首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
High-pressure X-ray diffraction measurements have demonstrated that the cation-deficient perovskites Pr1/3NbO3, Pr1/3TaO3, Nd1/3NbO3, and Nd1/3TaO3 undergo irreversible pressure-induced amorphization (PIA). This occurs near 14.5 GPa for the niobates and 18.5 GPa for the tantalates. The unit cell volumes of the four oxides show an almost linear decrease as the pressure is increased. It is concluded that the PIA transition occurs at higher pressures in the tantalates due to the lower MO6 initial tilting at ambient conditions, which is associated with the larger atomic mass of the tantalum. The behavior of these oxides is compared to that of CaTiO3, and the role of both the weakening of the M–O–M π-bonding and the cation vacancies on the observed structural changes is discussed.  相似文献   

2.
陈巍 《江西地质科技》1996,23(4):195-197
选择Chromsorb104作固定相,解决了H2O对测SO2的干扰,也避免了酸分解法测CO2的干扰,可一次实现四种成份连测,具有快速,灵敏(万分之几至十万分之几)用样量少等特点,很适宜批量样品的分析。  相似文献   

3.
4.
娘子关泉域岩溶地下水SO^2—4,Ca^2+,Mg^2+污染分析   总被引:2,自引:0,他引:2  
分析了娘子关泉域岩溶地下水SO^2-4,Ca^2+,Mg^2+等组分含量增多的原因,并定量地探讨了SO^2-4,Ca^2+,Mg^2+的各种来源比例。研究表明,含水层中石膏溶解及硫化物氧化是SO^2-4,Ca^2+,Mg^2+高含量的主要原因,控制硫化物氧化水进入含水层,对水质改良有显著效果。  相似文献   

5.
The results of an examination of vladimirivanovite, a new mineral of the sodalite group, found at the Tultui deposit in the Baikal region are discussed. The mineral occurs in the form of outer rims (0.01–3 mm thick) of lazurite, elongated segregations without faced crystals (0.2 to 3–4 mm in size; less frequently, 4 × 12–15 × 20 mm), and rare veinlets (up to 5 mm) hosted in calciphyre and marble. Vladimirivanovite is irregular and patchy dark blue. The mineral is brittle; on average, the microhardness VHN is 522–604, 575 kg/mm2; and the Mohs hardness is 5.0–5.5. The measured and calculated densities are 2.48(3) and 2.436 g/cm3, respectively. Vladimirivanovite is optically biaxial; 2V meas = 63(±1)°, 2V calc = 66.2°; the refractive indices are α = 1.502–1.507 (±0.002), N m = 1.509–1.514 (±0.002), and N g = 1.512–1.517 (±0.002). The chemical composition is as follows, wt %: 32.59 SiO2, 27.39 Al2O3, 7.66 CaO, 17.74 Na2O, 11.37 SO3, 1.94 S, 0.12 Cl, and 1.0 H2O; total is 99.62. The empirical formula calculated based on (Si + Al) = 12 with sulfide sulfur determined from the charge balance is Na6.36Ca1.52(Si6.03Al5.97)Σ12O23.99(SO4)1.58(S3)0.17(S2)0.08 · Cl0.04 · 0.62H2O; the idealized formula is Na6Ca2[Al6Si6O24](SO4,S3,S2,Cl)2 · H2O. The new mineral is orthorhombic, space group Pnaa; the unit-cell dimensions are a = 9.066, b = 12.851, c = 38.558 Å, V = 4492 Å3, and Z = 6. The strongest reflections in the X-ray powder diffraction pattern (dÅ—I[hkl]) are: 6.61–5[015], 6.43–11[020, 006], 3.71–100[119, 133], 2.623–30[20.12, 240], 2.273–6[04.12], 2.141–14[159, 13.15], 1.783–9[06.12, 04.18], and 1.606–6[080, 00.24]. The crystal structure has been solved with a single crystal. The mineral was named in memoriam of Vladimir Georgievich Ivanov (1947–2002), Russian mineralogist and geochemist. The type material of the mineral is deposited at the Mineralogical Museum of St. Petersburg State University, St. Petersburg, Russia.  相似文献   

6.
Thermodynamic properties of several TeO2 polymorphs and metal tellurites were measured by a combination of calorimetric techniques. The most stable TeO2 polymorph is α-TeO2, with its enthalpy of formation (ΔfHo) selected from literature data as ?322.0 ± 1.3 kJ·mol?1. β-TeO2 is metastable (in enthalpy) with respect to α-TeO2 by +1.40 ± 0.07 kJ·mol?1, TeO2 glass by a larger amount of +14.09 ± 0.11 kJ·mol?1. >200 experimental runs and post-synthesis treatments were performed in order to produce phase-pure samples of Co, Cu, Mg, Mn, Ni, Zn tellurites. The results of the hydrothermal and solid-state syntheses are described in detail and the products were characterized by powder X-ray diffraction. The standard thermodynamic data for the Te(IV) phases are (standard enthalpy of formation from the elements, ΔfHo in kJ·mol?1, standard third-law entropy So in J·mol?1·K?1): Co2Te3O8: ΔfHo = ?1514.2 ± 6.0, So = 319.2 ± 2.2; CoTe6O13: ΔfHo = ?2212.5 ± 8.1, So = 471.7 ± 3.3; MgTe6O13: ΔfHo = ?2525.8 ± 7.9, So = 509.2 ± 3.6; Ni2Te3O8: ΔfHo not measured, So = 293.3 ± 2.1; NiTe6O13: ΔfHo = ?2198.7 ± 8.2, So = 466.5 (estimated); CuTe2O5: ΔfHo = ?820.2 ± 3.3, So = 187.2 ± 1.3; Zn2Te3O8: ΔfHo = ?1722.5 ± 4.0, So = 299.3 ± 2.1. The solubility calculations show that the Te(IV) concentration in an aqueous phase, needed to produce such phases, must be at least 3–5 orders of magnitude higher than the natural Te background concentrations. The occurrence of these minerals, as expected, are restricted to hotspots of Te concentrations. In order to produce more reliable phase diagrams, more work needs to be done on the thermodynamics of potential competing phases in these systems, including Te(VI) phases.  相似文献   

7.
Doklady Earth Sciences - Sergeysmirnovite, MgZn2(PO4)2 · 4H2O, is a new mineral from the oxidation zone of the Kester mineral deposit, Sakha-Yakutia, Russia. This mineral forms...  相似文献   

8.
9.
10.
2维,2.5维,3维和4维的差别   总被引:2,自引:0,他引:2  
Turn.  AK 于海英 《世界地质》1997,16(3):101-102
2维、2.5维、3维和4维的差别A.KeithTurner于海英译孔玲君校译稿收到日期19970523据说开创地理学科的地质学家曾是一位化学家。鉴于此,许多地质学家可以共享化学家分析地质样品中的化学成分,同时他们又对样品的空间位置保持浓厚的兴趣。因为...  相似文献   

11.
Mössbauer spectra (MS) of anapaite (Ca2 Fe2+(PO4)2?·?4H2O) and of a sample after being immersed in a 4% H2O2 solution at room temperature (RT) over 12 days (hereafter an4ox) were collected at temperatures in the range 4.2 to 420?K and 11 to 300?K respectively. All MS consist of symmetrical doublets, hence magnetic ordering was not observed. The temperature dependencies of the Fe2+ centre shifts of anapaite and an4ox were analysed with the Debye model for the lattice vibrations. The characteristic Mössbauer temperatures were found as 370?K?±?25?K and 340?K?±?25?K, and the intrinsic isomer shifts as 1.427?±?0.005?mm/s and 1.418?±?0.005?mm/s respectively. From the external-field (60?kOe) MS recorded at 4.2 and 189?K for the non-treated sample, the principal component V zz of the electric field gradient (EFG) is determined to be positive and the asymmetry parameter η?≈?0.2 and 0.4 respectively. The temperature variations of the quadrupole splittings, ΔE Q(T), cannot be interpreted on the basis of the thermal population of the 5 D electronic levels resulting from the tetragonal compression of the O6 co-ordination. The low-temperature linear behaviour of ΔE Q(T) is attributed to a strong orbit-lattice coupling. A field of 60 kOe applied to anapaite at 4.2?K produces magnetic hyperfine splitting with effective hyperfine fields of ?136, ?254 and ?171?kOe along the principal axes Ox, Oy and Oz of the EFG tensor respectively. Additional oxidation treatments in solutions with various H2O2 concentrations up to 20% and subsequent Mössbauer experiments at room temperature, have revealed that the anapaite structure is not sensitive to oxidation since eventually only a small amount of Fe2+ (~6.5%) is converted into Fe3+.  相似文献   

12.
SO2排放,硫酸盐气溶胶和气候变化   总被引:3,自引:0,他引:3  
工业SO2排放的增加使对流层大气中硫酸盐气溶胶浓度增大,硫酸盐气溶胶通过其直接和间接辐射强迫作用影响气候变化。有关的研究结果显示:硫到盐气溶胶的冷却效应在一定程度上抵消了温室效应,北半球增暖趋势的减缓和日较差的减小可能与大气中人为硫酸盐气溶胶浓度的增加有关。  相似文献   

13.
14.
A new mineral aklimaite, Ca4[Si2O5(OH)2](OH)4 · 5H2O, has been found near Mount Lakargi, Upper Chegem caldera, Kabardino-Balkaria, the Northern Caucasus, Russia, in the skarnified limestone xenolith in ignimbrite. This hydrothermal mineral occurs in a cavity of altered larnite skarn and is associated with larnite, calcium humite-group members, hydrogarnets, bultfonteinite, afwillite, and ettringite. Aklimaite forms transparent, colorless (or occasionally with pinkish tint) columnar or lath-shaped crystals up 3 × 0.1 × 0.01 mm in size, flattened on {001} and elongated along {010}; they are combined in spherulites. The luster is vitreous; the cleavage parallel to the {001} is perfect. D calc = 2.274 g/cm3. The Mohs’ hardness is 3–4. Aklimaite is optically biaxial, negative, 2V meas > 70°, 2V calc = 78°, α = 1.548(2), β = 1.551(3), γ = 1.553(2). The IR and Raman spectra are given. The chemical composition (wt %, electron microprobe) is as follows: 0.06 Na2O, 0.02 K2O, 45.39 CaO, 0.01 MnO, 0.02 FeO, 24.23 SiO2, 0.04 SO3, 3.22 F, 27.40 H2O(calc.), ?1.36 -O=F2; the total is 99.03. The empirical formula calculated on the basis of 2Si apfu with O + OH + F = 16 is as follows: (Ca4.02Na0.01)Σ4.03[Si2.00O5.07(OH)1.93][(OH)3.16F0.84] Σ4.00 · 5H2O. The mineral is monoclinic, space group C2/m, a = 16.907(5), b = 3.6528(8), c = 13.068(4) Å, β = 117.25(4)·, V= 717.5(4) Å3, Z = 2. Aklimaite is representative of the new structural type, the sorosilicate with disilicate groups [Si2O5(OH)2]. The strongest reflections in the X-ray powder patterns [d, Å (hkl)] are: 11.64(100)(001), 2.948(32)(310, 203), 3.073(20) ( $\bar 404$ , $\bar 311$ ), 2.320(12)(005, 510), 2.901 (11)(004), 8.30(10) $\left( {\bar 201} \right)$ . The type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

15.
The configurational heat capacity, shear modulus and shear viscosity of a series of Na2O–Fe2O3–Al2O3–SiO2 melts have been determined as a function of composition. A change in composition dependence of each of the physical properties is observed as Na2O/(Na2O + Al2O3) is decreased, and the peralkaline melts become peraluminous and a new charge-balanced Al-structure appears in the melts. Of special interest are the frequency dependent (1 mHz–1 Hz) measurements of the shear modulus. These forced oscillation measurements determine the lifetimes of Si–O bonds and Na–O bonds in the melt. The lifetime of the Al–O bonds could not, however, be resolved from the mechanical spectrum. Therefore, it appears that the lifetime of Al–O bonds in these melts is similar to that of Si–O bonds with the Al–O relaxation peak being subsumed by the Si–O relaxation peak. The appearance of a new Al-structure in the peraluminous melts also cannot be resolved from the mechanical spectra, although a change in elastic shear modulus is determined as a function of composition. The structural shear-relaxation time of some of these melts is not that which is predicted by the Maxwell equation, but up to 1.5 orders of magnitude faster. Although the configurational heat capacity, density and shear modulus of the melts show a change in trend as a function of composition at the boundary between peralkaline and peraluminous, the deviation in relaxation time from the Maxwell equation occurs in the peralkaline regime. The measured relaxation times for both the very peralkaline melts and the peraluminous melts are identical with the calculated Maxwell relaxation time. As the Maxwell equation was created to describe the timescale of flow of a mono-structure material, a deviation from the prediction would indicate that the structure of the melt is too complex to be described by this simple flow equation. One possibility is that Al-rich channels form and then disappear with decreasing Si/Al, and that the flow is dominated by the lifetime of Si–O bonds in the Al-poor peralkaline melts, and by the lifetime of Al–O bonds in the relatively Si-poor peralkaline and peraluminous melts with a complex flow mechanism occurring in the mid-compositions. This anomalous deviation from the calculated relaxation time appears to be independent of the change in structure expected to occur at the peralkaline/peraluminous boundary due to the lack of charge-balancing cations for the Al-tetrahedra.  相似文献   

16.
17.
18.
A new mineral, hillesheimite, has been found in the Graulai basaltic quarry, near the town of Hillesheim, the Eifel Mountains, Rhineland-Palatinate (Rheinland-Pfalz), Germany. It occurs in the late assemblage comprising nepheline, augite, fluorapatite, magnetite, perovskite, priderite, götzenite, lamprophyllite-group minerals, and åkermanite. Colorless flattened crystals of hillesheimite reaching 0.2 × 1 × 1.5 mm in size and aggregates of the crystals occur in miarolitic cavities in alkali basalt. The mineral is brittle, with Mohs’ hard-ness 4. Cleavage is perfect parallel to (010) and distinct on (100) and (001). D calc = 2.174 g/cm3, D meas = 2.16(1) g/cm3. IR spectrum is given. Hillesheimite is biaxial (?), α = 1.496(2), β = 1.498(2), γ = 1.499(2), 2V meas = 80°. The chemical composition (electron microprobe, mean of 4 point analyses, H2O determined from structural data, wt %) is as follows: 0.24 Na2O, 4.15 K2O, 2.14 MgO, 2.90 CaO, 2.20 BaO, 2.41 FeO, 15.54 Al2O3, 52.94 SiO2, 19.14 H2O, total is 101.65. The empirical formula is: K0.96Na0.08Ba0.16Ca0.56Mg0.58Fe 0.37 2+ [Si9.62Al3.32O23(OH)6][(OH)0.82(H2O)0.18] · 8H2O. The crystal structure has been determined from X-ray single-crystal diffraction data, R = 0.1735. Hillesheimite is orthorhombic, space group Pmmn, the unit-cell dimensions are: a = 6.979(11), b = 37.1815(18), c = 6.5296(15) Å; V=1694(3) Å3, Z = 2. The crystal structure is based on the block [(Si,Al)13O25(OH)4] consisting of three single tetrahedral layers linked via common vertices and is topologically identical to the triple layers in günterblassite and umbrianite. The strong reflections [d Å (I %)] in the X-ray powder diffraction pattern are: 6.857(58), 6.545(100), 6.284(53), 4.787(96), 4.499(59), 3.065(86), 2.958(62), 2.767(62). The mineral was named after its type locality. Type specimens are deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4174/1.  相似文献   

19.
 Structural parameters and cation ordering are determined for four compositions in the synthetic MgGa2O4-Mg2GeO4 spinel solid solution (0, 8, 15 and 23 mol% Mg2GeO4; 1400 °C, 1 bar) and for spinelloid β-Mg3Ga2GeO8 (1350 °C, 1 bar), by Rietveld refinement of room-temperature neutron diffraction data. Sample chemistry is determined by XRF and EPMA. Addition of Mg2GeO4 causes the cation distribution of the MgGa2O4 component to change from a disordered inverse distribution in end member MgGa2O4, [4]Ga = x = 0.88(3), through the random distribution, toward a normal cation distribution, x = 0.37(3), at 23 mol% Mg2GeO4. An increase in ao with increasing Mg2GeO4 component is correlated with an increase in the amount of Mg on the tetrahedral site, through substitution of 2 Ga3+⇄ Mg2++Ge4+. The spinel exhibits high configurational entropy, reaching 20.2 J mol−1 (four oxygen basis) near the compositional upper limit of the solid solution. This stabilizes the spinel in spite of positive enthalpy of disordering over the solid solution, where ΔH D  = αx + βx 2, α = 22(3), β = −21(3) kJ mol−1. This model for the cation distribution across the join suggests that the empirically determined limit of the spinel solid solution is correlated with the limit of tetrahedral ordering of Mg, after which local charge-balanced substitution is no longer maintained. Spinelloid β-Mg3Ga2GeO8 has cation distribution M1[Mg0.50(2)Ga0.50(2)] M2[Mg0.96(2)Ga0.04(2)] M3[Mg0.77(2) Ga0.23(2)]2 (Ge0.5Ga0.5)2O8 (tetrahedral site occupancies are assumed). Octahedral site size is correlated to Mg distribution, where site volume, site distortion, and Mg content follow the relation M1<M3<M2. The disordered cation distribution provides local electrical neutrality in the structure, and stabilization through increased configurational entropy (27.6 J mol−1; eight oxygen basis). Comparison of the crystal structures of Mg1+ N Ga2−2 N Ge N O4 spinel, β-Mg3Ga2GeO8, and Mg2GeO4 olivine reveals β-Mg3Ga2GeO8 to be a true structural intermediate. Phase transitions across the pseudobinary are necessary to accommodate an increasing divergence of cation size and valence, with addition of Mg2GeO4 component. Octahedral volume increases while tetrahedral volume decreases from spinel to β-Mg3Ga2GeO8 to olivine, with addition of Mg and Ge, respectively. Furthermore, M-M distances increase regularly across the join, suggesting that changes in topology reduce cation-cation repulsion. Received: 9 November 1998 / Revised, accepted: 3 August 1999  相似文献   

20.
The heat capacity of åkermanite solid solutions was measured by a small scale adiabatic calorimeter near the incommensurate-normal (I-N) transition. The heat capacity anomalies caused by the I-N transition show the type characteristic behavior implying the presence of dynamical fluctuations. The heat capacity anomalies were observed over the whole range of the åkermanite solid solutions Ca2Mg1-xCoxSi2O7 and Ca2Mg1-x-ZnxSi2O2. With increase of Co or Zn atoms, the transition temperature, Ti, rises linearly from ca. 83° C to 220° C and to 130° C, respectively. In the system Ca2CoSi2O7-Ca2FeSi2O7 and Ca2MgSi2O7-Ca2-FeSi2O7 electronic microscopy revealed that the temperature of the heat capacity anomaly decreases with increasing Fe content, whereas the Ti rises. This unusual behavior is ascribed to the microdomains observed in high resolution lattice images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号