首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The long-term variation of the semiannual amplitude in the geomagnetic activity index aa is analyzed with the purpose of contributing to the understanding of solar variability, directly linked to geomagnetic variability. The time series of the semiannual oscillation amplitude, obtained through a wavelet analysis of the daily aa series, presents a long-term variation similar to that shown by solar and geomagnetic indices, like aa itself or Dst. However, the maximum in the semiannual amplitude series occurs around 1947, almost 10 years before it occurs in solar and geomagnetic indices time series. The phase of the semiannual oscillation fluctuates around the values predicted by the equinoctial and Russell–McPherron models, with a predominance of the equinoctial mechanism during the period of maximum semiannual amplitude. A possible source of changes in the equinoctial mechanism would be the secular variation of the Earth's dipole tilt. But, since it does not follow the semiannual amplitude trend, at first sight, it seems not to be responsible for the equinoctial predominance around 1947. The analysis of quiet and disturbed days separately indicates that only disturbed days present the semiannual annual amplitude maximum around 1947, so the 10 year time shift could be due to the mechanism responsible for the semiannual variation in geomagnetically active periods.  相似文献   

2.
利用1988~1999年欧洲非相干散射EISCAT(European Incoherent Scatter)雷达观测数据,对不同太阳活动周相、不同季节的极光椭圆区电离层F区电子密度进行统计分析,研究其气候学特征,并与IRI 2001模式比较.EISCAT观测到的电子密度显示出显著的太阳活动高年“冬季异常”和太阳活动低年半年变化等现象.EISCAT实测电子密度随时间和高度的平均二维分布和500 km高度以下总电子含量TEC,从总体来看与IRI 2001模式预测结果符合较好.但高年在TEC达到最大值前后,IRI 2001模式预测的电子密度高度剖面与EISCAT观测结果有显著差别:F2峰以上IRI 2001模式预测的电子密度过大,造成TEC明显高于雷达观测值.另外,在太阳活动下降相,EISCAT观测显示出明显的半年周期季节变化特征,但IRI 2001模式未能预测出此下降相季节变化.  相似文献   

3.
In this paper, globally-averaged, thermospheric total mass density, derived from the orbits of ~5000 objects at 250, 400, and 550 km that were tracked from 1967 to 2006, has been used to quantitatively study the annual asymmetry of thermospheric mass density and its mechanism(s). The results show that thermospheric mass density had a significant annual asymmetry, which changed from year to year. The annual asymmetry at the three altitudes varied synchronously and its absolute value increased with altitudes. The results suggest that there is an annual asymmetry in solar EUV radiation that is caused by the difference in the Sun-Earth distance between the two solstices and the random variation of solar activity within a year. This change in radiation results in an annual change in the thermospheric temperature and thus the scale height of the neutral gas, and is the main cause of the annual asymmetry of thermospheric mass density. The annual asymmetry of mass density increases with altitude because of the accumulating effect of the changes in neutral temperature and scale height in the vertical direction.  相似文献   

4.
The paper presents data on flux variations of ionizing EUV radiation for wavelengths shorter than 130 nm and in L-alpha hydrogen line on the basis of measurements performed on-board a Russian Earth-orbiting and interplanetary spacecrafts in the period since 1978 to 1997. These data were received by using common heritage instrumentation installed on four PROGNOZ satellites, INTERBALL-1, PHOBOS, and the geosynchronous meteorological satellite ELECTRO. Though the time series of observations is not continuous, it gives a possibility to estimate flux variations in certain periods of time and during 11–year cycle. During quiet periods of solar activity (except for flares) a level of diurnal variations is rather low, it being equal to about 3%. Radiation changes in L-alpha line from maximum to minimum in an 11–year cycle of solar activity achieves 200% and increases in the range of short waves. Data measured onboard the Russian satellites are compared with data obtained by Solar Mesospheric Explorer.  相似文献   

5.
太阳辐射是电离层的电离源,强烈地调制电离层的变化.探索不同太阳辐射水平下的电离层状态,有助于认识电离层演变及其内在的基本物理过程.太阳活动在2008—2009年处于有记录以来的极低水平,研究电离层在此期间的变化及与其它太阳活动低年的差异是一个有益的课题.本文利用位于美洲扇区磁赤道地区Jicamarca台站(12.0°S, 283.2°E; dip 0.28°)测高仪观测的电离层F2层临界频率foF2数据探讨赤道地区foF2的行为.分别对第22/23太阳活动周低年(1996—1997)和第23/24活动周低年(2008—2009)的月中值、季节中值和滑动年均值进行分析,确认相比上一个太阳低年而言,在2008—2009年foF2滑动年均值和不同季节中值在各个地方时均降低,而月中值存在降低和升高.对foF2的时间尺度特性的分析发现,在本太阳周低年foF2长时间尺度分量下降,而短时间尺度分量呈现不一致的变化.我们认为,现有文献报道给出2008—2009年与以往太阳活动低年对比结果不一致有可能归因于所用分析方法关注的时间尺度不相同.  相似文献   

6.
Atmospheric density measurements near 200 km from the Satellite Electrostatic Triaxial Accelerometer (SETA) experiment are analyzed for geomagnetic and solar flux variability effects. Data from the SETA experiment, onboard two satellites, are available for the periods of May to November 1982, and July 1983 to March 1984. The data utilized the span ±79.5° latitude, and are available for both day (1030 LT) and night (2230 LT). Annual and semiannual density variations are removed and regression analyses are performed on the residuals using a series of lagged 3 h Kp indices to determine and remove geomagnetic fluctuations. Densities are found to increase by as much as 134% in response to an increase in the Kp index from 1 to 6. Monthly curves are generated for the Kp regression coefficients to delineate seasonal-latitudinal and day/night dependences, which reflect the effects of mean meridional advection of disturbances from high to low latitudes. Further analyses are performed comparing measured densities with MSISE-90 predictions. Results show that the model is able to capture many of the prominent features, but does not fully predict the level of variability for the individual disturbance periods analyzed. After the geomagnetic effects are removed, the residual densities are interpreted in terms of solar flux variability. The daily-averaged SETA density residuals are strongly correlated with long-term solar flux variability, and exhibit a much greater dependence on the 27-day solar rotation period than MSISE-90 predictions. Variations in residual density of the order of 10–20% occur in association with day-to-day and 27-day solar flux variations. The MSIS model does not accurately predict the magnitude of these short-term density variations in response to solar activity.  相似文献   

7.
Ionospheric data observed in 30 stations located in 3 longitude sectors (East Asia/Australia Sector, Europe/Africa Sector and America/East Pacific Ocean Sector) during 1974–1986 are used to analyse the characteristics of semiannual variation in the peak electron density of F2 layer (NmF2). The results indicate that the semiannual variation of NmF2 mainly presents in daytime. In nighttime, except in the region of geomagnetic equator between the two crests of ionospheric equatorial anomaly, NmF2 has no obvious semiannual variation. In the high latitude region, only in solar maxima years and in daytime, there are obvious semiannual variations of NmF2. The amplitude distribution of the semiannual variation of daytime NmF2 with latitude has a “double-humped structure”, which is very similar to the ionospheric equatorial anomaly. There is asymmetry between the Southern and the Northern Hemispheres of the profile of the amplitude of semiannual variation of NmF2 and longitudinal difference. A new possible mechanism of semiannual variation of NmF2 is put forward in this paper. The semiannual variation of the diurnal tide in the lower thermosphere induces the semiannual variation of the amplitude of the equatorial electrojet. This causes the semiannual variation of the amplitude of ionospheric equatorial anomaly through fountain effect. This process induces the semiannual variation of the low latitude NmF2.  相似文献   

8.
基于AE8电子辐射带模式和各地磁场模式,本文系统分析了地磁场模式、太阳风、地磁扰动、地磁轴指向对静止轨道≥2 MeV高能电子分布的影响以及静止轨道不同经度位置≥2 MeV高能电子分布的差异,并与GOES系列卫星实测结果进行了对比分析.结果表明,AE8+IGRF+T96模式所得静止轨道≥2 MeV高能电子分布结果优于AE8+IGRF+OPQ77模式或AE8+IGRF+T89模式结果,其大部分定性结果与GOES系列卫星观测结果较为一致,AE8+IGRF+T96模式所得静止轨道≥2 MeV高能电子分布与磁壳参量Lm、局地磁场B分别呈较好的负和正相关性.基于AE8+IGRF+T96模式得到在相同太阳风及地磁扰动条件下2010年每分钟静止轨道≥2 MeV高能电子通量分布结果,经分析得到:1年内每个时刻静止轨道上≥2 MeV高能电子通量最大值和最小值比值变化范围为2.50~7.51,变化主周期为1天,每天比值变化量都超过3;1年内静止轨道各经度位置每天内≥2 MeV高能电子通量最大值和最小值比值变化范围为2.98~6.00,比值随着时间和经度位置而变化;1年内同一天静止轨道各经度位置≥2 MeV高能电子日积分通量最大值出现在170°W附近,最小值出现在70°W附近,最大值与最小值的比值分布在1.86~2.13之间.以上所得静止轨道≥2 MeV高能电子分布变化主要来自Lm变化,B/B0的影响小于5%,其中B0为磁力线上磁场最小值.因此,在构建≥2 MeV高能电子分布模式时,需要考虑地磁场结构的影响,特别是Lm参数.  相似文献   

9.
Independent of the possible sources (solar activity, geomagnetic activity, greenhouse effect, etc.) of a global change in the upper atmosphere, it is the sign of a long-term trend of temperature that might reveal the cause of a global change.Long-term change of temperature in the F region of the ionosphere has been studied and is assumed to be expressed in terms of thickness of the bottomside F2 layer characterized by the difference between height of the maximum electron density of the F2 layer hmF2 and altitude of the lower boundary of the F region represented by h′F. Using the difference of two ionospheric parameters has the advantage that it reduces the effect of changes resulting from alteration of equipment and scaling personnel. In this study, in summer only night values of the difference hmF2−h′F and in winter both day and night values have been taken into account considering that h′F might indicate the lower boundary of the F region in these periods. The study of the behaviour of hmF2−h′F taking separately the stations and determining yearly the mean measure (trend) of the variation of hmF2−h′F with solar and geomagnetic activities found that this difference increases significantly with enhanced solar activity, but trends of the solar activity effect exerted on this difference themselves do not practically change with increasing sunspot number. Further, hmF2−h′F decreases only insignificantly with growing geomagnetic activity. Trends of the geomagnetic activity effect related to hmF2−h′F change only insignificantly with increasing Ap; however, trends of the geomagnetic activity effect decreased with increasing latitude.As a result of this investigation it has been found that hmF2−h′F regarded as thickness of the bottomside F2 layer shows an effect of the change of solar activity during the last three solar cycles, indicating temperature change in the upper atmosphere to be expected on the basis of changing solar activity. Furthermore, though a long-term variation of solar activity considering only years around solar activity minima is relatively small, the difference hmF2−h′F indicates a trend opposing the change of solar activity; that is, it decreases slightly during the first three 20, 21, 22 solar cycle minima (1964–1986), but decreases more abruptly according to the change of solar activity towards the minimum of solar cycle 23 (1986–1996), thus also indicating variation of temperature in the F region. However, this variation cannot be explained by the change of solar and geomagnetic activities alone, but assumes some other source (e.g. greenhouse gases) too.  相似文献   

10.
本文研究赤道异常逐日起伏程度的年变化规律,发现它与太阳活动及地磁活动呈微弱的负相关,但却受到QBO的明显调制,QBO东风相起伏加大,QBO西风相起伏减小.这一事实似乎表明,太阳爆发或磁暴不是产生赤道异常逐日起伏的主要原因;而上行行星波的扰动有可能是引起赤道异常逐日起伏的主要原因.  相似文献   

11.
Using observations with the ALOMAR SOUSY radar near Andenes (69.3°N, 16.0°E) from 1994 until 1997 polar mesosphere summer echoes (PMSE) have been investigated in dependence on geomagnetic K indices derived at the Auroral Observatory Tromsø (69.66°N, 18.94°E). During night-time and morning hours a significant correlation between the signal-to-noise ratio (SNR) of the radar results and the geomagnetic K indices could be detected with a maximum correlation near midnight. The correlation becomes markedly smaller in the afternoon and early evening hours with a minimum near 17 UT. This diurnal variation is in reasonable agreement with riometer absorption at Ivalo (68.55°N, 27.28°E) and can be explained by the diurnal variation of ionization due to precipitating high energetic particles. Therefore, a part of the diurnal PMSE variation is caused by this particle precipitation. The variability of the solar EUV variation, however, has no significant influence on the PMSE during the observation period.  相似文献   

12.
NRLMSISE-00大气模型广泛应用于航天器定轨和预测等方面,但存在着较大的误差,尤其是在短期变化方面.为了提高低轨道大气密度短期预报的精度,我们提出了一种基于实测数据对NRLMSISE-00大气模型密度结果进行修正预报的方法:利用GRACE(Gravity Recovery and Climate Experiment)和CHAMP(Challenging Mini-Satellite Payload)卫星2002-2008年大气密度探测数据对NRLMSISE-00模型进行误差分析,获得模型的修正因子,再对模型的大气密度结果进行修正.采用该修正方法对GRACE-A和CHAMP卫星轨道上的大气密度进行3天短期预报试验验证,结果表明可显著提高大气密度的预报精度,在太阳活动低年,修正后的大气密度预报误差比NRLMSISE-00模型误差降低50%以上.  相似文献   

13.
地球空间双星探测计划   总被引:10,自引:2,他引:10       下载免费PDF全文
地球空间双星探测计划包括两颗小卫星,将分别运行于目前国际上地球空间探测卫星尚未覆盖的近地赤道区和近地极区.双星计划的主要科学目标是用高分辨率的仪器在近地空间的主要活动区探测场和粒子的时空变化;研究磁层亚暴、磁暴和磁层粒子暴的触发机制及磁层空间暴对太阳活动和行星际扰动的响应过程;建立地球空间环境的动态模式.为了实现科学目标,赤道卫星和极区卫星上各载有9台探测仪器.赤道卫星的轨道是:近地点550km,远地点60000km,倾角约2.5°;极区卫星轨道是:近地点350km,远地点25000km,倾角约90°左右.为了使双星计划与欧空局ClusterⅡ相配合,赤道卫星计划于2002年12月发射,极区卫星计划于2003年6月发射.双星计划与ClusterⅡ相配合,可形成地球空间6点探测计划,这将成为21世纪初国际上重要的地球空间探测计划.  相似文献   

14.
In order to obtain the observed scale height at high altitude a calculation method has been derived for determining density scale height from the difference between two satellite’s heights. Two balloon satellites, Chinese DQ-1A and DQ-1B, were launched together into a nearly circular orbit at a height near 900 km and they were together in orbit for 190 days. According to the difference of the orbital heights of these two balloon satellites from 19 September 1990 to 9 March 1991, 67 values of density scale height at heights of about 544–877 km were determined. In comparison with CIRA model the results show that: (1) the trend of the variation of the scale height with height is in agreement with CIRA; (2) the determined scale height values present an oscillatory variation with time and height; and (3) the mean of the observed scale height is 3.7% lower than the mean of corresponding values from CIRA-72 and 0.8% lower than CIRA-86.  相似文献   

15.
电离层电场的半年变化对F2区峰值电子浓度的影响   总被引:4,自引:2,他引:2       下载免费PDF全文
利用一个电离层理论模式,模拟了太阳活动低年、地磁宁静情况下,中低纬和赤道地区电离层F2区峰值电子浓度(NmF2)的半年变化规律,重点讨论了电离层电场对NmF2半年变化的影响.模拟结果表明,当输入的电场没有周年和半年变化时,磁赤道地区电离层NmF2本身就具有一定的半年变化特征,而在稍高的纬度上,NmF2半年变化的强度较弱.当输入的电场具有一定的半年变化时,电离层NmF2的半年变化强度有明显的改变,且这种改变随地方时和地磁纬度不同有明显的差别.在地磁赤道附近的电离层赤道槽地区,从上午到午夜的时间内,具有半年变化的电场对电离层NmF2半年变化的强度是减弱的作用,在其他的时间内,电场对电离层NmF2半年变化强度是加强的作用.而在稍高纬度的电离层驼峰地区,情况明显不同.从上午一直到翌日日出前,具有半年变化的电场对电离层NmF2半年变化的幅度都是加强的作用.在其他的时间内,电场对电离层NmF2半年变化的幅度是减弱的作用.同时,研究表明电离层电场对NmF2半年变化的作用和“赤道喷泉”现象强烈相关.  相似文献   

16.
Semiannual and annual variations in the height of the ionospheric F2-peak   总被引:4,自引:0,他引:4  
Ionosonde data from sixteen stations are used to study the semiannual and annual variations in the height of the ionospheric F2-peak, hmF2. The semiannual variation, which peaks shortly after equinox, has an amplitude of about 8 km at an average level of solar activity (10.7 cm flux = 140 units), both at noon and midnight. The annual variation has an amplitude of about 11 km at northern midlatitudes, peaking in early summer; and is larger at southern stations, where it peaks in late summer. Both annual and semiannual amplitudes increase with increasing solar activity by day, but not at night. The semiannual variation in hmF2 is unrelated to the semiannual variation of the peak electron density NmF2, and is not reproduced by the CTIP and TIME-GCM computational models of the quiet-day thermosphere and ionosphere. The semiannual variation in hmF2 is approximately isobaric, in that its amplitude corresponds quite well to the semiannual variation in the height of fixed pressure-levels in the thermosphere, as represented by the MSIS empirical model. The annual variation is not isobaric. The annual mean of hmF2 increases with solar 10.7 cm flux, both by night and by day, on average by about 0.45 km/flux unit, rather smaller than the corresponding increase of height of constant pressure-levels in the MSIS model. The discrepancy may be due to solar-cycle variations of thermospheric winds. Although geomagnetic activity, which affects thermospheric density and temperature and therefore hmF2 also, is greatest at the equinoxes, this seems to account for less than half the semiannual variation of hmF2. The rest may be due to a semiannual variation of tidal and wave energy transmitted to the thermosphere from lower levels in the atmosphere.  相似文献   

17.
An empirical model of total electron content (TEC) for a low-latitude station, Palehua, has been developed using harmonic analysis of TEC data measured at this station during the period 1980–1990; the TEC data were obtained from Faraday rotation measurements of linearly polarised signals transmitted by geostationary satellites. The analysis reveals that monthly mean values of the daily mean and the first four harmonics vary in phase with solar activity and exhibit annual, semi-annual variations and equinoctial asymmetries. A set of 81 coefficients of zero and the first four orders were determined which were found to be sufficient to model the TEC. The model strongly depends on the sunspot number. The harmonic components derived from the 81 coefficients are scaled by this property. The modelled monthly mean TEC values agree quantitatively with the measured data, the maximum deviation being limited to ±15%. The model reasonably reproduces the features observed in the diurnal, seasonal and solar cycle variations of the measured data. The annual variation of observed TEC exhibits opposite equinoctial asymmetries at solar minimum and solar maximum. Also, the mean and first four harmonics show a saturation/decreasing effect when the sunspot number exceeds about 170. The observed features are discussed qualitatively.  相似文献   

18.
Sq等效电流在太阳活动周中的分析研究   总被引:3,自引:3,他引:0       下载免费PDF全文
Sq电流体系的产生与太阳密切相关,太阳的活动情况会对Sq电流体系造成直接的影响.本文应用1996年至2006年(第23太阳周)INTERMAGNET地磁台网以及中国地震局地球物理研究所国家地磁台网中心的全球地磁场观测数据,通过球谐分析的方法建模,对11年期间每月Sq内外源等效电流体系进行分离,分析Sq内外源等效电流在太阳活动周中的变化情况.结果表明,Sq内外源等效电流强度与太阳黑子的变化具有较高的相关性和一致性,内外源等效电流强度在太阳活动高年期间明显大于其在太阳活动的上升年和下降年期间的强度;Sq内外源等效电流焦点的纬度变化与太阳活动没有显著的一致性;Sq内外源等效电流强度的季节效应在太阳活动的高年和低年具有显著的差别,太阳活动高年期间等效电流强度在分点季节最大,而在其他年份南北半球的等效电流强度都是在各自半球的夏季达到最大.  相似文献   

19.
大气阻力引起卫星轨道衰减的数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
本文以德国低轨道卫星CHAMP为例,联合考虑地球扁率和大气阻力摄动的影响,对相应摄动方程进行数值积分,计算轨道根数变化,并进而计算得到卫星空间位置,由此模拟考察大气阻力引起的轨道高度衰减.模拟中使用综合考虑了太阳辐射和磁暴等多种因素影响的最新国际大气标准JB2008模式来计算热层大气密度. 选取CHAMP卫星轨道高度自然衰减(无点火提升卫星高度操作)的2005全年进行模拟;为了考察不同年份阻力系数的可能变化,对2002年1—3月处在较大高度的轨道也进行了模拟.考虑到CHAMP卫星的特殊几何构形及飞行高度的热层温度条件,取阻力系数大于2.8,并在一定范围内变化,以求得模拟与实际轨道衰减符合较好.结果表明,对于2005年,阻力系数为2.91时模拟得到的轨道高度的衰减与实际轨道衰减符合得最好,模拟与实际轨道半长轴全年的标准偏差为81m;在卫星高度稍高的2002年,模拟的最佳阻力系数为3.0;模拟所得最佳阻力系数值比传统使用的值2.2大30%以上.由于在模拟中忽略了高阶保守力分量,所得近/远地点高度没有出现实际轨道所显示的周期性起伏.  相似文献   

20.
行星际扰动和地磁活动对GEO相对论电子影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1988—2010年小时平均的GOES卫星数据,对地球同步轨道(GEO)相对论电子变化进行了统计分析,研究了相对论电子通量(Fe)增强事件的发展过程,探讨了利于相对论电子通量增强的太阳风和地磁活动条件.主要结论如下:(1)GEO相对论电子通量即使是峰值,也具有明显的地方时特性,最大电子通量出现在磁正午时.午/夜电子通量比率随着太阳风速度(Vsw)增加而增大;在Dst-50nT时相对论电子具有规则的地方时变化.在太阳活动下降相,电子通量与各参数的相关性较好,与其相关性最好的Vsw、Kp指数以及三次根号下的太阳风密度(N)分别出现在电子通量前39~57h、57~80h和12~24h.(2)强(日平均电子通量峰值Femax≥104 pfu)相对论电子事件,在距离太阳活动谷年前两年左右和春秋分期间发生率最高,较弱(104Femax≥103 pfu)事件无此特点;大部分强相对论电子事件中,电子通量在磁暴主相开始增加,较弱事件中则在恢复相开始回升.(3)太阳风密度变化对相对论电子事件的发展具有重要指示作用.电子通量在太阳风密度极大值后0~1天达到极小值,太阳风密度极小值后0~2天达到极大值.(4)90%以上相对论电子事件是在磁暴及高速太阳风的条件下发生的,与其伴随的行星际参数和地磁活动指数极值满足以下条件:Vswmax516km/s,Dstmin-31nT,Nmin2.8cm-3,Nmax14.1cm-3,Bzmin-2.9nT,AEmax698nT.(5)磁暴过程中,Dstmin后日平均电子通量大于103 pfu的发生概率为53%左右,强/弱相对论电子事件占总数比例分别为36%/64%左右,磁暴强度对其无影响.磁暴过程中的Vsw、N和AE指数大小对于能否引起相对论电子增强起着指示作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号