首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
柴达木盆地东部石炭系烃源岩热模拟实验及生烃潜力   总被引:1,自引:0,他引:1  
通过热模拟实验及热模拟产物组分和稳定碳同位素分析,对柴达木盆地东部石炭系烃源岩的生烃能力及产物特征进行了研究。结果表明:石炭系烃源岩的气态烃产率为67.27~161.01m3/t(TOC),总气体产率为220.51~453.39m3/t(TOC),显示柴达木盆地东部石炭系烃源岩具有较高的生气能力;液态有机质产率仅为1.73~4.30kg/t(TOC),残余生油能力相对较低,但考虑到石炭系烃源岩的成熟度已经接近生油窗的下限值(1.3%),因此模拟实验的液态有机质产率不能真实反映石炭系烃源岩的生油潜力。根据模拟实验的气态烃产率可知,柴达木盆地东部石炭系泥质烃源岩的生气强度为14.2×108~42.5×108 m3/km2,显示其具备形成规模气藏的生烃条件。   相似文献   

2.
Organic geochemical characterization of cutting samples from the Abu Hammad-1 and Matariya-1 wells elucidates the depositional environment and source rock potential of the Jurassic and Lower Cretaceous successions and the Middle Miocene to Pleistocene section in the southern and eastern Nile Delta Basin. The burial and thermal histories of the Mesozoic and Miocene sections were modeled using 1D basin modeling based on input data from the two wells. This study reveals fair to good gas-prone source rocks within the Upper Jurassic and Lower Cretaceous sections with total organic carbon (TOC) averaging 2.7% and hydrogen index (HI) up to 130 mg HC/g TOC. The pristane/n-C17 versus phytane/n-C18 correlation suggests mixed marine and terrestrial organic matter with predominant marine input. Burial and thermal history modeling reveals low thermal maturity due to low heat flow and thin overburden. These source rocks can generate gas in the western and northern parts of the basin where they are situated at deeper settings. In contrast, the thick Middle Miocene shows fair source rock quality (TOC averaging at 1.4%; HI maximizing at 183 mg HC/g TOC). The quality decreases towards the younger section where terrestrial organic matter is abundant. This section is similar to previously studied intervals in the eastern Nile Delta Basin but differs from equivalents in the central parts where the quality is better. Based on 1D modeling, the thick Middle Miocene source rocks just reached the oil generation stage, but microbial gas, however, is possible.  相似文献   

3.
于炳松  樊太亮 《现代地质》2008,22(4):534-540
塔里木盆地寒武系-奥陶系是主力烃源岩发育层段,而泥质岩烃源岩则是此时满加尔坳陷及其周边地区的主要烃源岩类型。通过露头和钻井资料,结合盆地区域构造演化分析可知,塔里木盆地寒武系-奥陶系泥质烃源岩主要沉积在具上升洋流的陆棚、滞流的海湾陆棚、正常陆棚、深海盆地以及淹没台地陆棚等不同的环境中。它们分别属于伸展的被动大陆边缘、伸展的裂陷槽盆和稳定的克拉通构造背景。这些沉积在不同构造和沉积背景中的泥质烃源岩,其有机质含量具有较大的差异,具上升洋流的陆棚环境中形成的泥质烃源岩中有机质含量最高,其次是滞流的海湾陆棚环境中形成的泥质烃源岩,正常陆棚环境中形成的泥质烃源岩的有机质含量相对较低,而真正深海洋盆环境中沉积的泥质沉积物中的有机质含量远不如陆棚环境中的泥质沉积物。淹没台地陆棚环境中沉积的泥质岩中有机质含量最低。这说明塔里木盆地构造和沉积背景对海相泥质烃源岩发育具有重要的控制作用。  相似文献   

4.
“优质烃源岩控藏”的概念自提出后,正在逐步为勘探家所接受.但什么是优质烃源岩以及如何界定,则还缺乏共识和统一标准.针对这一难题,以海拉尔盆地乌尔逊凹陷为例,利用物质平衡原理计算的源岩排烃量与有机质丰度(TOC)关系曲线的拐点来确定优质烃源岩的有无及其下限标准.结果表明,在TOC较低时,所有源岩的排烃量有限,难以成为优质烃源岩;当TOC升高到某一阀值时,排烃量随着TOC的升高出现明显的增大.这一明显增大的拐点应该为优质烃源岩的下限,TOC高于该值的源岩即为优质烃源岩.虽然优质烃源岩的下限还与有机质的类型、成熟度等因素有关,但为简明实用,综合定量评价认识,推荐TOC=2.0%作为确定优质油源岩的下限.该标准在研究区的应用表明,区内南二段、南一段优质烃源岩的生油贡献比例达到71%和87%,排油贡献比例更是高达85%和94%,优质源岩的分布与区内油藏的分布也有非常好的对应关系,证明了优质源岩的控藏作用.   相似文献   

5.
Previous studies have postulated the contribution of present-day low-total organic carbon(TOC) marine carbonate source rocks to oil accumulations in the Tabei Uplift, Tarim Basin, China. However, not all present-day low-TOC carbonates have generated and expelled hydrocarbons; therefore, to distinguish the source rocks that have already expelled sufficient hydrocarbons from those not expelled hydrocarbons, is crucial in source rock evaluation and resource assessment in the Tabei Uplift. Mass balance can be used to identify modern low-TOC carbonates resulting from hydrocarbon expulsion. However, the process is quite complicated, requiring many parameters and coefficients and thus also a massive data source. In this paper, we provide a quick and cost effective method for identifying carbonate source rock with present-day low TOC, using widely available Rock-Eval data. First, we identify present-day low-TOC carbonate source rocks in typical wells according to the mass balance approach. Second, we build an optimal model to evaluate source rocks from the analysis of the rocks' characteristics and their influencing factors, reported as positive or negative values of a dimensionless index of Rock-Eval data(IR). Positive IR corresponds to those samples which have expelled hydrocarbons. The optimal model optimizes complicated calculations and simulation processes; thus it could be widely applicable and competitive in the evaluation of present-day low TOC carbonates. By applying the model to the Rock-Eval dataset of the Tabei Uplift, we identify present-day low-TOC carbonate source rocks and primarily evaluate the contribution equivalent of 11.87×10~9 t oil.  相似文献   

6.
对雅布赖盆地萨尔台凹陷侏罗系新河组有效烃源岩进行有机质下限分析,识别有效烃源岩分布范围,并分析有效烃源岩下限值与成熟度的关系。本文据烃源岩生排烃机理,通过w(TOC)与热解参数w(S1)之间的关系,确定了雅布赖盆地萨尔台凹陷新河组下段有效烃源岩w(TOC)下限值,其中盐场次凹有效烃源岩w(TOC)下限值为1.0%,小湖次凹w(TOC)下限值为0.7%,梭托次凹不具备排烃条件。利用△log R法计算新河组下段的页岩w(TOC)含量,识别并统计了单井有效烃源岩厚度,参照沉积相和地层厚度确定了有效烃源岩的分布特征,新河组下段有效烃源岩主要分布在小湖次凹中央洼槽带,累计厚度最大约600 m,盐场次凹有效烃源岩累计厚度基本小于100 m,梭托次凹不发育有效烃源岩。成熟度越大,有效烃源岩w(TOC)下限值越小  相似文献   

7.
Combined with the actual geological settings, tight oil is the oil that occurs in shale or tight reservoirs, which has permeability less than 1 mD and is interbedded with or close to shale, including tight dolomitic oil and shale oil. The Fengcheng area (FA), at the northwest margin of the Junggar Basin, northwest China, has made significant progress in the tight oil exploration of the Fengcheng (P1f) Formation recently, which indicates that the tight oil resources have good exploration prospects. Whereas the lack of recognition of hydrocarbon generation and expulsion characteristics of Permian P1f source rocks results in the misunderstanding of tight oil resource potential. Based on the comprehensive analysis of geological and geochemical characteristics of wells, seismic inversion, sedimentary facies, tectonic burial depth, etc., the characteristics of P1f source rocks were investigated, and the horizontal distributions of the following aspects were predicted: the thickness of source rocks, abundance and type of organic matter. And on this basis, an improved hydrocarbon generation potential methodology together with basin simulation techniques was applied to unravel the petroleum generation and expulsion characteristics of P1f source rocks in FA. Results show that the P1f source rocks distribute widely (up to 2039 km2), are thick (up to 260 m), have high total organic content (TOC, ranging from 0.15 to 4 wt%), are dominated by type II kerogen and have entered into low mature–mature stage. The modeling results indicate that the source rocks reached hydrocarbon generation threshold and hydrocarbon expulsion threshold at 0.5% Ro and 0.85% Ro and the comprehensive hydrocarbon expulsion efficiency was about 46%. The amount of generation and expulsion from the P1f source rocks was 31.85 × 108 and 15.31 × 108 t, respectively, with a residual amount of 16.54 × 108 t within the source rocks. Volumetrically, the geological resource of shale oil is up to 15.65 × 108 t. Small differences between the amounts calculated by the volumetric method compared with that by hydrocarbon generation potential methodology may be due to other oil accumulations present within interbedded sands associated with the oil shales. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
通过漠河盆地北部油气地质调查,圈出了与油气形成密切相关的烃源岩层(含炭泥岩)的分布范围,为下一步寻找油气资源提供了靶区。研究表明:漠河盆地烃源岩类型为黑色泥岩,烃源岩w(TOC)为0.20%~30.30%。圈出26处烃源岩区,面积134.69 km2。烃源岩样品的最高热解温度(Tmax)平均值为442℃,烃源岩演化处于成熟-过成熟阶段。漠河盆地西北部的成烃地质条件:中侏罗统沉积岩系为油气储藏提供了良好的空间和气源;中生代岩浆活动及韧性剪切作用为烃源岩成气作用提供了良好的温度条件;张性断裂、裂隙和碎裂岩化构造为油气运移和储存提供了运移通道和储存空间。  相似文献   

9.
柴达木盆地西部第三系盐湖相有效生油岩的识别   总被引:43,自引:0,他引:43  
金强  查明  赵磊 《沉积学报》2001,19(1):125-129,135
柴达木盆地西部第三系发现了储量可观的油气资源,但是总体上讲这里的生油层钙质含量高、有机质丰度低;如何识别有效生油岩,正确评价油气资源潜量,成为这里油气勘探和地球化学的首要问题。通过上、下干柴沟组生油岩的沉积特征和地球化学分析,可发现盐湖相存在许多有机质丰度较高的生油岩;利用热解和模拟实验等方法确定出有效生油岩的有机碳含量下限为 0.4%。这样既为该区生油岩提供了评价标准,又找到大量有效生油岩,解决了研究区油气资源预测的基本问题.  相似文献   

10.
塔里木盆地经历了多期油气充注和多期调整改造,使得已发现海相油气的确切来源层位与相对贡献量不明。虽然油-源对比研究揭示中上奥陶系烃源岩是这些油气的主要来源,但中上奥陶统内高TOC源岩层分布局限,不足以解释海相油气的大规模分布;并且塔中地区已发现的天然气储量已经远超3次资评结果,以上反映了叠合盆地油气成藏的复杂性与地化反演方法用来进行油源判别研究的局限性。根据叠合盆地混源油气藏的特点,基于正演研究思路,对源岩层生排运聚油气过程进行研究,从源岩总生烃量中依次扣除残留烃量、无效相态损失量、运移损失烃量、构造破坏烃量等4部分,得到最终的远景资源量,并以此计算各源岩层的相对贡献。结果表明,对于塔中地区而言,寒武系-下奥陶统源岩层相对贡献量高于中上奥陶统烃源岩,两者比率约为63%比37%;高TOC源岩层的相对贡献量高于低TOC源岩层,两者比率约为68%比32%。奥陶系已发现油气藏的规模比预期评价较大原因可能是部分油气来自下部的寒武系烃源岩或者其内部低TOC源岩层也对油气成藏有所贡献。  相似文献   

11.
The presence of shale oil in the Cretaceous Hengtongshan Formation in the Tonghua Basin, drilled by the well TD-01, has been discussed in this geological investigation for the first time. To evaluate the high-quality source rocks of Cretaceous continental shale oil, the distribution characteristics and the evolution of the ancient environment, samples of shale were systematically analyzed in terms of sedimentary facies, organic geochemistry, and organic carbon isotopic composition. The results demonstrate that a TOC value of 1.5% represents the lower-limit TOC value of the high-quality source rocks. Source rocks have an aggregate thickness of 211 m and contain abundant organic matter, with TOC values of 2.69% on average and a maximum value over 5.44%. The original hydrocarbon-generative potential value(S_1+S_2) is between 0.18 mg/g and 6.13 mg/g, and the Ro is between 0.97% and 1.40%. The thermal maturation of the source rocks is relatively mature to highly mature. The δ13C value range is between -34.75‰ and -26.53‰. The ratio of saturated hydrocarbons to aromatic hydrocarbons is 1.55 to 5.24, with an average of 2.85, which is greater than 1.6. The organic types are mainly type Ⅱ_1, followed by type Ⅰ. The organic carbon source was C_3 plants and hydrophytes. The paleoclimate of the Hengtongshan Formation can be characterized as hot and dry to humid, and these conditions were conducive to the development of high-quality source rocks. A favorable paleoenvironment and abundant organic carbon sources provide a solid hydrocarbon generation base for the formation and accumulation of oil and gas in the shale of the Tonghua Basin.  相似文献   

12.
<正>The Kuqa foreland basin is an important petroliferous basin where gas predominates.The Kela-2 large natural gas reservoir and the Yinan-2,Dabei-1,Tuzi and Dina-11 gas reservoirs have been discovered in the basin up to the present.Natural gases in the Kelasu district and the Yinan district are generated from different source rocks indicated by methane and ethane carbon isotopes.The former is derived from both Jurassic and Triassic source rocks,while the latter is mainly from the Jurassic. Based on its multistage evolution and superposition and the intense tectonic transformation in the basin,the hydrocarbon charging history can be divided into the early and middle Himalayan hydrocarbon accumulation and the late Himalayan redistribution and re-enrichment.The heavier carbon isotope composition and the high natural gas ratio of C_1/C_(1-4) indicate that the accumulated natural gas in the early Himalayan stage is destroyed and the present trapped natural gas was charged mainly in the middle and late Himalayan stages.Comparison and contrast of the oils produced in the Kelasu and Yinan regions indicate the hydrocarbon charging histories in the above two regions are complex and should be characterized by multistage hydrocarbon migration and accumulation.  相似文献   

13.
海相地层或海相碳酸盐岩烃源岩地球化学评价的焦点问题之一是如何鉴定有机质丰度下限和划分有效烃源岩与非有效烃源岩。江汉盆地海相地层烃源岩的地球化学研究表明,在有机质成熟演化过程中,烃源岩有机碳(TOC)含量不会有明显的降低,有机碳含量是有机质丰度评价的有效地球化学指标。参考国内外有关碳酸盐岩烃源岩有机质丰度的评价标准,结合本区油气显示,该高演化区有效碳酸盐岩烃源岩有机碳的下限值为0.2%~0.3%,二叠系烃源岩为有效烃源岩。  相似文献   

14.
Fluid inclusions represent the direct evidence of paleofluids and can provide valuable information on the evolution of sedimentary basins and oil-bearing strata. Hydrocarbon fluid inclusion(s) (HCFIs) are the vestiges of oil from the geological formations. The paper delineates the paleotemperature (Th)/ oil window, the oil quality of HCFIs and Raman peaks corresponding to hydrocarbon species of HCFIs using fluid inclusion techniques, and source rock potential of hydrocarbon generation, thermal maturity, the quantity of organic matter, and the kerogen types obtained through Rock-Eval pyrolysis data from two dry wells RV-1 well of Mumbai offshore and KKD-1A well of Kerala-Konkan Basin. The present study compares the fluid inclusion parameters as well as the source rock geochemical characteristics of these two dry wells to address the scientific problem of the wells going dry. Further, evaluated whether the results agree with an earlier finding from a case study of two wells named KK4C-Al (Kerala-Konkan basin) and RV-1 well where only a few parameters such as temperature of homogenization (Th) & API gravity were utilised, and the chances of getting oil in the nearby areas of these two wells were reported. In the present study, the fluid inclusion parameters such as the palaeotemperature (Th), API Gravity and Raman spectra were obtained from micron sized fluid inclusions at different depths for a quick assessment of nature of oil inclusions within the two dry wells. Along with fluid inclusion parameters, different source rock parameters obtained from Rock-Eval Pyrolysis analysis (secondary data) such as S1, S2, S3, Tmax, Hydrogen Index (HI), Oxygen Index (OI), Potential Yield (PY), Production Index (PI) and Total Organic Carbon Content (TOC) were also considered for a detailed source-rock evaluation of two wells (RV-1 and KKD-1A) and the results act as the supporting evidence to address the reason for the wells gone dry.Temperature of homogenisation (Th) of hydrocarbon Fluid Inclusion Assemblages (FIAs) from both the wells fall in the oil window (60–150 °C) range indicating that there was a conducive thermal condition favourable for oil generation in these two basins. API gravity of oils in RV-1 well of Mumbai offshore (48–53) was lighter when compared to those in KKD-1A (18–22) of Kerala-Konkan basin. Raman spectra of HCFI samples could decipher important hydrocarbon species from RV-1 well samples. Raman spectra of KKD-1A well show less prominent peaks (broad) only. Pyrolysis data shows that Paleocene–Early Eocene source rocks of Panna formation of RV1 well are mature enough to generate hydrocarbons. On the other hand, Paleocene aged source rocks of Kasargod formation of KKD-1A well are immature. Source rock maturity therefore could be considered as crucial in hydrocarbon generation in these two wells even if oil-window was achieved. This study reports that, in RV-1 well, even though it is a dry well in a proven basin, the oil window, API gravity of oils and constituents from HCFIs of RV-1 well and the source-rock maturity opens up a demand for detailed exploration in nearby areas of RV-1 in the Mumbai offshore basin hopeful of finding a high-value prospect for oil, whereas the fluid inclusion studies in the HCFIs of KKD-1A well of Kerala-Konkan basin is showing only a minimal chance of oil generation that too of a heavy nature and the source rock immature characteristics suggesting only minimal generation of hydrocarbons. Due to the heaviness of the available oil in the KKD-1A well impedes migration. Our study suggests that there is no potential for finding oil in the nearby areas of KKD-1A well of Kerala-Konkan basin.  相似文献   

15.
Frontier exploration in the Kuqa Depression, western China, has identified the continuous tight-sand gas accumulation in the Lower Cretaceous and Lower Jurassic as a major unconventional gas pool. However, assessment of the shale gas resource in the Kuqa Depression is new. The shale succession in the Middle–Upper Triassic comprises the Taliqike Formation (T3t), the Huangshanjie Formation (T3h) and the middle–upper Karamay Formation (T2–3k), with an average accumulated thickness of 260 m. The high-quality shale is dominated by type III kerogen with high maturity and an average original total organic carbon (TOC) of about 2.68 wt%. An improved hydrocarbon generation and expulsion model was applied to this self-contained source–reservoir system to reveal the gas generation and expulsion (intensity, efficiency and volume) characteristics of Middle–Upper Triassic source rocks. The maximum volume of shale gas in the source rocks was obtained by determining the difference between generation and expulsion volumes. The results indicate that source rocks reached the hydrocarbon expulsion threshold of 1.1% VR and the hydrocarbon generation and expulsion reached their peak at 1.0% VR and 1.28% VR, with the maximum rate of 56 mg HC/0.1% TOC and 62.8 mg HC/0.1% TOC, respectively. The volumes of gas generation and expulsion from Middle–Upper Triassic source rocks were 12.02 × 1012 m3 and 5.98 × 1012 m3, respectively, with the residual volume of 6.04 × 1012 m3, giving an average gas expulsion efficiency of 44.38% and retention efficiency of 55.62%. Based on the gas generation and expulsion characteristics, the predicted shale gas potential volume is 6.04 × 1012 m3, indicating a significant shale gas resource in the Middle–Upper Triassic in the eastern Kuqa Depression.  相似文献   

16.
The study area is confined to a part of upper Assam basin, north of river Brahmaputra (north bank). Seven exploratory wells have been drilled in this part of the basin in order to probe the hydrocarbon prospects of the area. The exploratory efforts did not indicate significant hydrocarbon prospects in the north bank. Since the presence of source rock is an important component of the petroleum system, a detailed systematic study of source rock potential was carried out by analysing known source rock intervals in these seven wells. In the present study, Rock-Eval pyrolysis combined with specific geochemical analyses like GC and TLCFID has been used to characterise the source rocks, their distribution and thermal maturity of the organic matter. The source rocks in the area show mainly Type III, land-plant derived organic matter along with some Type II organic matter. They are predominantly gas prone in nature, although mixed and oil-prone source rocks are occasionally present. Although source rock intervals have been identified in the Langpar, Sylhet limestone and Kopili formations, the Barail Group and the Tipam sandstone Formation, the bulk of the source rock occurs within the Kopili Formation. Geochemical analyses of the cores indicate oil signatures at certain depths, although no commercial oil was discovered. The hydrocarbon generation potential of these source rocks are constrained by low maturity at the presently drilled depths.  相似文献   

17.
On the basis of the results of hydropyrolysis simulations for about 90 different types of immature to mature source rocks selected from about 5 000 marine source rocks in China, along with the natural thermal evolution profiles, the following conclusions were obtained. (1) Total organic carbon (TOC) content of excellent marine source rocks does not change obviously when Ro < 0.8% or Ro > 1.3%, and the residual TOC content is decreasing gradually with the maturity increase at 0.8% < Ro < 1.3%. (2) At the high-post mature stage (Ro > 1.3%), the decreased maximums of residual TOC content for the kerogen of sapropel (I), II1, and II are usually 40%, 32% and 24%, respectively, and their TOC restitution coefficient is, respectively, 1.68, 1.48 and 1.32. (3) Both the TOC decreasing amplitude and the restitution coefficient decrease gradually with the decrease of TOC content for the source rocks with low organic matter abundance (usually 0.3% < TOC < 1.0%). The TOC restitution coefficients are, respectively, 1.20 and 1.0, when 0.3% < TOC < 0.5% and TOC < 0.3%. (4) TOCres of solid bitumen and shale with high organic matter abundance (TOC > 30%) also require no restitution at the high mature stage. Such kind of TOC restitution is further supported by the coincidence of the decrease of residual TOC with the decreasing of S1 + S2 and the increasing of hydrocarbon quantity during the experimental simulation of hydrocarbon generation and expulsion for marine source rocks (0.3% < TOC < 30%) in natural thermal evolution profiles. __________ Translated from Earth Science—Journal of China University of Geosciences, 2007, 32(6): 853–860 [译自: 地球科学—中国地质大学学报]  相似文献   

18.
This study is a contribution to our understanding of the hydrocarbon potentials of the Nkporo Shale in the Anambra Basin, Nigeria. The main objective was to simulate the hydrocarbon generation and expulsion in the Nkporo source horizons encountered in Igbariam-1, Iji-1, and Ajire-1 wells drilled in the basin, using the one-dimensional Genesis Zetaware basin modeling software. This software enabled the integration of burial and thermal influences on Nkporo source rocks with kinetic parameters, in order to define the timing of hydrocarbon generation and expulsion in relation to the main structural episodes in the basin. The Nkporo source horizons encountered in Igbariam-1 well (2,650 m) has not expelled hydrocarbons but has a remaining potential of 380 mg/gTOC. Conversely, in Iji-1 well (3,450 m) and Ajire-1 well (3,250 m), the Nkporo source rocks expelled oil of about 110–127 mg/gTOC and gas of about 85–125 mg/gTOC. The time of expulsion was in Eocene–Oligocene (51–30 My) at the rate of 10.5–11.5 mg/gTOC/My. The remaining potentials for Nkporo source rocks in Iji-1 and Ajire-1 wells are 160 and 125 mg/gTOC, respectively. The result shows an increasing trend in maturation, generation, and expulsion of hydrocarbons with increasing depth towards the southwestern part of the basin. This resulted in an increase in the generated hydrocarbon volumes to the south due to (a) increased burial depth and early maturation and (b) changing source lithofacies—more marine. The fault system linking potential reservoirs such as Owelli Sandstone to the source rock suggests a possible migration of the generated hydrocarbons to those reservoirs at that time.  相似文献   

19.
北黄海东部次盆地是我国海域勘探程度较低的一个盆地,钻探已发现该盆地发育中、上侏罗统巨厚暗色泥岩,但目前对该盆地烃源岩的研究尚较薄弱,精细评价该盆地的烃源岩对后续勘探部署具有重要意义。本文利用多口钻井实测数据和地震、测井资料,在层序地层学研究的基础上,应用有机地球化学和有机岩石学等方法,对中、上侏罗统不同层序和同一层序不同体系域中的烃源岩特征进行综合研究,并探讨烃源岩的分布规律及影响因素。东部次盆地烃源岩非均质性特征明显:中侏罗统J2SQ1和J2SQ2层序均以半深湖-深湖相、滨浅湖相暗色泥岩为主,烃源岩有机碳质量分数总体较高(w(TOC)>1.0%),但生烃潜力指数(w(S1+S2))和氢指数(IH)均很低,且有机质类型差,表明研究区有机质丰度高的烃源岩并非都是生烃能力高的烃源岩,整体为中等-差烃源岩。上侏罗统J3SQ1层序中的烃源岩主要为三角洲前缘和滨浅湖相泥岩,有机质丰度较低,不同体系域发育的均是中等-差烃源岩;J3SQ2层序主要为半深湖-深湖相暗色泥岩,具有厚度大、质纯和横向分布广的特点,但不同体系域中烃源岩的w(TOC)变化很大(0.5%~5.3%),其中优质烃源岩主要发育在J3SQ2层序中的高位体系域和湖侵体系域中,厚度0~104 m,而低位体系域中发育的则是中等烃源岩,该套优质烃源岩是东部次盆地内最主要的一套油源岩。研究认为,层序地层格架和沉积相控制了东部次盆地烃源岩的空间展布范围,陆源有机质的输入与湖盆原位生物生产力的匹配关系控制了烃源岩的质量,湖盆水体的含氧量与盐度在一定程度上控制了有机质的保存。综上所述,北黄海东部次盆地属于中低丰度的含油气盆地,应在优质烃源岩发育区及其邻区寻找有利勘探目标。  相似文献   

20.
华北地区下古生界烃源岩研究对前第三系油气战略资源选区具有重要意义。从沉积学角度出发,通过对研究区有机碳含量、生烃潜力和氯仿沥青"A"等参数的统计分析和平面制图,划分了烃源岩类型,并进行了品质评价,分析了烃源岩的成因,总结了烃源岩发育模式。研究认为:华北东部奥陶系上、下马家沟组及峰峰组为较好的烃源岩,平均有机碳含量分别为0.183%、0.21%和0.181%;下寒武统发育优质烃源岩(TOC平均值为6.46%,最高值为11.2%),但分布范围局限。华北地区东部烃源岩按岩石类型不同可分为两套,即下寒武统泥质烃源岩,中、下奥陶统的碳酸盐岩烃源岩。烃源岩的成因取决于沉积环境,泥质烃源岩发育于陆棚浅海环境,而碳酸盐岩烃源岩则受控于云坪和局限台地环境。对烃源岩空间展布规律研究发现,合肥盆地为潜在的泥质烃源岩发育区,而东濮拗陷、临清拗陷、冀中拗陷为潜在的碳酸盐岩烃源岩发育区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号