首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although studies of sediment transport in steep and coarse-grained channels have been more numerous in recent years, the dynamics of sediment transport in step–pool river systems remain poorly understood. This paper investigates displacements of individual clasts through Spruce Creek (Québec, Canada), a classic step–pool channel, and the effects of the channel morphology on the path length of the clasts. Passive integrated transponder tags (PIT) were used to track the displacement of 196 individual particles over a range of discharges including the bankfull stage. Clasts were tracked after five sequences of flood events. The results showed that the distance distributions match a two-parameter Gamma model. Equal mobility transport occurs for the particle size investigated during each sequence of flood events. Mean travel distance of the clasts can be estimated from excess stream power, and the mobility of the clasts is more than an order of magnitude less than the model reported in riffle–pool channels. The dominant morphological length scale of the bed also controls the path length of the clasts. These results confirm some preliminary observations on sediment transport in step–pool channels.  相似文献   

2.
The mechanisms which control the formation and maintenance of pool–riffles are fundamental aspects of channel form and process. Most of the previous investigations on pool–riffle sequences have focused on alluvial rivers, and relatively few exist on the maintenance of these bedforms in boulder-bed channels. Here, we use a high-resolution two-dimensional flow model to investigate the interactions among large roughness elements, channel hydraulics, and the maintenance of a forced pool–riffle sequence in a boulder-bed stream. Model output indicates that at low discharge, a peak zone of shear stress and velocity occurs over the riffle. At or near bankfull discharge, the peak in velocity and shear stress is found at the pool head because of strong flow convergence created by large roughness elements. The strength of flow convergence is enhanced during model simulations of bankfull flow, resulting in a narrow, high velocity core that is translated through the pool head and pool center. The jet is strengthened by a backwater effect upstream of the constriction and the development of an eddy zone on the lee side of the boulder. The extent of flow convergence and divergence is quantified by identifying the effective width, defined here as the width which conveys 90% of the highest modeled velocities. At low flow, the ratio of effective width between the pool and riffle is roughly 1:1, indicating little flow convergence or divergence. At bankfull discharge, the ratio of effective width is approximately 1:3 between the pool and downstream riffle, illustrating the strong flow convergence at the pool head. The effective width tends to equalize again with a ratio of 1:1 between the pool and riffle during a modeled discharge of a five-year flood, as the large roughness elements above the pool become drowned out. Results suggest that forced pool–riffle sequences in boulder-bed streams are maintained by flows at or near bankfull discharge because of stage-dependent variability in depth-averaged velocity and tractive force.  相似文献   

3.
Timothy P. Hanrahan   《Geomorphology》2007,86(3-4):529-536
While the importance of river channel morphology to salmon spawning habitat is increasingly recognized, quantitative measures of the relationships between channel morphology and habitat use are lacking. Such quantitative measures are necessary as management and regulatory agencies within the Pacific Northwest region of the USA, and elsewhere, seek to quantify potential spawning habitat and develop recovery goals for declining salmon populations. The objective of this study was to determine if fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas in the Snake River, Idaho, USA, were correlated with specific bedform types at the pool–riffle scale. A bedform differencing technique was used to objectively quantify the longitudinal riverbed profile into four distinct pool–riffle units that were independent of discharge. The vertical location of thalweg points within these units was quantified with a riffle proximity index. Chinook salmon spawning areas were mapped and correlated with the pool–riffle units through the use of cross-tabulation tables. The results indicate that 84% of fall Chinook salmon spawning areas were correlated with riffles (χ2 = 57.5, df = 3, p < 0.001), with 53% of those areas located on the upstream side of riffle crests. The majority of Snake River fall Chinook salmon spawning occurred at elevations greater than 80% of the difference in elevation between the nearest riffle crest and pool bottom. The analyses of bedform morphology will assist regional fish managers in quantifying existing and potential fall Chinook salmon spawning habitat, and will provide a quantitative framework for evaluating general ecological implications of channel morphology in large gravel-bed rivers.  相似文献   

4.
Identification of steps and pools from stream longitudinal profile data   总被引:1,自引:0,他引:1  
Field research on step–pool channels has largely focused on the dimensions and sequence of steps and pools and how these features vary with slope, grain sizes and other governing variables. Measurements by different investigators are frequently compared, yet no means to identify steps and pools objectively have been used. Automated surveying instruments record the morphology of streams in unprecedented detail making it possible to objectively identify steps and pools, provided an appropriate classification procedure can be developed.To achieve objective identification of steps and pools from long profile survey data, we applied a series of scale-free geometric rules that include minimum step length (2.25% of bankfull width (Wb)), minimum pool length (10% of Wb), minimum residual depth (0.23% of Wb), minimum drop height (3.3% of Wb), and minimum step slope (10° greater than the mean slope). The rules perform as well as the mean response of 11 step–pool researchers who were asked to classify four long profiles, and the results correspond well with the channel morphologies identified during the field surveys from which the long profiles were generated. The method outperforms four other techniques that have been proposed. Sensitivity analysis shows that the method is most sensitive to the choice of minimum pool length and minimum drop height.Detailed bed scans of a step–pool channel created in a flume reveal that a single long profile with a fixed sampling interval poorly characterizes the steps and pools; five or more long profiles spread across the channel are required if a fixed sampling interval is used and the data suggest that survey points should be located more frequently than the diameter of the step-forming material. A single long profile collected by a surveyor who chooses breaks in slope and representative survey points was found to adequately characterize the mean bed profile.  相似文献   

5.
A typhoon in 1993 induced major aggradation along Oyabu Creek, a steep, gravel bed mountain stream in Kyushu, Japan. Processes of sediment reworking are inferred from a 7-year monitoring program that measured adjustments to channel cross-sections, the longitudinal profile, and the extent/distribution of bedrock outcrops along a 3-km study reach. Over time, the reach adopted a riffle and pool structure, with notable increase in the area of exposed bedrock on the bed. This adjustment process was characterised by progressive reduction in sediment storage change per unit flow. The relaxation pathway following disturbance induced by the typhoon was shaped by the magnitude and frequency of subsequent rainfall events, the capacity of these events to transport available sediments, and physical linkages between reaches. Adjacent subreaches demonstrated differing relaxation pathways in response to these influences, induced by spatial and temporal variability in threshold conditions along the channel. Longer-term evidence indicates that responses to major disturbance, such as the 1993 typhoon, occur as ‘cycles’ of around 20-year duration. A relaxation period of 7 years is required to attain a quasi-equilibrium bed configuration and rate of sediment flux. The timeframe of cycles is considered to reflect changes to hillslope–channel bed coupling, marking the period required to generate sufficient sediment stores to reactivate phases of aggradation and subsequent degradation.  相似文献   

6.
The present study investigated the use of computational fluid dynamics (CFD) in predicting the formation, development, and migration of free-forming meander bends. The three-dimensional CFD model computed water flow and sediment transport in alluvial channels and predicted vertical and horizontal bed changes. Different algorithms and parameters were tested to provide an insight into the application range of CFD when modelling free-forming meander formation. The computational domain was discretized by an unstructured grid. A control volume method was used for the discretization of the Navier–Stokes equations for the flow calculation and of the convection–diffusion equation for the sediment transport calculation. Turbulence was modelled by the kε turbulence model. The simulation was started from an initially straight grid, with neither sediment feed nor any perturbation at the inflow boundary. The model computed the river bed evolution over a real time period of 3 d. Results were compared with laboratory experiments and showed that the CFD model can predict many of the characteristics of the alluvial meander formation and migration. However, some limitations and uncertainties exist that have to be clarified in future investigations.  相似文献   

7.
Herein, we undertake a geomorphological analysis in which spatial and temporal trends of bed and bank erosion along an 18-km length of Hotophia Creek, Mississippi, are estimated for the period between 1961 and 2050. The evaluation was undertaken for two scenarios of channel response to channelization during 1961–1963. One scenario represents the ‘actual’ response of the channel and includes the effects of installing a series of grade-control structures (GCS) between 1980 and 1996, while the other represents a hypothetical scenario in which the channel is left to adjust naturally. This allows the effectiveness of GCS in reducing in-channel erosion to be assessed. The analysis relies on the availability of channel survey data to develop empirical bed and bank response models for each adjustment scenario, supplemented by bank stability modelling to predict future rates of bank erosion. Results indicate that channel erosion rates decline nonlinearly with respect to time since 1961, for both adjustment scenarios. However, by the year 2050, the “with” GCS adjustment scenario results in the cumulative removal of some 663,000 (9%) extra tonnes of sediment relative to the “without” GCS scenario. Most (63%) of this excess is derived from enhanced bed erosion during 1976–1985 and 1985–1992, with the remainder derived from increased bank erosion during 1985–1992. Detailed analysis of the patterns of erosion and deposition, and their association with the GCS, provides evidence to support the view that GCS installed along Hotophia Creek have, for the most part, been ineffective in reducing channel erosion rates. This is because the GCS were installed too late to prevent bed degradation, caused by the 1961–1963 channelization, migrating upstream. In addition, some structures have disrupted the downstream transmission of bed material from eroded reaches upstream, exacerbating bed degradation and bank erosion in incised reaches downstream.  相似文献   

8.
This paper describes the application of a commercially available, three-dimensional computational fluid dynamic (CFD) model to simulate the flow structure in an upland river that is prone to flooding. Simulations use a rectangular channel geometry, smooth sidewalls and a bed topography obtained from the field site that contains a subdued pool–riffle sequence. The CFD model uses the RNG κ turbulence closure scheme of Yakhot and Orszag (J. Sci. Comput. 1 (1986) 1), as implemented in FLUENT 4.4.4, with a free surface. Results are shown for numerical runs simulating a 1:100 year return interval flood. Output from the numerical model is compared to a physical model experiment that uses a 1:35 scale fibreglass mould of the field study reach and measures velocity using ultrasonic Doppler velocity profiling (UDVP). Results are presented from the numerical and flume models for the water surface and streamwise velocity pattern and for the secondary flows simulated in the numerical model. A good agreement is achieved between the CFD model output and the physical model results for the downstream velocities.Results suggest that the streamwise velocity is the main influence on the flow structure at the discharge and channel configuration studied. Secondary flows are, in general, very weak being below the resolution of measurement in the physical model and less than 10% of the streamwise velocity in the numerical model. Consequently, there is no evidence for a ‘velocity dip’. It is suggested that the subdued topography or inlet morphology may inhibit the development of secondary flows that have been recorded in previous flat-bed, rectangular open channel flows. A significant corollary of these results is that the morphological evolution of the pool–riffle sequence at high discharges may be controlled primarily by the downstream distribution of velocity and sediment transport with little role for lateral sorting and sediment routing by secondary flows. This paper also raises a number of issues that may be of use in future CFD modelling of three-dimensional flow in open channels within the geomorphological community.  相似文献   

9.
边界条件对曲流发育影响的过程响应模型实验研究   总被引:7,自引:0,他引:7  
金德生 《地理研究》1986,5(3):12-21
基于系统论模型化原理及地貌演化类比性法则的过程响应模型,有利于研究河型演化,河道过程及控制因素的作用。运用该模型所进行的边界条件对曲流发育影响的实验表明,河漫滩物质结构及河床上的抗蚀露头对曲流发育具有控制作用。  相似文献   

10.
Ellen Wohl  David Dust 《Geomorphology》2012,138(1):329-338
Since 1974, flow releases from Long Draw Reservoir have increased annual peak flows on La Poudre Pass Creek, Colorado, from ~ 5.6 m3/s to > 8.4 m3/s. The creek drains 61 km2 and channel morphology varies from step-pool to pool-riffle. Comparison of five channel reaches along the creek to channel reaches along neighboring rivers without flow regulation indicates that channel width has increased by as much as a factor of three along La Poudre Pass Creek. Width-to-depth ratio has also increased, the bed material in step-pool channel reaches has coarsened, and residual pool volumes have increased in pool-riffle channel reaches. Pool-riffle channel reaches have undergone the greatest change in response to flow augmentation. Although discharge has increased consistently for all five channel reaches, morphologic response varies in relation to gradient and channel morphology, making it impractical to precisely predict a priori the magnitude of channel response to flow augmentation.  相似文献   

11.
This article analyzes the water and suspended solid fluxes through a straightened meander of the southern branch of the Danube Delta (the St. George branch) during episodic flooding. The Mahmudia study site corresponds to a vast natural meander which was cut off in 1984–1988 by an artificial canal opened to shipping. The meander correction accelerated fluxes through the artificial canal and dramatically enhanced deposition in the former meander. After his formation, the cutoff meander acted as sediment storage locations, essentially removing channel and point bar sediments from the active sediment budget of the main channel. Increases in slope and stream power in reaches upstream and downstream have also occurred, but to a lesser degree. During the one-hundred-year recurrent flood in April 2006, bathymetry, flow velocity and discharge data were acquired across several sections of both natural and artificial channels with an acoustic Doppler current profiler (aDcp Workhorse Sentinel 600 kHz, Teledyne RDI) in order to investigate the distribution of the flow and sediment and his impact on sedimentation in a channelized reach and its adjacent cutoff. The contrasting hydro-sedimentary processes at work in both channels and bifurcation/confluence nodal points are analyzed from the measured flux distribution, morphological profiles and velocity and concentration patterns. In the cutoff, a diminishing of the intensity of the flow velocity (c. 50%) and of the SSC was observed correlated with the aggradation of the river bed. In the bifurcation/confluence nodal points and in the artificial canal were observed the most intensive hydrodynamic activity (high flow velocity, SSC concentration, degradation of the river bad). Both the event-scale and long-term morphological trends of the alluvial system are discussed analyzing the boundary shear stress and SSC variability. Excess boundary shear stress in the sub-reaches directly affected by cutoffs resulted in scour that increased downstream bed material load. These high sediment loads play a key role in driving morphological adjustments towards equilibrium in the cutoff channel.The approach followed in this paper combines detailed episodic in-situ aDcp measurements and robust numerical 1D modeling in order to provide a practical comprehension of the relevant morphodynamical processes. The 1D model reproduces robustly the continuity of hydrodynamical variables along the streamwise axes of the two-channel network. The simulated are used in the paper for highlighting reach-scale morphological processes, at both event and long-term scales.  相似文献   

12.
An acoustic Doppler current profiler is used to characterize the river velocity against the morphology of the Yangtze River from Chonqing to the sea. High flow velocities occur in the Three Gorges section and lower velocities in the middle and lower reaches of the river. This is largely due to the change in river pattern from a high gradient deeply-cut valley to a flat fluvial plain. Flow velocities fluctuate in the middle Yangtze due to the presence of meander bends of different length. There are numerous smaller velocity fluctuations in the lower Yangtze channel that reflect multichannel pattern with numerous sand bars and a river morphology affected by bedrock outcrops. Water depths of 40–100 m occur in the Three Gorges valley but decrease to 15–40 m in the middle and lower Yangtze. At the Gezhou Reservoir, 30 km downstream of the Three Gorges damsite velocity drops to low (< 1.0 m s− 1) 20 km reach. A second low velocity (< 0.5 m s− 1) zone, about 20 km in length, is located in the lower Yangtze near the coast probably due to the tidal influence. The results from this research will serve as a datum for evaluating changes to the river once the Three Gorges dam is completed in 2009.  相似文献   

13.
Recent morphological evolution of the Lower Mississippi River   总被引:1,自引:0,他引:1  
This study documents slope and stream power changes in the Lower Mississippi River during the pre-cutoff (1880s–1930s), and post-cutoff (1943–1992) periods. The study reach extends from New Madrid, MO, to Natchez, MS, a distance of about 900 km. Analyses for six major reaches and 13 sub-reaches for the pre- and post-cutoff periods indicate that the river presently has a much larger slope and stream power than prior to the cutoffs. The largest increases have occurred between Fulton, TN, and Lake Providence, LA, where slope and stream power increases range from about 27% to 36% and 20% to 38%, respectively. Increases in slope and stream power in reaches upstream and downstream have also occurred, but to a lesser degree. Previous investigations have shown that no coarsening of the bed material has occurred since 1932, and that the bed material may actually be somewhat finer overall. As the Lower Mississippi River is not a sediment-starved system, an increase in stream power with no change in D50 would be expected to be offset by an increase in the bed material load as the river adjusts towards equilibrium. Previous investigators have inferred a reduction in the sediment loads on the Mississippi River this century based on analyses of total measured suspended loads. However, these results should be viewed as primarily representing the changes in wash load and should not be taken to imply that bed material loads have also decreased. Therefore, the bed material loads in the study reach should be greater than in the pre-cutoff period. Excess stream power in the sub-reaches directly affected by cutoffs resulted in scour that increased downstream bed material load. These elevated sediment loads play a key role in driving morphological adjustments towards equilibrium in the post-cutoff channel. The stability status of the channel in the study reach currently ranges from dynamic equilibrium in the farthest upstream reaches through severe degradation to dynamic equilibrium in the middle reaches, and aggradation in the lowest reaches. These evolutionary trends cannot be explained by consideration of changes in slope and stream power alone. Changes in the incoming bed material load to each reach generated by upstream channel evolution must also be considered.  相似文献   

14.
An expert-based approach was used to identify 10 morphological unit types within a reach of the gravel bed, regulated Yuba River, California, that is heavily utilized by spawning Chinook salmon (Oncorhynchus tshawytscha). Analysis of these units was carried out using two-dimensional hydrodynamic modeling, field-based geomorphic assessment, and detailed spawning surveying. Differently classified morphological units tended to exhibit discrete hydraulic signatures. In most cases, the Froude number adequately differentiated morphological units, but joint depth–velocity distributions proved the most effective hydraulic classification approach. Spawning activity was statistically differentiated at the mesoscale of the morphological unit. Salmon preferred lateral bar, riffle, and riffle entrance units. These units had moderately high velocity (unit median > 0.45 m s− 1) and low depth (unit median < 0.6 m), but each exhibited a unique joint depth–velocity distribution. A large proportion of redds (79%) were associated with conditions of convective flow acceleration at riffle and riffle entrance locations. In addition to reflecting microhabitat requirements of fish, it was proposed that the hydraulic segregation of preferred from avoided or tolerated morphological units was linked to the mutual association of specific hydraulic conditions with suitable caliber sediment that promotes the provision and maintenance of spawning habitat.  相似文献   

15.
This paper examines channel dynamics and bed load transport relations through an obstruction-forced pool in a forest, gravel-bed stream by comparing flow conditions, sediment mobility, and bed morphology among transects at the pool head, centre, and tail. Variable sediment supply from within and outside of the channel led to a complex pattern of scour and fill hysteresis. Despite the large flood magnitude, large portions of the bed did not scour. Scour was observed at three distinct locations: two of these were adjacent to large woody debris (LWD), and the third was along the flow path deflected by a major LWD obstruction. Bed material texture showed little change in size distribution of either surface or subsurface material, suggesting lack of disruption of the pre-flood bed. Fractions larger than the median size of the bed surface material were rarely mobile. Sediment rating relations were similar, although temporal variation within and among stations was relatively high. Relations between bed load size distribution and discharge were complex, showing coarsening with increasing discharge followed by fining as more sand was mobilized at high flow. Lack of local scour in the pool combined with bed load fining and net fill by relatively fine material implied that the dominant sources of mobile sediment were upstream storage sites and local bank collapse. Patterns of flow, channel dynamics, and sediment mobility were strongly affected by a LWD flow obstruction in the pool centre that created turbulent effects, thereby enhancing entrainment and transport in a manner similar to scour at bridge piers.  相似文献   

16.
Field study of bedrock step–pool systems along the upper reaches of Soda Creek in the Three Sisters Wilderness of Oregon shows strong correlation between several form variables (shape) and channel slope. Although step height and step length showed no regular spacing and variable correlation with channel slope, length to height ratios demonstrated strong negative correlations: steep slopes (20% to 80%) featured greater step height and shorter pool lengths than did flatter channel slopes. Correlations between step height to length ratios and channel slope varied between three lithologies. Explained variations ranged from 0.984 for the oldest channel steps developed in basalt, to 0.982 for steps of intermediate age developed in andesite, to 0.964 for the youngest steps developed in dacite. Sample size was 57, 40, and 33, respectively. The frequency of pool shape classes did not vary by lithology, but specific shape classes developed under differing slope conditions by rock type. All pool classes have adjusted (developed) their form to maximize resistance to flow H/L/S, and they have done so in remarkably uniform fashion.  相似文献   

17.
Concavity in the long profile of rivers has traditionally been explained through the concept of grade, in which the slope declines downstream as a response to changing discharge, bed material size and sediment transport. Applying this concept to particular river systems has, however, proved problematic. The long profile reflects spatially-distributed form–process feedbacks between all aspects of channel morphology operating at a range of poorly defined time- and space-scales, and in the presence of natural controls. In many river systems, process–form dynamics are further complicated by engineering interventions which add additional extrinsic controls and constrain the range of intrinsic dynamics. In this paper, the 1974–75 long profile of the Lower Mississippi River is examined at three scales: the regional; the reach; and the sub-reach (pool–crossing) scales. A combination of curve-fitting, zonation algorithms, and empirical classification techniques are used to show that, although the long profile of the Lower Mississippi River is concave at the largest scale, the profile is characterised by discontinuities, shorter trends and zonal variations in the amplitude and wavelength of pool–crossing morphology. These characteristics are a response to morphological and bed material changes relating to a range of physical (geological, tectonic, tributary input) and engineering controls. Despite its apparent simplicity and correspondence to a ‘graded’ condition, the long profile of the Lower Mississippi River is actually a complex and scale-dependent morphological property. At best, the concave river profile is, therefore, a property which emerges from several scales of process–form interaction; at worst, it is no more than an artefact arising from the application of over-simplified curve-fitting techniques. Disclosure of the nature of the long profile thus requires the application of a variety of analytical techniques, as well as geomorphological explanations which are themselves scale-dependent and which consider the interaction of natural processes and the history of engineering intervention.  相似文献   

18.
A former meander of the Upper Rhône River, France, is completely filled with silt and occurs as a forested wetland. Bosminidae and Chydoridae (Crustacea, Cladocera) remains are analysed from a 6-m sediment core that reaches coarse sand and gravel layers deposited by running water. The lower layer of fine sediment, deposited by still water after the meander had been cut off, was dated at 1666±211 BC. The likely end of aquatic succession was dated at 800±150 AD. The results, processed using Factorial Correspondence Analysis, suggest 3 phases during the aquatic succession. Phase I, corresponding to open water conditions, is very short. The following phases, indicating the development of macrophyte stands, then a decrease in depth, extend much longer. The unexpectedly long duration (1000–2000 years) of these macrophyte-dominated and marshy phases may be explained by a progressive rise in the mean water level of the Rhône River. The causes of this water level rise may be related to climatic and/or fluvial dynamics changes.  相似文献   

19.
This research examines variations in bankfull cross-sections along a steep stream of the Dolomites (Cordevole stream, Belluno, Northern Italy). Field measurements were conducted to determine variations in the channel top-width at bankfull stage in relation to the drainage area and to the length of the flow path. After grouping the bed morphologies according to the Montgomery and Buffington [Montgomery, D.R., Buffington, J.M., 1997. Channel-reach morphology in mountain drainage basins. Geol. Soc. of Am. Bull. 109 (5) 596–611.] classification, we analyzed the increase in bankfull width for the dominant stream units (cascades, step pools, isolated pools and colluvial reaches at the head of the basin). We observed that the morphologies more related to the drainage area are colluvial reaches and pools; the less adaptable are steps and cascades. These differences likely result from the absence of lateral constriction in the colluvial reaches and pools, whereas the presence of coarser sediments in the bed can affect the transverse adjustments in steps and reaches dominated by cascades. Linkages between cross-section geometry and parameters related to flow (i.e. drainage area and stream power) have been analyzed together with the distribution of surface grain sizes and its coarsening pattern. The existence of distinctive bankfull widths between different morphological units points out the degree of susceptibility to be modeled according to the channel slope, reference diameter (D90), and contributing area.  相似文献   

20.
The 270 km long section of the Upper Yellow River at the First Great Bend is comprised of single channel and multiple channel systems that alternate among anastomosing, anabranching, meandering and braided reaches. The sequence of downstream pattern changes is characterized as: anastomosing-anabranching, anabranching-meandering, meandering-braided and braided-meandering. Remote sensing images, DEM data and field investigations are used to assess ahd interpret controls on these reach transitions. Channel slope and bed sediment size are key determinants of transitions in channel planform. Anas- tomosing reaches have a relatively high bed slope (0.86‰) and coarser sediment bed material (d50 = 3.5 mm). In contrast, meandering reaches have a low slope (0.30‰) and fine sediment bed material (d50 = 0.036 mm). The transition from a meandering to braided pattern is characterized by an increase in channel width-depth ratio, indicating the important role of bank strength (i.e. cohesive versus non-cohesive versus channel boundaries). Interestingly, the braided-meandering and meandering-braided transitions are coincident with variable flow inputs from tributary rivers (Baihe and Heihe rivers respectively). Theoretical analysis of the meandering-braided transition highlights the key control of channel width-depth ratio as a determinant of channel planform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号