首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The basin-and-range area in eastern North China is known for frequent occurrence of earthquakes, their great magnitudes and heavy losses thereby incurred. Seismic studies in the past usually emphasized the intersections, inflexions and branches of the faults. However, the intensities of many great earthquakes in this area do not show linear distribution, and the epicenters are horizontally dispersed at certain depths instead of along the strike of faults. Based on the sub-mantle plume studies made by authors in the past decade, it is thought that there exists an uplifted sub-mantle plume under the fault depression area in North China. The uplifting and intrusion of mantle materials caused the upper crust to be faulted, while low-velocity and high-velocity layers are alternatively distributed in the middle crust under the influence of the mantle and the lower crust. The middle and lower crust materials were detached from the top of the sub-mantle plume to the surroundings while the sub-mantle plume materi  相似文献   

2.
Western Yunnan is located within a gigantic Tethys orogenic zone between Gondwana and Laurasia. Magmatic activity records of the associated Wilson orogenic cycle show that the causes of plate spreading in the region might have been related to sub-mantle plume. Tectonics, geophysics, sedimentary strata, tectonic evolution of the lithosphere and other research results indicate that there is geological evidence for mantle plume magmatic activities in West Yunnan. Tomography also supports the idea that there is a subducting slab near the Red River fault and an upwelling mantle plume in West Yunnan. Here our research presents seismic evidence for upwelling mantle plume, which is a main cause leading to subducting slab in West Yunnan. The analysis is based on compressional-to-shear (P-to-S) converted seismic phases, recorded on seismograph stations in the Sichuan-Yunnan seismic network, and made a study on 410-km and 660-km discontinuities, as well as on three sections of CCP stacking.  相似文献   

3.
In the Beishan rift in the eastern Tianshan orogen, Xinjiang Province, a N-S-trending dyke swarm is present in the Pobei area. The swarm cuts through the 270–290 Ma mafic-ultramafic intrusions associated with Ni-Cu sulphide mineralization. These mafic-ultramafic intrusions are typically found along E-W major faults in the Tianshan orogenic belts. We report SHRIMP U-Pb dating of zircons from a dyke of alkaline composition, which yielded a mean age of 252±9 Ma. Alkaline dykes of the same age are found in the Altay region of Siberia. This age is younger than the 270–290 Ma intraplate magmatic events that produced the mafic-ultramafic intrusions in the region, but in general agreement with the 250–260 Ma Permian plume event that gave rise to the Siberian traps and the Emeishan flood basalts in SW China. We suggest that there is a link between the Emeishan event and the dyke swarm in the Beishan rift and that the intraplate magmatism at 270–290 Ma reflects an early stage of mantle plume activity. The N-S trending dyke swarm in the Beishan rift may represent a later stage in the evolution of mantle plume activity in the NW and SW of China. We also speculate that in Beishan rift and possibly elsewhere in the Tianshan region, the dykes fed basaltic volcanism, whose products have since been eroded due to the strong uplift of the Tianshan orogen as a result of the India-Eurasia collision in the Cenozoic.  相似文献   

4.
The Qifengcha-Detiangou gold deposit is a medium-sized deposit recently found in Huairou County, Beijing. It belongs to the altered mylonite type with superimposed quartz vein type and is related to the early Yanshanian magmatic activity. Characterized by multiperiodic activity, the NE-trending Qifengcha fault is a regional ore-controlling structure in the area, and gold mineralization develops only in its southeastern part. Meanwhile, gold mineralization is controlled by the Yunmengshan metamorphic core complex. The nearly N-S- and E-W-trending low-angle detachment faults, reformed by the Qifengcha fault in the northwestern part of the core complex, are the main ore-bearing faults. All discovered gold deposits are located within an area 1.5-4.0 km away from the boundary of the upwelling centre. The N-S- (NNE-) and E-W-trending ore-bearing faults are ductile-brittle structural zones developing in shallow positions and subjected mainly to compressive deformation. The structural ore-controlling effects ar  相似文献   

5.
The Duobaoshan ore concentration area, located in Nenjiang County of Heilongjiang Province, is an important porphyry Cu-Mo ore concentration area in China, which is characterized by complex magmatic activities and multi–phase overprinting metallogenesis. On the basis of field geological observation, systematic sampling, in-lab analysis and the metallogenic regularity in the Xiang'an–Mongolian metallogenic belt, this work carried out high-precision dating and geochemical analysis on the Yuejin, 173-kilometer and Wolihedingzi rock bodies. These rock bodies are renamed monzonitic granite and their consistent age(238 Ma) show that they were formed not in Variscan but in Indosinian. Therefore, it is inferred that the ore spots formed in the potassium silicate and sericite alteration zones of the rock mass also belong to Indosinian. In addition, we collected granodiorite from the Tongshan mining pit, and its zircon age is 223.1±2.8 Ma and the Cu content of the sample is high. The Tongshan mineralization is inferred to undergo the superimposition of Indosinian diagenetic mineralization. The age of the granodiorite porphyry related to copper-molybdenum mineralization in the Xiaoduobaoshan area is 222.1±5.5 Ma, and the earlier age of granodiorite is 471.8±7.4 Ma, indicating that the initial magmatic activities belong to the Duobaoshan porphyry system in the Caledonian period. The geochemical characteristics of the Indosinian rock samples show continental arc features, with reference to tectonic-magmatic activities of the whole Daxing'anling area. We consider that the magmatic activities and mineralization of the Indosinian period are affected by the southward subduction of Okhotsk Ocean since Late Permian. By combining the mineralization rules of Daxinganling area and the structural systems of Duobaoshan ore concentration area, we divide two rock-mineralization belts in this area including the Yuejin–Duobaoshan–Tongshan belt and 173-kilometer–Xiaoduobaoshan–Wolihedingzi belt, which are distributed nearly parallel along the NW-trending fractures and show similar geotectonic settings and the timing of the magmatic activities. It is favorable for discovering porphyry Cu-Mo deposits in these two metallogenic belts, especially in the Yuejin, 173-kilometer and Wolihedingzi areas where less research work has been made.  相似文献   

6.
The northwest of Jiaodong peninsula is characterized by its greatest gold concentration area, enormous gold reserves and limited time interval (115±5Ma) of gold mineralization in China. Studies show that the east area of north China began its mantle plume evolution since the Yanshanian movement, and the Laiyang sub-mantle plume and its surrounding mantle branches such as those in Guojiadian, Aishan and Panshidian were formed in the mineralization concentration area of northwestern Jiaodong peninsula. With the development of mantle plume →sub-mantle plume → mantle branch→ favorable expending structures, the deep-derived hydrothermal fluid moved up to the favorable places, such as brittle-ductile or ductile-brittle shearing zones, the internal and external contact zones of intrusions, dense fracturing zones and the contact zones between dikes and countryrocks, and concentrated into deposits. Then the gold mineralization concentration zones that are centralized on mantle branches were formed. This study takes Guojiadian mantle branch as an example to discuss their metallogenetism and conclude the metallogenetic mode.  相似文献   

7.
The Emeishan flood basalts can be divided into high-Ti (HT) basalt (Ti/Y>500) and low-Ti (LT) basalt (Ti/Y<500). Sr, Nd isotopic characteristics of the lavas indicate that the LT- and the HT-type magmas originated from distinct mantle sources and parental magmas. The LT-type magma was derived from a shallower lithospheric mantle, whereas the HT-type magma was derived from a deeper mantle source that may be possibly a mantle plume. However, few studies on the Emeishan flood basalts involved their Pb isotopes, especially the Ertan basalts. In this paper, the authors investigated basalt samples from the Ertan area in terms of Pb isotopes, in order to constrain the source of the Emeishan flood basalts. The ratios of 206Pb/204Pb (18.31–18.41), 207Pb/204Pb (15.55–15.56) and 208Pb/204Pb (38.81–38.94) are significantly higher than those of the depleted mantle, just lying between EM I and EM II. This indicates that the Emeishan HT basalts (in the Ertan area) are the result of mixing of EMI end-member and EMII end-member.  相似文献   

8.
We present a review of geophysical models of the continental lithosphere of Norden, which includes the Nordic countries (Denmark, Iceland, Finland, Norway, Sweden), Greenland, and the adjacent regions of the neighbouring countries. The structure of the crust and the lithospheric mantle reflects the geologic evolution of Norden from Precambrian terrane accretion and subduction within the Baltic Shield and Greenland to Phanerozoic rifting, volcanism, magmatic crust formation, subduction and continent-continent collision at the edges of the cratons and at the plate boundaries. The proposed existence of a mantle plume below Iceland has not been uniquely demonstrated by the available seismic evidence. Its connection to the break-up of the North Atlantic Ocean c. 65 My ago is uncertain, but the 〉30 km thick crust in the strait between Iceland and Greenland may indicate the track of the plume. Using the results from seismic (reflection and refraction profiles, P- and S-wave, body-wave and surface-wave tomography), thermal, gravity, and petrologic studies,we review the structure of the crust and the lithospheric mantle of Norden and propose an integrated model of physical properties of the lithosphere of the region, including maps of lateral variation in crustal and lithospheric thicknesses and compositional variation in the lithospheric mantle.  相似文献   

9.
1 Introduction It has been understood in the study of terrestrial heat flow that the distribution of heat flow in the interior of continent is influenced by a large number of factors, involving heat sources (e.g. mantle heat flow, heat production of radioactive elements in the crust, magmatic activity, and heat production of tectonic deformation), heat transfercondition (e.g. thermal conductivity and thickness of media), groundwater circulation, etc. On the background of these factors it is pa…  相似文献   

10.
There are four deposit types related to a Permian mafic complex in northern Xinjiang, i.e., copper-nickel sulfide deposit, vanadic titanomagnetite deposit, magnetite (-cobalt) deposit and Cu-Ni- VTiFe composite deposit. The deposits are distributed spanning tectonic units with close and consecutive metallogenic ages. A transitional deposit type can occur among the end-member deposits. Trace elements of host rocks show that they can derive from similar source area. Hence, they constitute a particular metallogenic series related to a mafic-ultramafic complex that is also a symbol series of the post-collisional stage of the Central Asia Metallogenic Province (CAMP). The metallogenic ages of the series are between 260 Ma and 300 Ma throughout the Permian. Unlike mineralization from a mantle plume, the metallogenic period of this series spans at least 40 Ma. Compared with related deposits of the Emeishan mantle plume, the North Xinjiang series has a similar ore-forming element assemblage but has preferably developed Cu-Ni sulfide deposits rather than vanadic titanomagnetite deposits. In concomitance with this series, North Xinjiang area has developed a set of syntectonic Au-Cu-Mo metallogenic series related to a felsic volcanic-intrusive complex, which might indicate that there is no direct relationship with mantle plume activity. From early to late, i.e., the sequence of copper-nickel sulfide to magnetite (-cobalt) to vanadic titanomagnetite deposit, the host rock series evolves from mafic-ultramafic and tholeiite series to mafic and alkalic series, the ~REE content tends to increase with increasing of REE fractionation, and some of the trace elements (particularly LIL) also show an increasing tendency. The above evolutionary regularity possibly reflects a course where the magma source deepens and thermal interface moves down, energy gradually exhausts, and neo-continental crust forming in the postcollision stage tends to stabilize.  相似文献   

11.
The study of Late Cretaceous magmatic rocks, developed as a result of magmatism and related porphyry mineralization in the northern Lhasa block, is of significance for understanding the associated tectonic setting and mineralization. This paper reports zircon chronology, zircon Hf isotope data, whole-rock Sr–Nd isotope data, and geochemistry data of Balazha porphyry ores in the northern Lhasa block. Geochemical features show that Balazha ore-bearing porphyries in the northern Lhasa block belong to high-Mg# adakitic rocks with a formation age of ~90 Ma; this is consistent with the Late Cretaceous magmatic activity that occurred at around 90 Ma in the region. The age of adakitic rocks is similar to the molybdenite Re–Os model age of the ore-bearing porphyries in the northern Lhasa block, indicating that the diagenesis and mineralization of both occurred during the same magmatism event in the Late Cretaceous. The Hf and Sr–Nd isotope data indicate that these magmatic rocks are the product of crust–mantle mixing. Differing proportions of materials involved in such an event form different types of medium-acid rocks, including ore-bearing porphyries. Based on regional studies, it has been proposed that Late Cretaceous magmatism and porphyry mineralization in the northern Lhasa block occurred during collision between the Lhasa and Qiangtang blocks.  相似文献   

12.
The Baimazhai nickel deposit, Yunnan Province, China, is located in the southern part of the Sanjiang (Tri-river) alkali-rich intrusive rock belt (Sanjiang ARIR). In this paper was conducted ^40Ar-^39Ar dating of two phlogopites in lamprophyres which are, as dikes, widely distributed in the orefield, and two plateau ages were acquired, i.e., 32.46±0.62 Ma and 32.01±0.60 Ma, respectively (averaging 32.23±0.60 Ma). The ages are obviously younger than those of the ore-hosted complex and mineralization of the Baimazhai nickel deposit. In combination with the characteristics, it is indicated that lamprophyres in the orefield and those in the Sanjiang ARIR are similar in tectonic setting, mineral assemblage and geochemistry. It is considered that lamprophyres in the orefield are the important component of the Sanjiang ARIR, and the lamprophyres and ore-hosted complex in the orefield represent the products of two times of different magmatic activity from different mantle sources. On the other hand, the age of lamprophyres in the orefield is older than that of the strike-slip shearing of the Ailaoshan-Honghe fault belt, suggesting that the strike-slip shearing of the Ailaoshan-Honghe fault belt is not the factor leading to magmatic activity of lamprophyres in the orefield, while it is more possible that magmatic activity of the Sanjiang ARIR promoted strike-slip shearing of the fault belt.  相似文献   

13.
Metallogenesis in the gold ore-concentrated zone of Northwest Shandong Peninsula is closely related to deep processes.The region in the eastern part of North China entered into the stage of mantle plume evolution during the Yanshanian movement,following the long-time stage of stable platform evolution during Paleozoic time.At that time,the ore-concentrated zone of Northwest Shandong Peninsula just entered into the development-evolution stage of the Laiyang sub-mantle plume and the Guojiadian mantle branch structure in its periphery.The core-mantle-source gold was present in the gas-liquid form,and it migrated through mantle plume→sub-mantle plume→mantle branch structure→favorable tectonic expansion zone to the favorable loci of the mantle branch structure,where gold was deposited as ores,thereafter constituting a series of large-to medium-sized gold deposits distributed around the Guojiadian mantle branch structure.This study also dealt with the Jiaojia fault as the main detachment(fault altered rock) belt on the northwestern margin of the mantle branch structure and also presented a basic cognition about the fact that the Sanshandao fault as the listric fault on the hanging wall of the detachment belt.Furthermore,on this basis,this study also pointed out the orientation for further ore prospecting in this region.  相似文献   

14.
The Baimazhai nickel deposit,Yunnan Province,China,is located in the southern part of the Sanjiang (Tri-river) alkali-rich intrusive rock belt (Sanjiang ARIR). In this paper was conducted 40Ar-39Ar dating of two phlogopites in lamprophyres which are,as dikes,widely distributed in the orefield,and two plateau ages were ac-quired,i.e.,32.46±0.62 Ma and 32.01±0.60 Ma,respectively (averaging 32.23±0.60 Ma). The ages are obviously younger than those of the ore-hosted complex and mineralization of the Baimazhai nickel deposit. In combination with the characteristics,it is indicated that lamprophyres in the orefield and those in the Sanjiang ARIR are similar in tectonic setting,mineral assemblage and geochemistry. It is considered that lamprophyres in the orefield are the im-portant component of the Sanjiang ARIR,and the lamprophyres and ore-hosted complex in the orefield represent the products of two times of different magmatic activity from different mantle sources. On the other hand,the age of lamprophyres in the orefield is older than that of the strike-slip shearing of the Ailaoshan-Honghe fault belt,sug-gesting that the strike-slip shearing of the Ailaoshan-Honghe fault belt is not the factor leading to magmatic activity of lamprophyres in the orefield,while it is more possible that magmatic activity of the Sanjiang ARIR promoted strike-slip shearing of the fault belt.  相似文献   

15.
正Objective The research area is located in the north of the Xing'an block and within the Ali River-Zhalantun granite belt in the eastern part of the Xingmeng orogenic belt.The geotectonic setting and geological evolution history of this area are complex with strong magmatic activity and extremely developed granite rocks.Since predecessors  相似文献   

16.
The Zhangjiakou-Xuanhua area is a mineral resource-concentrated area for gold-silver polymetallic ore deposits. The temporal and spatial distribution and origin of mineral resources have been argued for a long time. Based on the comprehensive studies of geochronology and sulfur, lead, oxygen, carbon and noble gas isotopes, it is considered that the temporal and spatial distribution of mineral resources in this area is obviously controlled by the Zhangjiakou-Xuanhua mantle branch structure, as is reflected by the occurrence of gold deposits in the inner parts and of Ag-Pb-Zn polymetallic ore deposits in the outer parts. The mineralization took place mainly during the Yanshanian period. Ore-forming materials came largely from the deep interior of the Earth, and hydrothermal fluids were derived predominantly from Yanshanian magmatism.  相似文献   

17.
正Alkaline magmatism is often associated with the initial or final stages of huge plume activity.The alkaline bodies are most often found within the boundary area of plume impact upon the continents.The initial stages of the  相似文献   

18.
Cenozoic potassic–ultrapotassic igneous rocks are widespread in the southeastern Tibetan Plateau. Their petrogenesis and magmatic processes remain subject to debate in spite of numerous publications. Almost all of the Cenozoic extrusive and intrusive rocks in the Yao’an area, western Yunnan Province, SW China, are geochemically shoshonitic, collectively termed here the Yao’an Shoshonitic Complex (YSC). The YSC is located in the (south)easternmost part of the ENE?WSW-trending, ~550 km-long and ~250 km-wide Cenozoic magmatic zone; the latter separates the orthogonal and oblique collision belts of the India–Eurasia collision orogen. Previously published geochronological and thermochronological data revealed that the rocks of the YSC were emplaced over a short timespan of 34–32 Ma. This and our new data suggest that the primary magma of the YSC likely was formed by partial melting of ancient continental lithospheric mantle beneath the Yangtze Block. This part of the continental lithospheric mantle had likely not been modified by any oceanic subduction. Fractionation crystallization of an Mg- and Ca-bearing mineral and Ti-Fe oxides during the magmatic evolution probably account for the variable lithologies of the YSC.  相似文献   

19.
The formation ages of global magmatic sulfide Ni-Cu deposits are from Archean to Mesozoic,the Neoarchean and Neoproterozoic are the two peaks.In China,the formation ages of magmatic sulfide deposits are from Proterozoic to Mesozoic,and the Neoproterozoic and late Paleozoic are the two peaks,.Compared with the global magmatic deposits,there is no case study of the Archean magmatic Ni-Cu sulfide deposits in China before.The nickel deposits formed in Neoproterozoic are located on the margin of the North China Block and Yangtze Block(e.g.Jinchuan,Dapoling),and those formed in the late Paleozoic are mainly distributed in the Central Asian Orogenic Belt(CAOB).Emeishan and Tarim Large Igneous Provinces(LIPs).such as Kalatongke,Yangliuping,and Pobei.  相似文献   

20.
The intrusions of the Panzhihua-Xichang(Panxi) region in southwest China have become well known in the past decade because they host large and rich magmatic oxide deposits that are mined for Fe,Ti and V.These intrusions form part of the Emeishan large igneous province(ELIP),which is commonly believed to be the product of melting in a mantle plume.The ELIP was emplaced about 260 Ma ago,at the same time as the end-Guadalupian mass extinction.The investigation of the Panxi intrusions therefore provides information relevant to three broad areas of the earth sciences:(1)the petrogenesis of mafic magmas, (2) the impact of major magmatic events and global climate and  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号