首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Revised equations of motion are formulated on more general assumptions than hitherto making allowance for some reflection of sunlight by a dust-particle, and from these the secular rates of change of the orbital elements of the particle are obtained. The equation for the eccentricity yields numerical results for the time taken for given changes in this element to occur. Other elements turn out to be expressible in terms of the eccentricity and thence are effectively also known in terms of the time. More general forms of earlier results are found, and some new mathematical results in the theory of the process are derived. The time of infall to the Sun associated with almost circular initial motion of a particle is calculated, and also the time from an orbit of initially high eccentricity. In this latter case, infall takes place much more rapidly than from a circular orbit of radius comparable with the average distance in the eccentric orbit. The effect on a particle of a long-period comet during a single return is negligible compared with the change in its binding-energy to the Sun that will in general result from planetary action. The possible history of a dust-particle from original capture by the Sun to final infall to the solar surface is briefly considered.  相似文献   

2.
We derive the transformations to convert the state vector in cartesian coordinates into geometric orbital elements (and conversely the geometric elements into the state vector) for a test particle moving around an oblate planet. These transformations arise from the epicyclic theory and are accurate to second order in eccentricity and inclination. This paper is written to be directly used for computational purposes, such as the numerical study of ring dynamics.  相似文献   

3.
A first order analytical approximation of the tesseral harmonic resonance perturbations of the Keplerian elements is presented, and the mean elements (the Keplerian elements with the long period portions averaged out) will also be given in closed form. Finally the results of a numerical test, which compares the analytical solution against a numerical integration of the Lagrange equations of motion, will be summarized.This work was sponsored with the support of the Department of the Air Force under contract F19628-85-C-0002.The views expressed are those of the author and do not reflect the official policy or position of the U.S. Government.  相似文献   

4.
Lunisolar perturbations of an artificial satellite for general terms of the disturbing function were derived by Kaula (1962). However, his formulas use equatorial elements for the Moon and do not give a definite algorithm for computational procedures. As Kozai (1966, 1973) noted, both inclination and node of the Moon's orbit with respect to the equator of the Earth are not simple functions of time, while the same elements with respect to the ecliptic are well approximated by a constant and a linear function of time, respectively. In the present work, we obtain the disturbing function for the Lunar perturbations using ecliptic elements for the Moon and equatorial elements for the satellite. Secular, long-period, and short-period perturbations are then computed, with the expressions kept in closed form in both inclination and eccentricity of the satellite. Alternative expressions for short-period perturbations of high satellites are also given, assuming small values of the eccentricity. The Moon's position is specified by the inclination, node, argument of perigee, true (or mean) longitude, and its radius vector from the center of the Earth. We can then apply the results to numerical integration by using coordinates of the Moon from ephemeris tapes or to analytical representation by using results from lunar theory, with the Moon's motion represented by a precessing and rotating elliptical orbit.  相似文献   

5.
The theory of Burdet's focal elements is outlined. The differential equations are presented, and the initial value problem is described together with the transformation to rectangular coordinates and classical elements. The focal elements are well defined for zero eccentricity and inclination. They can be adopted for the computation of elliptic, parabolic and hyperbolic motion. For the numerical integration of near-geostationary orbits a comparison of the efficiency is made between focal elements, KS theory and rectangular coordinates. For this class of orbits, a higher accuracy has been obtained by integrating elements than integrating rectangular coordinates.  相似文献   

6.
A new theory for the calculation of proper elements, taking into account terms of degree four in the eccentricities and inclinations, and also terms of order two in the mass of Jupiter, has been derived and programmed in a self contained code. It has many advantages with respect to the previous ones. Being fully analytical, it defines an explicit algorithm applicable to any chosen set of orbits. Unlike first order theories, it takes into account the effect of shallow resonances upon the secular frequencies; this effect is quite substantial, e.g. for Themis. Short periodic effects are corrected for by a rigorous procedure. Unlike linear theories, it accounts for the effects of higher degree terms and can thus be applied to asteroids with low to moderate eccentricity and inclination; secular resonances resulting from the combination of up to four secular frequencies can be accounted for. The new theory is self checking : the proper elements being computed with an iterative algorithm, the behaviour of the iteration can be used to define a quality code. The amount of computation required for a single set of osculating elements, although not negligible, is such that the method can be systematically applied on long lists of osculating orbital elements, taken either from catalogues of observed objects or from the output of orbit computations. As a result, this theory has been used to derive proper elements for 4100 numbered asteroids, and to test the accuracy by means of numerical integrations. These results are discussed both from a quantitative point of view, to derive an a posteriori accuracy of the proper elements sets, and from a qualitative one, by comparison with the higher degree secular resonance theory.  相似文献   

7.
In a series of papers, we developed a technique for estimating the inner eccentricity in hierarchical triple systems, with the inner orbit being initially circular. However, for certain combinations of the masses and the orbital elements, the secular part of the solution failed. In this paper, we derive a new solution for the secular part of the inner eccentricity, which corrects the previous weakness. The derivation applies to hierarchical triple systems with coplanar and initially circular orbits. The new formula is tested numerically by integrating the full equations of motion for systems with mass ratios from 10−3 to 103. We also present more numerical results for short-term eccentricity evolution, in order to get a better picture of the behaviour of the inner eccentricity.  相似文献   

8.
Based on Williams' work and rewritten in action angle variables, a method for the calculation of proper elements is here presented. The averaging over the long periodic terms is performed by the semi numerical method developed by Henrard (1990); no series expansion in eccentricity or inclination of the asteroid is used which allows calculating proper elements for highly inclined orbits. Conversely, the theory is truncated at the first degree in the eccentricity and the inclination of the perturbing planets. A few tests about accuracy and consistency are presented.  相似文献   

9.
The problem of computation of elliptic Hansen coefficients and their derivatives is considered for constructing a motion theory of an artificial Earth satellite with large eccentricity. An algorithm for analytical and numerical computation of these coefficients and their derivatives is described. The recurrence relations for derivatives of the first and second order and initial values for recurrences are obtained. As an example, numerical values of some elliptic Hansen coefficients are given for the orbit with eccentricityk=0.74.  相似文献   

10.
This paper provides a method to study the solution of equations for synchronous binary stars with large eccentricity on the main sequence.The theoretical results show that the evolution of the eccentricity is linear with time or follows an exponential form,and the semi-major axis and spin vary with time in an exponential form that are different from the results given in a previous paper.The improved method is applicable in both cases of large eccentricity and small eccentricity.In addition,the number of terms in the expansion of a series with small eccentricity is very long due to the series converging slowly.The advantage of this method is that it is applicable to cases with large eccentricity due to the series converging quickly.This paper chooses the synchronous binary star V1143 Cyg that is on the main sequence and has a large eccentricity(e = 0.54) as an example calculation and gives the numerical results.Lastly,the evolutionary tendency including the evolution of orbit and spin,the time for the speed up of spin,the circularization time,the orbital collapse time and the life time are given in the discussion and conclusion.The results shown in this paper are an improvement on those from the previous paper.  相似文献   

11.
A new nonsingular analytical theory for the motion of near Earth satellite orbits with the air drag effect is developed for long term motion in terms of the KS uniformly regular canonical elements by a series expansion method, by assuming the atmosphere to be symmetrically spherical with constant density scale height. The series expansions include up to third order terms in eccentricity. Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. Numerical comparisons of the important orbital parameters semi major axis and eccentricity up to 1000 revolutions, obtained with the present solution, with KS elements analytical solution and Cook, King-Hele and Walker's theory with respect to the numerically integrated values, show the superiority of the present solution over the other two theories over a wide range of eccentricity, perigee height and inclination.  相似文献   

12.
The planets with a radius < 4 R observed by the Kepler mission exhibit a unique feature, and propose a challenge for current planetary formation models. The tidal effect between a planet and its host star plays an essential role in reconfiguring the final orbits of the short-period planets. In this work, based on various initial Rayleigh distributions of the orbital elements, the final semi-major axis distributions of the planets with a radius < 4 R after suffering tidal evolutions are investigated. Our simulations have qualitatively revealed some statistical properties: the semi-major axis and its peak value all increase with the increase of the initial semi-major axis and eccentricity. For the case that the initial mean semi-major axis is less than 0.1 au and the mean eccentricity is larger than 0.25, the results of numerical simulation are approximately consistent with the observation. In addition, the effects of other parameters, such as the tidal dissipation coefficient, stellar mass and planetary mass, etc., on the final semi-major axis distribution after tidal evolution are all relatively small. Based on the simulation results, we have tried to find some clues for the formation mechanism of low-mass planets. We speculate that these low-mass planets probably form in the far place of protoplanetary disk with a moderate eccentricity via the type I migration, and it is also possible to form in situ.  相似文献   

13.
A new non-singular analytical theory for the motion of near-Earth satellite orbits with the air drag effect is developed in terms of uniformly regular KS canonical elements. Diurnally varying oblate atmosphere is considered with variation in density scale height dependent on altitude. The series expansion method is utilized to generate the analytical solutions and terms up to fourth-order terms in eccentricity and c (a small parameter dependent on the flattening of the atmosphere) are retained. Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. The important drag perturbed orbital parameters: semi-major axis and eccentricity are obtained up to 500 revolutions, with the present analytical theory and by numerical integration over a wide range of perigee height, eccentricity and inclination. The differences between the two are found to be very less. A comparison between the theories generated with terms up to third- and fourth-order terms in c and e shows an improvement in the computation of the orbital parameters semi-major axis and eccentricity, up to 9%. The theory can be effectively used for the re-entry of the near-Earth objects, which mainly decay due to atmospheric drag.  相似文献   

14.
This report is a review of Darwin’s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.  相似文献   

15.
Starting from the analytical theory of perturbed circular motions presented in Celestial Mechanics (Bois, 1994), this paper presents an extended resolution valid also for small eccentricity orbits. The solution is of the first order of a small parameter characterizing the magnitude of disturbing forces. The solution has the form of Fourier series with the coefficients given by iterative formation laws. The solution is free from singularities due to small eccentricity or inclination. As an example of numerical application the equatorial artificial satellite orbits are analyzed. For some high satellite orbits with small eccentricity the difference between the numerical integration and the analytical model does not exceed few centimeters per one revolution.On leave from Astronomical Observatory of A. Mickiewicz University, Soneczna 36, PL60-286 Pozna, Poland.  相似文献   

16.
制约卫星轨道寿命的另一种机制   总被引:2,自引:0,他引:2  
王歆  刘林 《天文学报》2002,43(2):189-196
近点共振会导致太阳系小天体(小行星,自然卫星以及大行星和月球的人造卫星)的轨道偏心率出现变幅较大的长周期变化,特别是以月球和大行星为中心天体的大倾角轨道(确切地说是倾角接近90°的极轨道)卫星,由于类似的原因,偏心率的增大而导致近星距rp=a(1-e)≤ae(ae是中心天体的赤道半径),使其落到中心天体上,结束轨道寿命,这与耗散机制大不相同,因此将对其作理论分析,并以计算实例加以证实.  相似文献   

17.
The aim of the present paper will be to translate the essential parts of the theory of Fourier analysis of the light changes of eclipsing variables into more practical terms; and describe procedures (illustrated by numerical examples) which should enable their users to obtain the desired results with maximum accuracy and minimum loss of information by processes which can be fully automated.In order to unfold in steps how this can be done, the scope of the present paper-the first of two-will be restricted to an exposition of the analysis of light changes caused by eclipses of spherical stars; while between minima due to this cause the light of the system should remain sensibly constant. An extension of our analysis to incorporate photometric effects arising from mutual distortion of the components of close eclipsing systems between minima as well as within eclipses is being postponed for the second communication.In developing this subject we shall single out for the user's attention only those parts of the whole theory which are of direct relevance to practical work. Their justification can be largely found in sources already published; and new developments essential for our work, not yet made public, will be relegated to several Appendices at the end of the text, in order not to render its text too discursive and deflect the reader's attention from the main theme of its narrative.After a brief outline of the subject given in Section 1, Section 2 will introduce the reader to practical aspects of the Fourier analysis of the light curves; and Section 3 will be devoted to its use to determine the numerical values of the momentsA 2m of the light curves which constitute the cornerstones for all subsequent work. Section 4 will describe an algebraization of the process of determination of the elements for the case of total (annular) eclipses; while Section 5 will do the same for partial eclipses. The concluding Section 6 will be devoted to an error analysis of our problem, and to an outline of the way by which the errors of the individual observations will compound to the uncertainty of the final results. Lastly, Appendices 1–5 concluding the paper will contain additional details of some aspects of our work, or proofs of new processes made use of to obtain our results, whose earlier inclusion would have made the main text too discursive.  相似文献   

18.
An analytical solution of the two body problem perturbed by a constant tangential acceleration is derived with the aid of perturbation theory. The solution, which is valid for circular and elliptic orbits with generic eccentricity, describes the instantaneous time variation of all orbital elements. A comparison with high-accuracy numerical results shows that the analytical method can be effectively applied to multiple-revolution low-thrust orbit transfer around planets and in interplanetary space with negligible error.  相似文献   

19.
The effects of non-isotropic ejection of mass from either component of a binary system on the orbital elements are studied, for the case of a small initial eccentricity of the relative orbit, when all the ejected mass falls on the other component. The problem is transformed to an equivalent two-body problem with isotropic variation of mass, plus a perturbing force which is a function of the intial conditions of ejection of the particles and their final, positions and velocities when they fall on the surface of the other star. The variation of the orbital elements are derived. It is shown that, to first-order terms in the eccentricity, the secular change of the semimajor axis is equal to the one corresponding to the case of zero initial eccentricity. On the contrary, the secular change of the eccentricity is smaller and it depends on the variations of mass ejection due to the finite eccentricity.  相似文献   

20.
A novel approach for the exact Delaunay normalization of the perturbed Keplerian Hamiltonian with tesseral and sectorial spherical harmonics is presented in this work. It is shown that the exact solution for the Delaunay normalization can be reduced to quadratures by the application of Deprit’s Lie-transform-based perturbation method. Two different series representations of the quadratures, one in powers of the eccentricity and the other in powers of the ratio of the Earth’s angular velocity to the satellite’s mean motion, are derived. The latter series representation produces expressions for the short-period variations that are similar to those obtained from the conventional method of relegation. Alternatively, the quadratures can be evaluated numerically, resulting in more compact expressions for the short-period variations that are valid for an elliptic orbit with an arbitrary value of the eccentricity. Using the proposed methodology for the Delaunay normalization, generalized expressions for the short-period variations of the equinoctial orbital elements, valid for an arbitrary tesseral or sectorial harmonic, are derived. The result is a compact unified artificial satellite theory for the sub-synchronous and super-synchronous orbit regimes, which is nonsingular for the resonant orbits, and is closed-form in the eccentricity as well. The accuracy of the proposed theory is validated by comparison with numerical orbit propagations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号