首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Mössbauer spectroscopic studies of the Didwana‐Rajod chondrite, which fell on 1991 August 12 in western Rajasthan, India, are presented. The results are compared with the Mössbauer data of several enstatite and ordinary chondrites including the Dhajala chondrite for which Mössbauer data were acquired during the present study. The Didwana‐Rajod chondrite's iron phases and its oxidation states strongly suggest that it should be classified as an H‐type ordinary chondrite instead of the earlier suggestion (based on petrographic studies) that it could be an enstatite chondrite. The present study demonstrates that Mössbauer spectroscopy is a very powerful technique for aiding in the classification of meteorites.  相似文献   

2.
The iron‐bearing phases in a ureilite fragment (AS#051) from the Almahata Sitta meteorite are studied using Mössbauer spectroscopy, X‐ray diffraction (XRD), and electron microprobe analysis (EMPA). AS#051 has a typical ureilite texture of medium‐ to coarse‐grained silicates (olivine, orthopyroxene, and pigeonite) with minor opaques (Fe‐Ni metal, troilite, and graphite). The silicate compositions, determined by EMPA, are homogeneous: olivine (Fo90.2), orthopyroxene (En86.3Fs8.6Wo5.1), and pigeonite (En81.6Fs8.9Wo9.5), and are similar to those of magnesian ureilites. The modal abundance of mineral phases was determined by Rietveld refinement of the powder XRD data. The Mössbauer spectra at 295 K and 78 K are composed of two sharp well‐defined paramagnetic doublets superimposed on a well‐resolved magnetic sextet and other weak absorption features. The two paramagnetic doublets are assigned to olivine and pyroxene (orthopyroxene and pigeonite), and the ferromagnetic sextet to kamacite (magnetic hyperfine field ≈ 33.2 T), in agreement with the XRD characterization. The Mössbauer results also show the presence of small amounts of troilite (FeS) and cohenite ([Fe,Ni,Co]3C). Using the Mössbauer data, the relative abundance of each Fe‐bearing phase is determined and compared with the results obtained by XRD.  相似文献   

3.
Abstract— The enstatite chondrite reckling peak (rkp) a80259 contains feldspathic glass, kamacite, troilite, and unusual sets of parallel fine‐grained enstatite prisms that formed by rapid cooling of shock melts. Metallic Fe,Ni and troilite occur as spherical inclusions in feldspathic glass, reflecting the immiscible Fe‐Ni‐S and feldspathic melts generated during the impact. The Fe‐Ni‐S and feldspathic liquids were injected into fractures in coarse‐grained enstatite and cooled rapidly, resulting in thin (≤ 10 μm) semicontinuous to discontinuous veins and inclusion trails in host enstatite. Whole‐rock melt veins characteristic of heavily shocked ordinary chondrites are conspicuously absent. Raman spectroscopy shows that the feldspathic material is a glass. Elevated MgO and SiO2 contents of the glass indicate that some enstatite and silica were incorporated in the feldspathic melt. Metallic Fe,Ni globules are enclosed by sulfide and exhibit Nienrichment along their margins characteristic of rapid crystallization from a Fe‐Ni‐S liquid. Metal enclosed by sulfide is higher in Si and P than metal in feldspathic glass and enstatite, possibly indicating lower O fugacities in metal/sulfide than in silicate domains. Fine‐grained, elongate enstatite prisms in troilite or feldspathic glass crystallized from local pyroxene melts that formed along precursor grain boundaries, but most of the enstatite in the target rock remained solid during the impact and occurs as deformed, coarsegrained crystals with lower CaO, Al2O3, and FeO than the fine‐grained enstatite. Reckling Peak A80259 represents an intermediate stage of shock melting between unmelted E chondrites and whole‐rock shock melts and melt breccias documented by previous workers. The shock petrogenesis of RKPA80259 reflects the extensive impact processing of the enstatite chondrite parent bodies relative to those of other chondrite types.  相似文献   

4.
Abstract— MÖssbauer spectroscopy, x-ray diffraction (XRD) measurements, and electron microprobe analysis (EMPA) have been carried out for the investigation of a newly fallen Sudanese meteorite named New Haifa. The room temperature MÖssbauer spectrum is fitted with three sextets and two doublets. The sextets are assigned to Fe in troilite, kamacite, and taenite, and the two doublets are assigned to Fe2+in olivine and pyroxene (no Fe3+was found). The microprobe trace of Ni concentration across a kamacite-taenite-kamacite area shows a high-Ni concentration at the interfaces between kamacite and taenite. From the microprobe analysis, olivine appears to have a constant composition, whereas pyroxene has a varying composition. The mole fractions of the Fe end members of olivine (fayalite) and pyroxene (ferrosilite) are found to be 23.5% and 23.2%, respectively. Accordingly, the New Haifa meteorite is classified as an ordinary L-type chondrite.  相似文献   

5.
Abstract— A newly fallen Sudanese meteorite named Al Zarnkh was investigated using room and liquid nitrogen temperature Mössbauer measurements, X‐ray diffraction (XRD), and electron probe microanalysis (EPMA) in conjunction with energy dispersive X‐ray microscopy. The Mössbauer spectra exhibited strong paramagnetic doublets with magnetic sextets. The doublets are assigned to olivine and pyroxene, while the magnetic sextets are assigned to troilite and kamacite. Based on microprobe analyses and textural studies, olivine is the most abundant phase and occurs as fine to medium grained laths both in the groundmass and in barred olivine chondrules. Both orthopyroxenes and clinopyroxenes are present and these tend to be granular. Plagioclase is an abundant interstitial groundmass phase. Chromites were detected in some groundmass olivine and are highly chromiumand iron‐rich with no Fe3+ detected. The kamacite contains small amounts of Co. The mole fraction of the Fe end‐member of olivine (fayalite) and orthopyroxene (ferrosilite) are found to be about 28% and 23%, respectively. These values are compared with that obtained from two chondritic meteorites. Based on these results, the studied meteorite is classified as an ordinary LL5 chondrite.  相似文献   

6.
Abstract— An improvement in the velocity resolution and quality of Mössbauer spectra has been applied to a group of ordinary chondrites. This improvement permitted us to carry out a more detailed study of the iron bearing phases in these samples than has previously been possible. Mössbauer spectra of 11 ordinary chondrites of L and H chemical groups were measured using 4096 channels and presented for further analysis in 1024 channels. Subspectra of the metal grains of several chondrites demonstrated the presence of at least two magnetic sextets related to the main Fe(Ni, Co) phases. Moreover, Mössbauer study of extracted metal grains from Tsarev L5 revealed three sextets and one singlet spectral components related to various α‐Fe(Ni, Co), α‘‐Fe(Ni, Co), α2‐Fe(Ni, Co), and γ‐Fe(Ni, Co) phases. Each subspectrum of olivine and pyroxene in Mössbauer spectra of ordinary chondrites was fitted by superposition of two quadrupole doublets related to M1 and M2 sites in minerals for the first time. An analysis of relative areas and Mössbauer hyperfine parameters was performed and some differences for L and H chondrites as well as for M1 and M2 sites were observed. Mössbauer parameters of troilite and oxidized iron were analyzed. In contrast to a previous study with 512‐channel spectra, the presence of oxidized iron was found in all chondrites.  相似文献   

7.
Abstract— We report new petrographic and chemical data for the equilibrated EL chondrite Grein 002, including the occurrence of osbornite, metallic copper, abundant taenite, and abundant diopside. As inferred from low Si concentrations in kamacite, the presence of ferroan alabandite, textural deformation, chemical equilibration of mafic silicates, and a subsolar noble gas component, we concur with Grein 002's previous classification as an EL4‐5 chondrite. Furthermore, the existence of pockets consisting of relatively coarse, euhedral enstatite crystals protruding large patches of Fe‐Ni alloys suggests to us that this EL4‐5 chondrite has been locally melted. We suspect impact induced shock to have triggered the formation of the melt pockets. Mineralogical evidence indicates that the localized melting of metal and adjacent enstatite must have happened relatively late in the meteorite's history. The deformation of chondrules, equilibration of mafic silicates, and generation of normal zoning in Fe, Zn‐sulfides took place during thermal alteration before the melting event. Following parent body metamorphism, daubreelite was exsolved from troilite in response to a period of slow cooling at subsolidus temperatures. Exsolution of schreibersite from the coarse metal patches probably occurred during a similar period of slow cooling subsequent to the event that induced the formation of the melt pockets. Overall shock features other than localized melting correspond to stage S2 and were likely established by the final impact that excavated the Grein 002 meteoroid.  相似文献   

8.
Abstract– We present a detailed study of mineralogy, chemistry, and noble gases of the Neuschwanstein (EL6) chondrite that fell in 2002 in southern Germany. The meteorite has an unbrecciated texture and exhibits only minor shock features. Secondary weathering products are marginal. Neuschwanstein is an EL6 chondrite with heterogeneously distributed metal and sulfide grains. In terms of bulk chemistry, it has very high Fe concentrations, and siderophile and halogen element abundances higher than typical EL chondrites. However, like other ELs of higher petrologic type, it has low moderately volatile element abundances, e.g., Mn and Zn. We interpret these as indicators for loss of sulfide, probably through mobilization of ferroan alabandite and a Zn‐bearing sulfide, potentially sphalerite, during metamorphism. Trapped noble gases are dominated by a subsolar component with high Ar concentrations and are typical for EL chondrites. The shielding parameters indicate a small meteoroid (<20 cm radius) with an exposure age of approximately 47 Ma, which is among the highest for enstatite chondrites.  相似文献   

9.
Abstract– Queen Alexandra Range (QUE) 94204, an enstatite achondrite, is a coarse‐grained, highly recrystallized, chondrule‐free and unbrecciated rock dominated (about 70 vol%) by anhedral, equigranular crystals of orthoenstatite of nearly endmember composition (Fs0.1–0.4, Wo0.3–0.4) with interstitial plagioclase, kamacite, and troilite. Abundance of approximately 120° triple junctions and the close association of metal–sulfide and plagioclase‐rich melts indicate that QUE 94204 has undergone limited partial melting with inefficient melt extraction. Mineral chemistry indicates a high degree of thermal metamorphism. Kamacite in QUE 94204 contains between 2.09 and 2.55 wt% Si, similar to highly metamorphosed EL chondrites. Plagioclase has between 4.31 and 6.66 wt% CaO, higher than other E chondrites but closer in composition to plagioclase from metamorphosed EL chondrites. QUE 94204 troilite contains up to 2.55 wt% Ti, consistent with extensive thermal metamorphism of an E chondrite‐like precursor. Results presented in this study indicate that QUE 94204 is the result of low degree, (about 5–20 vol%, probably toward the lower end of this range) partial melting of an E chondrite protolith. Textural and chemical evidence suggests that during the metamorphism of QUE 94204, melts formed first at the Fe,Ni‐FeS cotectic near approximately 900 °C, followed by plagioclase‐pyroxene silicate partial melts near approximately 1100 °C. Neither the Fe,Ni‐FeS nor the plagioclase‐pyroxene melts were efficiently segregated or extracted. QUE 94204 belongs to a grouplet of similar “primitive enstatite achondrites” that are analogous to the acapulcoites‐lodranites, but that have resulted from the partial melting of an E chondrite‐like protolith.  相似文献   

10.
Abstract— An H5 chondrite was found near the village of Rumanová, Slovakia. dominant minerals of the meteorite are enstatite, olivine, kamacite, taenite and troilite. The minor minerals are oligoclase, augite, pigeonite, accessory chromite, whitlockite and chlorapatite. The composition of olivine (Fa19.0) and low-Ca orthopyroxene (Fs17.0), and the density and chemical composition of the meteorite correspond to those of an H chondrite. Normal zoning of Ni in metal grains and parallel planar fractures in olivine suggest weak shock metamorphism of stage S3. Due to moderate oxidation of metal, iron hydroxides were formed corresponding to weathering stage W2.  相似文献   

11.
The Carancas meteorite fell on 15 September 2007 approximately 10 km south of Desaguadero, near Lake Titicaca, Peru, producing bright lights, clouds of dust in the sky and intense detonations. The Carancas meteorite is classified as a H4–5 ordinary chondrite with shock stage S3 and a degree of weathering W0. The Carancas meteorite is characterized by well defined chondrules composed either of olivine or pyroxene. The Mössbauer spectra show an overlapping of paramagnetic and magnetic phases. The spectra show two quadrupole doublets associated to olivine and pyroxene; and two magnetic sextets, associated with the primary phases kamacite/taenite and Troilite (Fe2+). Metal particles were extracted from the bulk powdered samples exhibit only kamacite and small amounts of the intergrowth tetrataenite/antitaenite. X-Ray diffractogram shows the primary phases olivine, pyroxene, troilite, kamacite, diopside and albite. Iron oxides has not been detected by Mössbauer spectroscopy or XRD as can be expected for a meteorite immediately recovered after its fall.  相似文献   

12.
Queen Alexandra Range (QUE) meteorite 94204 is an anomalous enstatite meteorite whose petrogenesis has been ascribed to either partial melting or impact melting. We studied the meteorite pairs QUE 94204, 97289/97348, 99059/99122/99157/99158/99387, and Yamato (Y)‐793225; these were previously suggested to represent a new grouplet. We present new data for mineral abundances, mineral chemistries, and siderophile trace element compositions (of Fe,Ni metal) in these meteorites. We find that the texture and composition of Y‐793225 are related to EL6, and that this meteorite is unrelated to the QUEs. The mineralogy and siderophile element compositions of the QUEs are consistent with petrogenesis from an enstatite chondrite precursor. We caution that potential re‐equilibration during melting and recrystallization of enstatite chondrite melt‐rocks make it unreliable to use mineral chemistries to assign a specific parent body affinity (i.e., EH or EL). The QUEs have similar mineral chemistries among themselves, while slight variations in texture and modal abundances exist between them. They are dominated by inclusion‐bearing millimeter‐sized enstatite (average En99.1–99.5) with interstitial spaces filled predominantly by oligoclase feldspar (sometimes zoned), kamacite (Si approximately 2.4 wt%), troilite (≤2.4 wt% Ti), and cristobalite. Siderophile elements that partition compatibly between solid metal and liquid metal are not enriched like in partial melt residues Itqiy and Northwest Africa (NWA) 2526. We find that the modal compositions of the QUEs are broadly unfractionated with respect to enstatite chondrites. We conclude that a petrogenesis by impact melting, not partial melting, is most consistent with our observations.  相似文献   

13.
Abstract— Enstatite is the primary silicate phase of equilibrated enstatite chondrites (EECs). The CaO contents of these enstatites lie close to or on the enstatite-diopside phase boundary, yet, curiously, diopside has always been absent from EEC assemblages. In contrast, aubrites contain abundant diopside even though they are thought to be derived from an E chondrite-like protolith. A phase equilibrium analysis of the Ca-Mg-Fe-Mn-Si-O-S system under reducing conditions solves this enigma and shows that diopside-bearing EECs should commonly be found. When S fugacity is sufficiently high (e.g., Fe-FeS buffer), low O fugacity limits the stability of diopside in favor of oldhamite. Under such conditions, the relative stability of diopside and oldhamite is described by the reaction: CaMgSi2O6 + MgS = CaS + Mg2Si2O6 A large bulk compositional field exists where diopside and oldhamite are simultaneously stable. The existence of oldhamite does not preclude the stability of diopside. Phase diagram topology demonstrates that bulk compositions lying in the enstatite-oldhamite field and enstatite-oldhamite-alabandite field have enstatite CaO contents nearly identical to that of enstatite in equilibrium with diopside alone. This explains the high enstatite CaO contents of all EECs that do not contain diopside. This study also reports the discovery of the first EEC to contain metamorphic diopside, the Antarctic meteorite EET 90102. Elephant Moraine 90102 has a typical EL6 texture and contains the assemblage: enstatite, diopside, albite, kamacite, troilite, sinoite, and graphite. Trace quantities of alabandite, oldhamite and daubreelite are also present. Diopside is stable in EET 90102 because its bulk composition lies within either the enstatite-diopside-oldhamite-alabandite or diopside-alabandite-enstatite stability fields. In contrast, all other EECs analyzed to date have bulk compositions lying in the enstatite-oldhamite-alabandite stability field. The discovery of diopside in EET 90102 helps confirm the predictions of the phase equilibrium analysis. Elephant Moraine 90102 experienced a high-temperature metamorphic equilibration from which it was quenched. The enstatite-diopside, CaS in alabandite and Fe in alabandite, geothermometers yield temperatures of last equilibration of ~900 °C. The absence of daubreelite and schreibersite along with high troilite Cr contents and high kamacite P contents confirm a high-temperature metamorphic quench. The EET 90102 chondrite experienced a somewhat different cooling history and has a slightly different bulk composition than all other EECs studied to date; however, the close mineralogic, petrologic and textural similarities between EET 90102 and nominal EL6 chondrites signify that it should be classified as a diopside- and sinoite-bearing EL6 chondrite. Assuming that the aubrites formed from an E chondrite-like protolith, a source rock similar to that of a diopside-bearing EEC offers a clear advantage for aubrite formation. Melting of a diopside-saturated EEC protolith would not require conversion of CaS to achieve diopside-saturation upon cooling.  相似文献   

14.
In this study, the metal and sulfide compositions of 45 enstatite chondrites were analyzed to determine possible mineral-chemical trends correlated with the petrologic type. Data for 35 additional samples were taken from the literature. Considering the data from this huge number of different E chondrite samples (80 in total), none of the trends previously described in the literature could be clearly confirmed. Also, among the opaque phases of enstatite chondrites, no other “new” correlations between mineral chemistry and the petrologic type were found. However, major differences in the sulfide and metal chemistry became obvious. Specifically, a certain number of chondrites in the EH and the EL groups have Cr in troilite above 2 wt%, Fe in niningerite or alabandite above 20 wt%, and lack abundant daubréelite. Differences were also found for Ni concentrations in kamacite. Thus, we propose a system for classifying E chondrites by defining four major subgroups: EHa, ELa, EHb, and ELb. All subgroups show full petrologic sequences that are similar to each other. This observation, in combination with the differences in sulfide and metal chemistry, suggests an origin of the samples from different parent bodies. Considering the anomalous E chondrite samples that neither fit in the previous classification scheme nor in the new one described here, the samples investigated in this study require at least eight different parent bodies.  相似文献   

15.
Varre-Sai, the most recent Brazilian meteorite fall, on June 19th, 2010 at Varre-Sai, in Rio de Janeiro State, Brazil (20°51??41??S; 41°44??.80??W). At least eight masses (total ~3.5?kg) were recovered. Most are totally covered by fusion crust. The exposed interior is of light-grey colour with a few dark shock veins. Five thin polished and etched sections were prepared from a slice weighing 35?g on deposit at the National Museum/UFRJ. It consists mostly of chondrules ranging in size from 0.35 to ~2.2?mm, and chondrule fragments enclosed in a crystalline matrix. The matrix consists of tiny isolated subhedral and anhedral crystals and opaque minerals that are intergrown with broken chondrules. The chondritic texture is poorly defined with chondrule textures that vary from non-porphyritic to porphyritic ones. The essential minerals are olivine (Fa25±0.2) and low-Ca pyroxene (Fa21.66±0.2Wo1.4). Accessory minerals are plagioclase, apatite, Fe?CNi metal phases, troilite, chromite and magnetite. M?ssbauer spectroscopy analysis confirms that the mineral phases are olivine, pyroxene, troilite and kamacite/taenite. Chemical data indicate that Varre-Sai is a member of the low iron L chondrite group. The observed texture and mineral phases led us to classify Varre-Sai as an equilibrated petrologic type 5. The shock features of the minerals (undulatory extinction, planar structure and numerous cracks), as well as plagioclase partial or totally transformed to maskelynite, suggest a shock stage S4. Also, some post-impact metamorphic processes could be inferred from the meta-sulfide conjoint grains that show complex mixtures of kamacite?Ctaenite?Ctetrataenite and troilite. The occurrence of veins crosscutting the studied sections indicates that Varre-Sai was affected by a late fracturing event. Sealing of these fractures must have been a fast process, as shown by troilite globule textures pointing towards rapid solidification. The meteorite name was approved by the Nomenclature Committee of the Meteoritical Society (Meteoritic Bulletin, no 99).  相似文献   

16.
Abstract— –Meridiani Planum is the first iron meteorite found on Mars. It was discovered in 2005 by the Mars Exploration Rover Opportunity (MER‐B). Mössbauer spectra (MS) of the unbrushed and brushed meteorite species were acquired in 10 degrees temperature windows in the range of 210–260 K. Earlier examinations of these MS have led to the conclusion that the meteorite, which contains ~~7 wt% Ni, belongs to the IAB meteorite group. Here, making use of a recently developed calibration/folding procedure for MER MS, we report the results of the MS analyses for the single temperature windows m5 (210–220 K), m6 (220–230 K), m7 (230–240 K), and m89 (240–260 K). All spectra consist of a sextet and a ferric doublet. The hyperfine field of the sextet, extrapolated to room temperature, is ~~34.5 T, which is, based on Mössbauer studies of meteorites found on Earth, indeed consistent with the presence of kamacite. The fractional spectral area of the sextet is ~~0.96 of the total spectrum. The ferric doublet has an average quadrupole splitting of 0.70 mm/s and is not diagnostic of any specific Fe mineral.  相似文献   

17.
Abstract— NWA 2526 is a coarse‐grained, achondritic rock dominated by equigranular grains of polysynthetically twinned enstatite (?85 vol%) with frequent 120° triple junctions and ?10–15 vol% of kamacite + terrestrial weathering products. All other phases including troilite, daubreelite, schreibersite, and silica‐normative melt areas make up 相似文献   

18.
Abstract— Mössbauer absorption areas corresponding to 57Fe in olivine, pyroxene, troilite, and the metallic phase in ordinary chondrites are shown to exhibit certain systematic behaviors. H chondrites occupy 2 distinct regions on the plot of metallic phase absorption area versus silicate absorption area, while L/LL chondrites fall in a separate region. Similar separation is also observed when pyroxene absorption area is plotted against olivine absorption area. The one‐dimensional plot for the ratio of olivine area to pyroxene area separates L and LL chondrites. Based on these systematics, a newly fallen meteorite at Jodhpur, India is suggested to be an LL chondrite.  相似文献   

19.
Meridiani Planum is the first officially recognized meteorite find on the surface of Mars. It was discovered at and named after the landing site of the Mars Exploration Rover Opportunity. Based on its composition, it was classified as a IAB complex iron meteorite. Mössbauer spectra obtained by Opportunity are dominated by kamacite (α‐Fe‐Ni) and exhibit a small contribution of ferric oxide. Several small features in the spectra have been neglected to date. To shed more light on these features, five iron meteorite specimens were investigated as analogs to Meridiani Planum with a laboratory Mössbauer setup. Measurements were performed on (1) their metallic bulk, (2) troilite (FeS) inclusions, (3) cohenite ((Fe,Ni,Co)3C) and schreibersite ((Fe,Ni)3P), and (4) corroded rims. In addition to these room‐temperature measurements, a specimen from the Mundrabilla IAB‐ungrouped meteorite was measured at Mars‐equivalent temperatures. Based on these measurements, the features in Meridiani Planum spectra can be explained with the presence of small amounts of schreibersite and/or cohenite and iron oxides. The iron oxides can be attributed to a previously reported coating on Meridiani Planum. Their presence indicates weathering through the interaction of the meteorite with small amounts of water.  相似文献   

20.
Yilmia, a new enstatite chondrite contains moderately well defined radiating and granular chondrules. The plagioclase to enstatite ratio is appreciably higher within than outside of the two granular chondrules in our microprobe sections. Osbornite was observed within the granular chondrules, but not in the rayed chondrules or surrounding matrix Major phases include enstatite, plagioclase (Ab80 An16 Or4), silica, silicon-rich kamacite and titanian troilite. Minor phases are many and varied: sinoite, silicon-rich taenite, schreibersite, graphite, osbornite, oldhamite, “normal” and zincian daubreelite, ferroan alabandite and a new FeZnMn monosulfide The new mineral (Fe.538 Zn.246 Mn.159 Mg.004 S) closely resembles albandite and could easily have been overlooked in other meteorites unless a microprobe was used. A new form of oldhamite was also found. Indarch oldhamite, analyzed for comparative purposes, consists of two similar but distinct species: Ca.96 Mn.005 Mg.04 Fe.01 S and Ca1.000 Mn.004 Mg.02 Fe.005 S. These have not been reported from other meteorites Based on its mineralogy and texture this is a type II (E6) enstatite chondrite that is transitional toward the intermediate type (E5). It is unique in its mineralogical complexity, abundance of taenite, diversity of zincian minerals and monosulfides, and restriction of osbornite to certain chondrules  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号