首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica   总被引:2,自引:2,他引:0  
Boundary-layer measurements from the Brunt Ice Shelf, Antarctica are analyzed to determine flux–profile relationships. Dimensionless quantities are derived in the standard approach from estimates of wind shear, potential temperature gradient, Richardson number, eddy diffusivities for momentum and heat, Prandtl number, mixing length and turbulent kinetic energy. Nieuwstadt local scaling theory for the stable atmospheric boundary-layer appears to work well departing only slightly from expressions found in mid-latitudes. An $E$ E $l_{\mathrm{m}}$ l m single-column model of the stable boundary layer is implemented based on local scaling arguments. Simulations based on the first GEWEX Atmospheric Boundary-Layer Study case study are validated against ensemble-averaged profiles for various stability classes. A stability-dependent function of the dimensionless turbulent kinetic energy allows a better fit to the ensemble profiles.  相似文献   

2.
We investigated the turbulent intensities and Reynolds shear stress at high Reynolds number $({Re_\tau = 5 \times 10^{6}})$ in the atmosphere surface layer (ASL) through analyzing observations in near-neutral stratified conditions. The results show that with increasing Reynolds number the streamwise turbulent intensity increases linearly, and the peak of the Reynolds shear stress extends to a higher non-dimensional height, which means that the thickness of the logarithmic region increases. Furthermore, our results provide evidence for treating the ASL as a canonical turbulent boundary layer, the results of which can be extended and applied to higher Reynolds number wall turbulence in the ASL.  相似文献   

3.
Here we advance the physical background of the energy- and flux-budget turbulence closures based on the budget equations for the turbulent kinetic and potential energies and turbulent fluxes of momentum and buoyancy, and a new relaxation equation for the turbulent dissipation time scale. The closure is designed for stratified geophysical flows from neutral to very stable and accounts for the Earth’s rotation. In accordance with modern experimental evidence, the closure implies the maintaining of turbulence by the velocity shear at any gradient Richardson number Ri, and distinguishes between the two principally different regimes: “strong turbulence” at ${Ri \ll 1}$ typical of boundary-layer flows and characterized by the practically constant turbulent Prandtl number Pr T; and “weak turbulence” at Ri > 1 typical of the free atmosphere or deep ocean, where Pr T asymptotically linearly increases with increasing Ri (which implies very strong suppression of the heat transfer compared to the momentum transfer). For use in different applications, the closure is formulated at different levels of complexity, from the local algebraic model relevant to the steady-state regime of turbulence to a hierarchy of non-local closures including simpler down-gradient models, presented in terms of the eddy viscosity and eddy conductivity, and a general non-gradient model based on prognostic equations for all the basic parameters of turbulence including turbulent fluxes.  相似文献   

4.
The analysis of katabatic flows is often complicated by heterogeneity in surface characteristics. This study focuses on an idealized type of katabatic flow driven by a simple form of inhomogeneous surface forcing: a buoyancy or buoyancy flux that varies down the slope as a top-hat profile (cold strip). We consider the two-dimensional Boussinesq system of governing flow equations with the slope angle, Brunt–Väisälä frequency, and coefficients of eddy viscosity and diffusivity treated as constants. The steady-state problem is solved analytically in a linearized boundary-layer framework. Key flow structures are a primary katabatic jet (essentially the classical one-dimensional Prandtl jet), a rotor-like feature straddling the upslope end of the strip, and two nearly horizontal jets: an inward jet of environmental air feeding into the primary jet on the upslope end of the strip and an outward jet resulting from the intrusion of the primary katabatic jet into the environment on the downslope end of the strip. Next, the corresponding nonlinear initial value problem is solved numerically until a steady state is reached at low levels. The main features of the linear solution are seen in the numerical results, but with some notable differences: (i) the primary jet in the numerical simulation requires a longer distance to attain a one-dimensional boundary-layer structure and extends further downslope off the strip before intruding into the environment; (ii) the numerically simulated outward environmental jet is narrower and more intense than the inward jet, and has a pronounced wave-like structure.  相似文献   

5.
Length scales determined by maximum turbulent kinetic energy (TKE), the integral scale, and two length scales based on Reynolds stress-tensor anisotropy are compared to the often stated outer length scales of boundary-layer depth and distance from the earth’s surface, $z$ . The scales are calculated using sonic anemometer data from two elevations, 5 and 50 m above the ground at the main tower site of the CASES-99 field campaign. In general, none of these scales agrees with the other, although the scale of maximum TKE is often similar to the boundary-layer depth during daytime hours, and the length scales derived from anisotropy characteristics are sometimes similar to $\kappa \!z, z$ , and $2z$ depending on scale definition and thermal stability. Except for the scale with the strictest isotropy threshold, the turbulence is anisotropic for each of the various candidates for the outer scale. Length scales for maximum buoyancy flux and temperature variance are evaluated and the turbulence characteristics at these scales are almost always found to be anisotropic.  相似文献   

6.
Direct numerical simulation of the turbulent Ekman layer over a smooth wall is used to investigate bulk properties of a planetary boundary layer under stable stratification. Our simplified configuration depends on two non-dimensional parameters: a Richardson number characterizing the stratification and a Reynolds number characterizing the turbulence scale separation. This simplified configuration is sufficient to reproduce global intermittency, a turbulence collapse, and the decoupling of the surface from the outer region of the boundary layer. Global intermittency appears even in the absence of local perturbations at the surface; the only requirement is that large-scale structures several times wider than the boundary-layer height have enough space to develop. Analysis of the mean velocity, turbulence kinetic energy, and external intermittency is used to investigate the large-scale structures and corresponding differences between stably stratified Ekman flow and channel flow. Both configurations show a similar transition to the turbulence collapse, overshoot of turbulence kinetic energy, and spectral properties. Differences in the outer region resulting from the rotation of the system lead, however, to the generation of enstrophy in the non-turbulent patches of the Ekman flow. The coefficient of the stability correction function from Monin–Obukhov similarity theory is estimated as \(\beta \approx 5.7\) in agreement with atmospheric observations, theoretical considerations, and results from stably stratified channel flows. Our results demonstrate the applicability of this set-up to atmospheric problems despite the intermediate Reynolds number achieved in our simulations.  相似文献   

7.
Airflow over two-dimensional hills was investigated in a wind tunnel using particle image velocimetry. We focus on the flow separation behaviour. A trapezoidal hill shape was used in most of the experimental runs, but the critical slope angle for flow separation was approximately the same as that established for smooth hill shapes. The re-attachment point of the separated flow became farther from the hill as the slope angle $\theta $ increased, reaching a saturation of about seven times the hill height for $\theta \gtrsim 60^\circ $ . Increasing the upwind surface roughness length was found to suppress flow separation. This tendency is analogous to the previous experimental results for turbulent boundary layers on flat plates. The boundary-layer thickness varied by the presence or absence of Counihan-type spires and a castellated fence at the test-section entrance had negligible effect on the flow separation.  相似文献   

8.
The Nieuwstadt closed-form solution for the stationary Ekman layer is generalized for katabatic flows within the conceptual framework of the Prandtl model. The proposed solution is valid for spatially-varying eddy viscosity and diffusivity (O’Brien type) and constant Prandtl number (Pr). Variations in the velocity and buoyancy profiles are discussed as a function of the dimensionless model parameters \(z_0 \equiv \hat{z}_0 \hat{N}^2 Pr \sin {(\alpha )} |\hat{b}_\mathrm{s} |^{-1}\) and \(\lambda \equiv \hat{u}_{\mathrm{ref}}\hat{N} \sqrt{Pr} |\hat{b}_\mathrm{s} |^{-1}\), where \(\hat{z}_0\) is the hydrodynamic roughness length, \(\hat{N}\) is the Brunt-Väisälä frequency, \(\alpha \) is the surface sloping angle, \(\hat{b}_\mathrm{s}\) is the imposed surface buoyancy, and \(\hat{u}_{\mathrm{ref}}\) is a reference velocity scale used to define eddy diffusivities. Velocity and buoyancy profiles show significant variations in both phase and amplitude of extrema with respect to the classic constant \(\textit{K}\) model and with respect to a recent approximate analytic solution based on the Wentzel-Kramers-Brillouin theory. Near-wall regions are characterized by relatively stronger surface momentum and buoyancy gradients, whose magnitude is proportional to \(z_0\) and to \(\lambda \). In addition, slope-parallel momentum and buoyancy fluxes are reduced, the low-level jet is further displaced toward the wall, and its peak velocity depends on both \(z_0\) and \(\lambda \).  相似文献   

9.
Similarity Scaling Over a Steep Alpine Slope   总被引:5,自引:5,他引:0  
In this study, we investigate the validity of similarity scaling over a steep mountain slope (30–41 $^\circ $ ). The results are based on eddy-covariance data collected during the Slope Experiment near La Fouly (SELF-2010); a field campaign conducted in a narrow valley of the Swiss Alps during summer 2010. The turbulent fluxes of heat and momentum are found to vary significantly with height in the first few metres above the inclined surface. These variations exceed by an order of magnitude the well-accepted maximum 10 % required for the applicability of Monin–Obukhov similarity theory in the surface layer. This could be due to a surface layer that is too thin to be detected or to the presence of advective fluxes. It is shown that local scaling can be a useful tool in these cases when surface-layer theory breaks down. Under convective conditions and after removing the effects of self-correlation, the normalized standard deviations of slope-normal wind velocity, temperature and humidity scale relatively well with $z/\varLambda $ , where $z$ is the measurement height and $\varLambda (z)$ the local Obukhov length. However, the horizontal velocity fluctuations are not correlated with $z/\varLambda $ under all stability regimes. The non-dimensional gradients of wind velocity and temperature are also investigated. For those, the local scaling appears inappropriate, particularly at night when shallow drainage flows prevail and lead to negative wind-speed gradients close to the surface.  相似文献   

10.
In order to investigate effects of interactions between turbulence and gravity waves in the stable boundary layer on similarity theory relationships, we re-examined a dataset, collected during three April nights in 1978 and in 1980 on the 300-m tower of the Boulder Atmospheric Observatory (BAO). The BAO site, located in Erie, Colorado, USA, 30 km east of the foothills of the Rocky Mountains, has been known for the frequent detection of wave activities. The considered profiles of turbulent fluxes and variances were normalized by two local, gradient-based scaling systems, and subsequently compared with similarity functions of the Richardson number, obtained based on data with no influence of gravity currents and topographical factors. The first scaling system was based on local values of the vertical velocity variance $\sigma _\mathrm{w}$ and the Brunt–Väisäla frequency $ N,$ while the second one was based on the temperature variance $\sigma _{\theta }$ and $N.$ Analysis showed some departures from the similarity functions (obtained for data with virtually no influence of mesoscale motions); nonetheless the overall dependency of dimensionless moments on the Richardson number was maintained.  相似文献   

11.
A Reynolds-averaged Navier–Stokes model is used to investigate the evolution of the sectional drag coefficient and turbulent length scales with the layouts of aligned arrays of cubes. Results show that the sectional drag coefficient is determined by the non-dimensional streamwise distance (sheltering parameter), and the non-dimensional spanwise distance (channelling parameter) between obstacles. This is different than previous approaches that consider only plan area density $(\lambda _\mathrm{p})$ . On the other hand, turbulent length scales behave similarly to the staggered case (e. g. they are function of $\lambda _\mathrm{p}$ only). Analytical formulae are proposed for the length scales and for the sectional drag coefficient as a function of sheltering and channelling parameters, and implemented in a column model. This approach demonstrates good skill in the prediction of vertical profiles of the spatially-averaged horizontal wind speed.  相似文献   

12.
In Ouwersloot and Vilà-Guerau de Arellano (Boundary-Layer Meteorol. doi:10.1007/s10546-013-9816-z, 2013, this issue), the analytical solutions for the boundary-layer height and scalar evolutions are derived for the convective boundary layer, based on the prognostic equations of mixed-layer slab models without taking subsidence into account. Here, we include and quantify the added effect of subsidence if the subsidence velocity scales linearly with height throughout the atmosphere. This enables analytical analyses for a wider range of observational cases. As a demonstration, the sensitivity of the boundary-layer height and the potential temperature jump to subsidence and the free tropospheric stability is graphically presented. The new relations show the importance of the temporal distribution of the surface buoyancy flux in determining the evolution if there is subsidence.  相似文献   

13.
Laboratory Experiments on Convective Entrainment Using a Saline Water Tank   总被引:1,自引:1,他引:0  
Entrainment fluxes in a shear-free convective boundary layer have been measured with a saline water tank set-up. The experiments were targeted towards measuring the entrainment behaviour for medium to high Richardson numbers and use a two-layer design, i.e. two stacked non-stratified (neutral) layers with different densities. With laser induced fluorescence (LIF), the entrainment flux of a fluorescent dye is measured for bulk Richardson numbers in the range 30–260. It is proposed that a carefully chosen combination of top-down and bottom-up processes improves the accuracy of LIF-based entrainment observations. The observed entrainment fluxes are about an order of magnitude lower than reported for thermal water tanks: the derived buoyancy entrainment ratio, $A$ , is found to be $A \approx 0.02$ , which is to be compared with $A\approx 0.25$ for a thermal convection tank (Deardorff et al., J Fluid Mech 100:41–64, 1980). An extensive discussion is devoted to the influence of the Reynolds and Prandtl numbers in laboratory experiments on entrainment.  相似文献   

14.
The local thermal effects in the wake of a single cube with a strong heated rear face, representing a large building in an urban area, are studied using large-eddy simulations (LES) for various degrees of heating, which are characterized by the local Richardson number, $Ri$ . New wall models are implemented for momentum and temperature and comparison of the flow and thermal fields with the wind-tunnel data of Richards et al. (J Wind Eng Ind Aerodyn 94, 621–636, 2006) shows fair agreement. Buoyancy effects are quite evident at low $Ri$ and a significant increase in the turbulence levels is observed for such flows. Apart from the comparisons with experiments, further analysis included the estimation of the thermal boundary-layer thickness and heat transfer coefficient for all $Ri$ . For sufficiently strong heating, the heat transfer coefficient at the leeward face is found to be higher than the roof surface. This suggests that, beyond a certain $Ri$ value, buoyancy forces from the former surface dominate the strong streamwise convection of the latter. Quadrant analysis along the shear layer behind the cube showed that the strength of sweeps that contribute to momentum flux is considerably enhanced by heating. The contribution of different quadrants to the heat flux is found to be very different to that of the momentum flux for lower $Ri$ .  相似文献   

15.
In a valley sheltered from strong synoptic effects, the dynamics of the valley atmosphere at night is dominated by katabatic winds. In a stably stratified atmosphere, these winds undergo temporal oscillations, whose frequency is given by $N \sin {\alpha }$ N sin α for an infinitely long slope of constant slope angle $\alpha $ α , $N$ N being the buoyancy frequency. Such an unsteady flow in a stably stratified atmosphere may also generate internal gravity waves (IGWs). The numerical study by Chemel et al. (Meteorol Atmos Phys 203:187–194, 2009) showed that, in the stable atmosphere of a deep valley, the oscillatory motions associated with the IGWs generated by katabatic winds are distinct from those of the katabatic winds. The IGW frequency was found to be independent of $\alpha $ α and about $0.8N$ 0.8 N . Their study did not consider the effects of the background stratification and valley geometry on these results. The present work extends this study by investigating those effects for a wide range of stratifications and slope angles, through numerical simulations for a deep valley. The two oscillatory systems are reproduced in the simulations. The frequency of the oscillations of the katabatic winds is found to be equal to $N$ N times the sine of the maximum slope angle. Remarkably, the IGW frequency is found to also vary as $C_\mathrm{w}N$ C w N , with $C_\mathrm{w}$ C w in the range $0.7$ 0.7 $0.95$ 0.95 . These values for $C_\mathrm{w}$ C w are similar to those reported for IGWs radiated by any turbulent field with no dominant frequency component. Results suggest that the IGW wavelength is controlled by the valley depth.  相似文献   

16.
We investigate the scaling behaviour of a turbulent kinetic energy (TKE) closure model for stably stratified conditions. The mixing length scale for stable stratification is proportional to the ratio of the square root of the TKE and the local Brunt–Väisälä frequency, which is a commonly applied formulation. We analyze the scaling behaviour of our model in terms of traditional Monin–Obukov Similarity Theory and local scaling. From the model equations, we derive expressions for the stable limit behaviour of the flux–gradient relations and other scaling quantities. It turns out that the scaling behaviour depends on only a few model parameters and that the results obey local scaling theory. The analytical findings are illustrated with model simulations for the second GABLS intercomparison study. We also investigate solutions for the case in which an empirical correction function is used to express the eddy diffusivity for momentum as a function of the Richardson number (i.e. an increasing turbulent Prandtl number with stability). In this case, it seems that for certain parameter combinations the model cannot generate a steady-state solution. At the same time, its scaling behaviour becomes unrealistic. This shows that the inclusion of empirical correction functions may have large and undesired consequences for the model behaviour.  相似文献   

17.
Large-eddy simulations of the atmospheric boundary layer (ABL) under a wide range of stabilities are conducted to educe very-large-scale motions and then to study their dynamics and how they are influenced by buoyancy. Preliminary flow visualizations suggest that smaller-scale motions that resemble hairpins are embedded in much larger scale streamwise meandering rolls. Using simulations that represent more than 150 h of physical time, many snapshots in the \(xy\) -, \(yz\) - and \(xz\) -planes are then collected to perform snapshot proper orthogonal decomposition and further investigate the large structures. These analyses confirm that large streamwise rolls that share several features with the very-large-scale motions observed in laboratory studies arise as the dominant modes under most stabilities, but the effect of the surface kinematic buoyancy flux on the energy content of these dominant modes is very significant. The first two modes in the \(yz\) -plane in the neutral case contain up to 3 % of the total turbulent kinetic energy; they also have a vertical tilt angle in the \(yz\) -plane of about 0 to 30 \(^\circ \) due to the turning effect associated with the Coriolis force. Unstable cases also feature streamwise rolls, but in the convective ABL they are strengthened by rising plumes in between them, with two to four rolls spanning the whole domain in the first few modes; the Coriolis effect is much weaker in the unstable ABL. These rolls are no longer the dominant modes under stable conditions where the first mode is observed to contain sheet-like motions with high turbulent kinetic energy. Using these proper orthogonal decomposition modes, we are also able to extract the vertical velocity fields corresponding to individual modes and then to correlate them with the horizontal velocity or temperature fields to obtain the momentum and heat flux carried by individual modes. Structurally, the fluxes are explained by the topology of their corresponding modes. However, the fraction of the fluxes produced by the modes is invariably smaller than the fraction of energy they contain, particularly under stable conditions where the first modes are found to perform weak counter-gradient fluxes.  相似文献   

18.
Scintillometer measurements of the turbulence inner-scale length $l_\mathrm{o }$ l o and refractive index structure function $C_n^2$ C n 2 allow for the retrieval of large-scale area-averaged turbulent fluxes in the atmospheric surface layer. This retrieval involves the solution of the non-linear set of equations defined by the Monin–Obukhov similarity hypothesis. A new method that uses an analytic solution to the set of equations is presented, which leads to a stable and efficient numerical method of computation that has the potential of eliminating computational error. Mathematical expressions are derived that map out the sensitivity of the turbulent flux measurements to uncertainties in source measurements such as $l_\mathrm{o }$ l o . These sensitivity functions differ from results in the previous literature; the reasons for the differences are explored.  相似文献   

19.
We investigate the cumulative added value of assimilating temperature, moisture, and wind observations in the three-dimensional non-hydrostatic Fifth-Generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model MM5 and use these forecasts to analyze the relationship between surface forcing and planetary boundary-layer (PBL) depth. A data assimilation methodology focused on the surface and the PBL, previously tested in a one-dimensional version of MM5, is applied to 29 May, 6 June, and 7 June 2002 during the International $\hbox {H}_{2}\hbox {O}$ Project over the Southern Great Plains. Model-predicted PBL depth is evaluated against PBL depth diagnosed from data across 4,800 km of airborne lidar data (flight tracks 100–300 km long). The forecast with data assimilation verifies better against observations and is thus used to investigate the environmental conditions that govern PBL depth. The spatial structure in PBL depth is found to be most affected by spatial variations in surface buoyancy flux and capping inversion strength. The spatial scales of surface flux forcing reflected in the PBL depth are found through Fourier analysis and multiresolution decomposition. Correlations are ${<}0.50$ at scales of 64 km or less and increase at larger scales for 29 May and 6 June, but on 7 June low correlations are found at all scales, possibly due to greater within-PBL wind speeds, a stronger capping inversion on this day, and clouds. The results suggest a minimum scale, a function of wind speed, below which heterogeneity in surface buoyancy fluxes is not reflected directly in PBL depth.  相似文献   

20.
We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号