvial histories from these two different types of fluvial environments. The current study combines the alluvial archive with flood records from bedrock reaches to generate a probability‐based 12,000 year record of flooding in south‐western USA. Using more than 700 14C‐dated fluvial units, the analysis produces a high resolution (centennial) flood record. Seven episodes of increased flooding occurred at 11,250–10,400, 8800–8350, 8230–7600, 6700–5700, 5600–4820, 4550–3320 and 2000–0 cal. BP. Bedrock reaches are found to record more frequent floods during the middle to late Holocene, while in alluvial rivers more flood units are dated to the early and middle Holocene. These differences are primarily the result of selective preservation with alluvial reaches tending to erode during periods characterised by very large floods. Episodes of major Holocene flooding recorded in slackwater deposits within bedrock systems correspond with periods of increased precipitation in the region and lower temperatures. In contrast, within alluvial rivers above‐average flooding probabilities, as well as regionally extensive channel entrenchment episodes, match with reduced annual precipitation and lower temperatures. The results of this study clearly demonstrate the value of the Holocene fluvial archive for reconstructing regional, short‐term hydro‐climatic change in south‐western USA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号