首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Heavy mineral studies on Pleistocene tills from North America, Upper Palaeozoic tillites of South Africa and Australia, and late Precambrian tillites of South Australia show that the heavy mineral suites of the Pleistocene tills are dominated by amphiboles, the Upper Palaeozoic tillites by garnet, and the late Precambrian tillites by zircon and tourmaline. About half of the garnets in the Upper Palaeozoic tillites show evidence of having been rounded, and retain delicate surface chattermark trails, which indicates that these garnets have not undergone chemical attack since deposition. Although the remainder of the garnets show, by way of etching, that intrastratal solutions were active in the sediments, it is suggested that amphiboles, pyroxenes and epidote, which must have been present in the original Upper Palaeozoic heavy mineral suites, were lost primarily by the action of sorting and mechanical abrasion in beach environments prior to, and during interglacial periods. The absence of garnet and the etching of tourmaline and zircon in the late Precambrian tillites is attributed to the action of alkaline intrastratal solutions over the long time interval during which the tillites were buried in the Adelaide Geosyncline.  相似文献   

2.
Reading provenance from heavy-mineral suites is hampered by the depletion of diagnostic, but unstable, heavy minerals through intrastratal solution, a common phenomenon in deep sedimentary basins such as the North Sea. This paper demonstrates the potential of electron microprobe analysis in overcoming this problem, by concentrating on the compositional variations shown by detrital garnets, which are relatively resistant to intrastratal solution. Studies of the garnets from the Brent Group (Middle Jurassic) of the Murchison and Tern oilfields in the northern North Sea reveal that three distinct areas supplied detritus. Association 1 which characterizes the Broom Formation in both areas and recurs higher in the sequence in the Tern field, is ascribed to an Orkney-Shetland source. The location of the areas supplying the garnets of Association 2, best represented in Murchison, and Association 3, common to both fields, is less clear. Their ultimate sources clearly include high-grade metamorphics, and therefore probably lie on the Norwegian landmass, the Orkney-Shetland Platform, or, conceivably, the Scottish landmass, but the possibility of recycling makes it difficult to judge their immediate provenances. Nevertheless, the presence of three garnet associations indicates that the most widely accepted model of Brent sedimentation, with sands derived from a domal uplift in the outer Moray Firth and channelled northward along the Viking Graben, is untenable.  相似文献   

3.
石榴石电子探针分析在物源研究中的应用   总被引:5,自引:1,他引:5  
杨丛笑  赵澄林 《沉积学报》1996,14(1):162-166
利用重矿物组合恢复母岩是一种常用的方法,但由于层内溶解作用的存在和其它因素,使这种方法存在很大的局限性。而利用石榴石电于探针分析结果来研究物源有其独到的优越性,可使水动力或成岩作用的影响降低到最小。本文以渤海海域为例,利用电子探针分析石榴石的组分,分析结果表明渤海海域的石榴石以低钙石榴石组合为主,而且不同物源区石榴石组合各具特色,同时也证明前人所作的物源研究结果是正确的。  相似文献   

4.
周自立 《沉积学报》1988,6(1):13-20
本文应用扫描电子显微镜及偏光显微镜,研究重矿物阶状石榴石表面的显微结构,确定它是自生成因的铁铝石榴石。根据阶状石榴石在各探井剖面中的纵向分布规律及特征变化,可以推断它的形成与埋藏深度或地温关系密切。通过计算确定,阶状石榴石初始形成的温度为92±5℃,可作为成岩矿物地温计。这对评价新探区的生油岩及储集岩均有实际意义。  相似文献   

5.
GREGOR BORG 《Sedimentology》1986,33(1):141-146
Detrital garnets from the Upper Triassic (Keuper) of southern Germany have well developed facets where they occur in calcite-cemented sandstone. The grains belong to the pyralspite series and have a homogeneous chemical composition, without any zonation is revealed by microprobe analyses. It is concluded that the large facets are caused by etching during diagenesis and not by authigenic overgrowth. High calcium contents of the pore fluids may have been important in the formation of these garnet facets.  相似文献   

6.
The morphology and chemical composition of garnets from principal deposits in China and in the Arkhangelsk Province consisting of kimberlites of various mineral types have been examined. The morphology of garnets (300 specimens) from the V. Grib pipe was examined, in which crystal fragments and irregular grains predominate, and dissolution traces are common. Distribution of types of garnet coloration is typical of kimberlites: lilac-violet and red garnets of ultramafic rock association are preponderant, and the proportion of yellow-orange garnets is rather high, while brown garnets are very rare. The garnet preservation degree is very low, which is related to their high primary fracturing due to cataclasis. Grains with finely matted surfaces are preponderant (90%) reflecting their high corrosion alterations. The chemical composition was determined in 56 garnet speciments from the Grib pipe. Garnets from lherzolitic and eclogitic rock types were found and garnets from magnesium and ilmenite ultramafics are present; there are no garnets from eclogites, but garnets from diamondiferous rock associations occur. The investigations demonstrated that garnets from lherzolite rock association are preponderant in kimberlites from China, as well as from other regions, while garnets from the harzburgite-dunite and from diamondiferous rock associations are rare. Garnets belonging to the graphitepyrope depth facies were also found.  相似文献   

7.
Faceted garnets from a wide range of geological ages, environments and locations have been studied in polished grain mounts by a combination of backscattered electron microscopy and elemental mapping using energy-dispersive X-ray analysis. In all cases, the areas apparently showing positive relief on the faceted garnet surfaces are compositionally identical to the adjacent grain cores despite a wide variation in detrital garnet compositions. In one case, zoning within the grain core can be traced into the faceted areas on the grain surface. Thus, faceted areas must be considered to form part of the original detrital grains. Together with previously published studies on experimental garnet etching, thermodynamic conditions for garnet growth, textural relationships between faceted garnets and authigenic and detrital phases, and distribution of faceted garnets in the subsurface, this paper provides conclusive proof that faceted garnet surfaces form as a result of dissolution, not overgrowth.  相似文献   

8.
We performed in situ Th-Pb dating of monazite in upper amphibolite facies pelitic schist from the Grouse Creek Mountains in northwest Utah. Sixty-six ages from inclusions in four garnet grains range from 37 to 72 Ma and decrease with radial distance from garnet cores. The age range of 30 matrix monazite grains overlaps and extends to younger ages than inclusions (25-58 Ma). The monazite grains are not intersected by cracks in the garnets, through which dissolution, reprecipitation or Pb loss might occur, and are generally too small (<20 μm) to allow for more than one age determination on any one grain. Processes that might explain inclusion ages that decrease with radial distance from garnet cores include: (1) Pb diffusion in monazite, (2) dissolution and reprecipitation of monazite, and (3) co-crystallization of monazite and garnet. After consideration of these possibilities, it is concluded that the co-crystallization of monazite and garnet is the most plausible, with monazite neoblasts deriving REEs from the breakdown of muscovite. Garnet ages derived by regression of the inclusion ages and assuming a constant rate of volume increase during garnet growth yield model ages with a maximum difference between core and rim of 22 m.y.  相似文献   

9.
Abstract The chemical evolution of garnets from pelitic rocks of probable Palaeozoic age corresponds to a complex metamorphic evolution of the host rocks.
Among the almandine-rich garnets (Alm60–80), two main types of evolution can be distinguished. Early Mn-rich garnets coexisting with kyanite may be replaced by plagioclase and then, during a late stage, by biotite and/or sillimanite. The second type of evolution corresponds to an overgrowth of Mn-poor late-stage garnet on older Mn-rich garnets which corresponds to a thermal peak with sillimanite-type of metamorphism. This new garnet may appear either as an overgrowth with a strong discontinuity, or as small, new euhedral garnet or as skeletal garnet.
This chemical evolution of garnet corresponds to an early collisional stage of metamorphism (of high pressure type with high Mn values) of probable Ordovician age followed by uplift and a thermal peak (low Mn values) in Devonian times.  相似文献   

10.
This paper presents new major and trace element data from 150 garnet xenocrysts from the V. Grib kimberlite pipe located in the central part of the Arkhangelsk diamondiferous province (ADP). Based on the concentrations of Cr2O3, CaO, TiO2 and rare earth elements (REE) the garnets were divided into seven groups: (1) lherzolitic “depleted” garnets (“Lz 1”), (2) lherzolitic garnets with normal REE patterns (“Lz 2”), (3) lherzolitic garnets with weakly sinusoidal REE patterns (“Lz 3”), (4) lherzolitic garnets with strongly sinusoidal REE patterns (“Lz 4”), (5) harzburgitic garnets with sinusoidal REE patterns (“Hz”), (6) wehrlitic garnets with weakly sinusoidal REE patterns (“W”), (7) garnets of megacryst paragenesis with normal REE patterns (“Meg”). Detailed mineralogical and geochemical garnet studies and modeling results suggest several stages of mantle metasomatism influenced by carbonatite and silicate melts. Carbonatitic metasomatism at the first stage resulted in refertilization of the lithospheric mantle, which is evidenced by a nearly vertical CaO-Cr2O3 trend from harzburgitic (“Hz”) to lherzolitic (“Lz 4”) garnet composition. Harzburgitic garnets (“Hz”) have probably been formed by interactions between carbonatite melts and exsolved garnets in high-degree melt extraction residues. At the second stage of metasomatism, garnets with weakly sinusoidal REE patterns (“Lz 3”, “W”) were affected by a silicate melt possessing a REE composition similar to that of ADP alkaline mica-poor picrites. At the last stage, the garnets interacted with basaltic melts, which resulted in the decrease CaO-Cr2O3 trend of “Lz 2” garnet composition. Cr-poor garnets of megacryst paragenesis (“Meg”) could crystallize directly from the silicate melt which has a REE composition close to that of ADP alkaline mica-poor picrites. P-T estimates of the garnet xenocrysts indicate that the interval of ~60–110 km of the lithospheric mantle beneath the V. Grib pipe was predominantly affected by the silicate melts, whereas the lithospheric mantle deeper than 150 km was influenced by the carbonatite melts.  相似文献   

11.
Grossular-andradite (grandite) garnets, precipitated from hydrothermal solutions is associated with contact metamorphism in the Kal-e Kafi skarn show complex oscillatory chemical zonation. These skarn garnets preserve the records of the temporal evolution of contact metasomatism. According to microscopic studies and microprobe analysis profiles, the studied garnet has two distinct parts: the intermediate (granditic) composition birefringent core that its andradite content based on microprobe analysis varies between 0.68–0.7. This part is superimposed with more andraditic composition, and the isotropic rim which its andradite content regarding microprobe analysis ranges between 0.83–0.99. Garnets in the studied sample are small (0.5–2 mm in diameter) and show complex oscillatory zoning. Electron microprobe analyses of the oscillatory zoning in grandite garnet of the Kal-e Kafi area showed a fluctuation in chemical composition. The grandite garnets normally display core with intermediate composition with oscillatory Fe-rich zones at the rim. Detailed study of oscillatory zoning in grandite garnet from Kal-e Kafi area suggests that the garnet has developed during early metasomatism involving monzonite to monzodiorite granitoid body intrusion into the Anarak schist- marble interlayers. During this metasomatic event, Al, Fe, and Si in the fluid have reacted with Ca in carbonate rocks to form grandite garnet. The first step of garnet growth has been coeval with intrusion of the Kal-e Kafi granitoid into the Anarak schist- marble interlayers. In this period of garnet growth, change in fluid composition may cause the garnet to stop growing temporarily or keep growing but in a much slower rate allowing Al to precipitate rather than Fe. The next step consists of pervasive infiltration of Fe rich fluids and Fe rich grandite garnets formation as the rim of previously formed more Al rich garnets. Oscillatory zoning in the garnet probably reflects an oscillatory change in the fluid composition which may be internally and/or externally controlled. The rare earth elements study of these garnets revealed enrichment in light REEs (LREE) with a maximum at Pr and Nd and a negative to no Eu anomaly. This pattern is resulted from the uptake of REE out of hydrothermal fluids by growing crystals of calcsilicate minerals principally andradite with amounts of LREE controlled by the difference in ionic radius between Ca++ and REE3+ in garnet x site.  相似文献   

12.
The Late Jurassic Jingshan granite located at the south-eastern margin of the North China Craton contains abundant garnets which can be subdivided into three types based on texture and composition: (i) euhedral garnet in mafic biotite and garnet rich enclave (Grt I), (ii) coarse-grained garnet (Grt II) in the host granite, and (iii) small euhedral garnet in aplite (Grt III). In general, Grt I has higher FeO, CaO and lower MnO contents than Grt II. Grt III has higher Mn, but lower Ca contents than others. Grt I has lower MREE and HREE contents than Grt II. Grt III has prominent and distinctly negative Eu anomaly as well as higher MREE composition compared to the others. Systematic variations in oxygen isotope compositions are observed among the three garnet types, with δ18O values of <3.8‰ in most of Grt I, 3.8–4.7‰ in most Grt II (for inclusion-free garnets), and typically >4.7‰ in Grt III. Some of the Grt II and Grt III display two distinct zonings with cores having similar major and trace element compositions to Grt I.Cathodoluminescence (CL) images revealed that the zircons from different garnet-bearing samples possess fine-scale oscillatory zoned magmatic rims with inherited cores. In situ zircon U–Pb dating and trace element analyses show that the dark-luminescent magmatic rims all have Jurassic concordia ages (∼160 Ma) and similar trace element patterns. Most of the inherited cores also display similar Triassic ages of 210–236 Ma, which is similar to the ages of ultrahigh pressure (UHP) metamorphic rocks of the Dabie–Sulu orogen (230 Ma). In addition, Jurassic concordia ages were also found in a zircon inclusion in Grt I, implying that the Grt I was formed shortly before the main magmatic event. The age data suggest that the three different garnet types may be genetically related and modified by cogenetic magmatic events.Based on the zircon U–Pb ages from different garnet-bearing samples, the major element, trace element, oxygen isotope, and zoning textures of the three kinds of garnet we suggest that Grt I may be peritectic garnet, whereas Grt II and III are probably the results of magmatic dissolution–precipitation processes and re-equilibration of garnets with changing magmatic conditions during melting, differentiation, crystallization, and cooling within the granite. We conclude from the oxygen isotopic character of the garnets and ages of the zircons that the source rocks for the Jingshan granites are from Dabie–Sulu orogen representing the South China Craton.  相似文献   

13.
ABSTRACT Ion probe traverses across garnets from peridotites of the Caledonides of Norway and the Variscides of Poland show zoning patterns for Y, V, Zr, Cr, Ti and the REE. The complexly zoned patterns of garnets from the Bystrzyca Górna peridotite, Poland, are interpreted in terms of a changing P–T history (isobaric cooling followed by decompression and cooling). Weak rimward gradients in REE concentrations in garnets from the Almklovdalen and Sandvika peridotites, Norway, may be relicts of the original growth history of the garnets, but the nearly flat Y, V, Zr, Cr and Ti profiles from the same garnets imply a later period of near-homogenization at uniform P–T. Crushed garnet separates from each body were separated into three or more fractions on the assumption that density and magnetic susceptibility vary with Fe/Mg ratio, and Fe/Mg ratios change from garnet core to rim. Sm-Nd garnet–clinopyroxene ‘ages’ were determined for each fraction to determine whether they are also zoned. Four garnet fractions from the Góry Sowie peridotite give nearly the same ages (397–412 Ma) that are believed to span the interval of garnet growth. Garnet fractions from the Norwegian peridotites define scattered ages (816–1350 Ma) that are suspect, but hint at a Sveconorwegian equilibration event. The data indicate the Variscan and Norwegian peridotites had different histories, despite superficial mineralogical and tectonic similarities. Norwegian garnet peridotites had a long pre-Caledonian history and were extracted from a relatively cold mantle whereas the Variscan garnet peridotites had a comparatively short pre- or Eo-Variscan history and were extracted from a hot mantle.  相似文献   

14.
在对胶北荆山群麻粒岩相富铝岩石中石榴石、黑云母的成分环带进行深入研究基础上,选取不同粒径、与不同矿物相邻的石榴石、黑云母各微区点成分,利用石榴石-黑云母温度计分别进行了温度估算。确定在黑云母含量较高的岩石(V_(Grt)/V_(Bt)≤1)中,利用大颗粒石榴石(d≥1500μm)晶体核部(或靠近长英质矿物一侧的晶体幔部)成分与基质中远离石榴石等镁铁矿物处于长英质矿物之间的黑云母核部成分配合。通过石榴石-黑云母温度计可以获得相当可信的变质峰期温度。但是对于黑云母含量极低的岩石(V_(Grt)/V_(Bt)≥6),由于黑云母的成分普遍遭到了强烈改造。使得温度估算结果异常偏低,因此不适合采用石榴石-黑云母温度计估算峰期温度。同一岩石中,采用不同的相邻石榴石-黑云母矿物对晶体边缘成分获得的温度值差异较大,反映它们在峰期后发生Fe-Mg交换反应并达到封闭温度平衡状态的程度不同,因此利用石榴石-黑云母温度计难以获得准确的封闭温度。通过热力学计算,建立了一个新的石榴石-黑云母温度计公式。确定胶北荆山群所经历的变质峰期温度为720~770℃,峰期后最低相对封闭温度为480~500℃。  相似文献   

15.
湖南沅江是我国砂矿金刚石的重要产地,石榴子石和金刚石是砂矿中常见的重矿物,与金刚石相关的石榴子石特征研究,对揭示湖南砂矿金刚石的来源与形成条件有重要意义。本文随机选取湖南沅江辰溪地区金刚石砂矿中160粒碎屑石榴子石和5粒金刚石包裹体中的石榴子石,采用矿物学、地球化学并借鉴统计学方法对它们进行了分析比较。结果显示,碎屑石榴子石主要为铁铝-锰铝榴石系列,其中个别石榴子石含有金刚石包裹体。聚类分析、线性判别、逻辑回归分析计算显示,部分G3榴辉岩型石榴子石与金刚石可能具有成生联系。同时,两个采集地点的石榴子石类型、主微量元素具有一定的差异,其中一个地点的石榴子石样品DJZ-7-1具有与金刚石更强的亲缘性。基于本文碎屑石榴子石Si值大于3.02以及前人对湖南金刚石限定的温压条件进行分析,认为湖南金刚石可能形成于深度小于220 km的橄榄岩-榴辉岩混杂区,该区域系钾镁煌斑岩型金刚石来源的优势区域。据此,建议可在辰溪赤岩村河段上游区域进一步寻找幔源G3型石榴子石以及钾镁煌斑岩,以期发现原生金刚石矿床。  相似文献   

16.
大兴安岭第四纪火山岩(包括诺敏河火山区和哈拉哈河-绰尔河火山区)地幔包体中含有少量石榴子石,普遍发育矿物反应边.根据显微照片和BSE图像特征,石榴子石反应边可分为3类:①冠冕状石榴子石反应边,包裹在石榴子石矿物外部,具有一期或者多期反应的特征,厚度通常为0.1~1 mm,反应边矿物组合为Opx+Glass、Cpx+Gl...  相似文献   

17.
Garnet, an uncommon accessory mineral in igneous rocks, occurs in seven small peraluminous granitoid plutons in the southeastern Arabian Shield; textural equilibrium between garnet and other host granitoid minerals indicates that the garnets crystallized from their host magmas. Compositions of the garnets form three groups that reflect host-granitoid compositions, which in turn reflect source compositions and tectonic regimes in which the host magmas were generated. Garnets from the seven plutons have almandine-rich cores and spessartine-rich rims. This reverse zoning depicts host magma compositional evolution; i.e. rimward spessartine enrichment resulted from progressive, host-magma manganese enrichment. The garnets are heavy rare-earth element enriched; (Lu/La) N ranges from 13 to 355 and one of the garnets contains spectacularly elevated abundances of Y, Ta, Th, U, Zn, Zr, Hf, Sn, and Nb. Involvement of garnets with these trace element characteristics in magma genesis or evolution can have dramatic effects on trace element signatures of the resulting magmas. Other researchers suggest that Mn-enriched magmas are most conducive to garnet nucleation. Although the garnetiferous granitoids discussed here are slightly Mn enriched, other genetically similar peraluminous Arabian granitoids lack garnet; Mn enrichment alone does not guarantee garnet nucleation. The presence of excess alumina in the magma may be a prerequisite for garnet nucleation.  相似文献   

18.
辽宁瓦房店金刚石矿区金伯利岩中的石榴石一直被当作镁铝榴石。为了确定矿区颜色复杂的石榴石种类,本文对矿区的石榴石进行了系统的采样分析,测定了112件石榴石样品的晶胞参数、50件样品的微区化学成分和40件样品的红外光谱。利用石榴石晶胞参数、红外光谱、化学成分和化学分子式方法对矿区石榴石进行分类,结果显示:晶胞参数分类法误差大,容易得出错误结论;红外图谱分类法准确度不高,只能作为参考方法;化学成分分类法太过笼统,达不到详细划分石榴石种类的目的;化学分子式分类法可把矿区的石榴石详细划分6个矿种:镁钙铁-铝铬铁榴石、镁铁钙-铝铬铁榴石、镁钙铁-铝铬榴石、镁钙-铝铬铁镁榴石、镁铁钙-铝铬榴石、镁铁钙-铝铁铬榴石,每种石榴石都充分反映了A、B离子的种类及占位特征,是4种分类方法中最为科学的方法。研究认为瓦房店金刚石矿区金伯利岩中石榴石A端元成分以Mg2+离子占位为主;B端元成分以Al3+离子占位为主。由于阳离子替代普遍,A、B端元成分复杂,瓦房店金伯利岩中不存在单纯意义上的镁铝榴石。  相似文献   

19.
在喜马拉雅碰撞造山带中,石榴石是变泥质岩的主要造岩矿物,也是花岗岩或淡色体的重要副矿物,保存了有关地壳深熔作用的关键信息,是揭示大型碰撞造山带中-下地壳物质的物理和化学行为的重要载体。在喜马拉雅造山带内,新生代花岗质岩石(淡色花岗岩和混合岩中的淡色体)含两类石榴石,大多数为岩浆型石榴石,自形-半自形,不含包裹体,但淡色体中含有港湾状的混合型石榴石。岩浆型石榴石具有以下地球化学特征:(1)从核部到边部,显示了典型的"振荡型"生长环带;(2)富集HREE,亏损LREE,从核部到边部,Hf、Y和HREE含量降低;(3)显著的Eu负异常;(4)相对于源岩中变质石榴石,Mn和Zn的含量显著增高。岩相学和地球化学特征都表明:变泥质岩熔融形成的熔体(淡色体)捕获了源岩的变质石榴石,熔体与石榴石反应导致大部分元素的特征被改变,只在核部保留了源岩的部分信息。同时,在花岗质熔体结晶过程中,形成少量的岩浆型石榴石。这些石榴石摄取了熔体中大量的Zn,浓度显著升高,在斜长石和锆石同步分离结晶作用的共同影响下,石榴石中Eu为明显负异常,Hf、Y和HREE浓度从核部到边部逐渐降低。上述数据和结果表明,花岗岩中石榴石的矿物化学特征记录了精细的有关花岗岩岩浆演化的重要信息。  相似文献   

20.
湖北省宜昌市彭家河石榴石矿床地质特征及成因分析   总被引:1,自引:1,他引:0  
运用矿物学、岩石学的方法对宜昌黄陵地区彭家河石榴石矿床中含矿层的矿物组合、化学成分、变质相及原岩特征进行分析与研究,结果表明彭家河石榴石矿床的含矿层位为水月寺群的周家河组,石榴石主要赋存于含(石墨)矽线石榴黑云斜长片麻岩及石榴黑云斜长片麻岩中,前者石榴石含量较高10%~50%,后者含量稍低12%~36%,X衍射及电子探针分析矿床中石榴石以铁铝榴石为主,其次是镁铝榴石,少量钙铝榴石.运用变质反应平衡温压方程计算出成矿温压条件为:P=600 MPa~800 MPa,T=650℃~750℃;变质相为高角闪岩相,高角闪岩相的富铁铝质沉积变质岩系--孔兹岩系是寻找此类石榴石矿床的重要找矿标志.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号