首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present new observations of the prominence system on the K3 dwarf Speedy Mic (BO Mic, HD 197890). Using an improved technique to track the absorption features in Hα we find a very active prominence system with approximately 10 prominences on the observable hemisphere per rotation. From a total of 25 prominences, we find an average axial distance of  (2.85 ± 0.54) R *  which is twice the corotation radius above the stellar surface. We discuss the consequences of these observations on the nature of the supporting magnetic structures. Two consecutive nights, with complete phase coverage, combined with a further night after a three-night gap allow us to study the evolution of the prominence system on two different time-scales. Several of the prominences have counterparts at similar phases on consecutive nights. During this interval, many prominences show evidence for evolution in their heights and phases of observation. Five nights (13 rotation cycles) later, we recover many prominences at approximately the same phases. Whilst individual prominences change axial distances or appear/reappear from night-to-night, the underlying prominence supporting structures appear to be stable over as many as 13 stellar rotations.  相似文献   

2.
A linear analysis of baroclinic instability in a stellar radiation zone with radial differential rotation is performed. The instability sets in at a very small rotation inhomogeneity, ΔΩ ~ 10?3Ω. There are two families of unstable disturbances corresponding to Rossby waves and internal gravity waves. The instability is dynamical: its growth time is several thousand rotation periods but is short compared to the stellar evolution time. A decrease in thermal conductivity amplifies the instability. Unstable disturbances possess kinetic helicity. Magnetic field generation by the turbulence resulting from the instability is possible.  相似文献   

3.
恒星尘埃的实验室研究--实验天体物理学   总被引:1,自引:0,他引:1  
原始球粒陨石含有来自恒星的微小固体颗粒(微米级),这些尘埃的同位素组成与太阳系物质截然不同,它们是目前唯一能直接获得的恒星固体样品.已发现的恒星尘埃有金刚石、石墨、碳化硅、刚玉、尖晶石、氮化物、和硅酸盐等,它们的母体恒星包括红巨星,AGB恒星、新星和超新星.对恒星尘埃的研究,使得更深入地了解星系的化学演化历史、恒星内部的核反应和湍流机制、恒星大气中尘埃的形成、星际介质物理现象等.恒星尘埃把天体物理领域延伸到了微观世界,它有机地结合了地球化学实验技术和天体物理理论,开辟了一门崭新的天文学分支实验天体物理学.  相似文献   

4.
5.
Primitive meteorites contain microscopic pre-solar stardust grains that originated from stellar outflows and supernova ejecta. Identified phases include nano-diamond, graphite, silicon carbide, corundum, spinel, hibonite, nitride, and silicates. Their stellar origin was manifested by their enormous isotopic ratio variations compared to solar system materials. They are solid samples from various stellar sources, including red giant stars, AGB stars, novae, and supernovae. Laboratory isotopic analyses of these grains provide unique insights into stellar evolution, nucleosynthesis and mixing processes, dust formation in stellar envelopes, and galactic chemical evolution. Pre-solar grains open a new observational window for astrophysical researches.  相似文献   

6.
7.
Since 20 years, a large population of close-in planets orbiting various classes of low-mass stars (from M-type to A-type stars) has been discovered. In such systems, the dissipation of the kinetic energy of tidal flows in the host star may modify its rotational evolution and shape the orbital architecture of the surrounding planetary system. In this context, recent observational and theoretical works demonstrated that the amplitude of this dissipation can vary over several orders of magnitude as a function of stellar mass, age and rotation. In addition, stellar spin-up occurring during the Pre-Main-Sequence (PMS) phase because of the contraction of stars and their spin-down because of the torque applied by magnetized stellar winds strongly impact angular momentum exchanges within star–planet systems. Therefore, it is now necessary to take into account the structural and rotational evolution of stars when studying the orbital evolution of close-in planets. At the same time, the presence of planets may modify the rotational dynamics of the host stars and as a consequence their evolution, magnetic activity and mixing. In this work, we present the first study of the dynamics of close-in planets of various masses orbiting low-mass stars (from \(0.6~M_\odot \) to \(1.2~M_\odot \)) where we compute the simultaneous evolution of the star’s structure, rotation and tidal dissipation in its external convective envelope. We demonstrate that tidal friction due to the stellar dynamical tide, i.e. tidal inertial waves excited in the convection zone, can be larger by several orders of magnitude than the one of the equilibrium tide currently used in Celestial Mechanics, especially during the PMS phase. Moreover, because of this stronger tidal friction in the star, the orbital migration of the planet is now more pronounced and depends more on the stellar mass, rotation and age. This would very weakly affect the planets in the habitable zone because they are located at orbital distances such that stellar tide-induced migration happens on very long timescales. We also demonstrate that the rotational evolution of host stars is only weakly affected by the presence of planets except for massive companions.  相似文献   

8.
9.
Stellar rotation depends on different parameters such as age, mass, initial chemical composition, initial angular momentum, and environment characteristics. The range of values of these parameters causes the dispersion in the rotation period distributions observed in young stellar clusters/associations. We focus our investigation on the effects of different circumstellar environments on stellar rotation. More specifically, we consider the effects of a perturber stellar companion on the accretion-disc lifetime at early evolution stages.We are searching in stellar Associations for visual triple systems where all stellar parameters are similar, with the only exceptions of the unknown initial rotation period, and of the circum-stellar environment, in the sense that one of the two about equal-mass components has a close-by third ‘perturber’ component.In the present study we analyze the 35-Myr old visual triple system TYC 9300-0891-1AB + TYC 9300-0529-1 in the young Octans stellar association consisting of three equal-mass K0V components. We collected from the literature all information that allowed us to infer that the three components are actually physically bound forming a triple system and are members of the Octans Association. We collected broad-band photometric timeseries in two observation seasons. We discovered that all the components are variable, magnetically active, and from periodogram analysis we found the unresolved components TYC 9300-0891-1AB to have a rotation period P = 1.383 d and TYC9300-0529-1 a rotation period P = 1.634 d.TYC 9300-0891-1A, TYC 9300-0891-1B, and TYC 9300-0529-1 have same masses, ages, and initial chemical compositions. The relatively small 16% rotation period difference measured by us indicates that all components had similar initial rotation periods and disc lifetimes, and the separation of 157 AU between the component A and the ‘perturber’ component B (or vice-versa) has been sufficiently large to prevent any significant perturbation/shortening of the accretion-disc lifetime.  相似文献   

10.
We consider the evolution of certain low-mass binaries, incorporating models of (a) internal evolution, (b) tidal friction, (c) dynamo activity driven by an elementary α,Ω dynamo, (d) stellar wind driven by the activity, and (e) magnetic braking as a consequence of wind and poloidal dynamo-generated magnetic field. In some circumstances the stellar wind is found to remove mass on a nuclear timescale, as is necessary to explain some observed systems. We can hope that various uncertainties in the model may be clarified by a careful comparison of the models with such observed quantities as rotation periods. These are modified by processes (a), (b) and (e). Assuming that stellar evolution is slow, rotation rate should in some circumstances represent a balance between magnetic braking trying to slow the star down and tidal friction trying to spin it up. Preliminary attempts are promising, but indicate that some fine tuning is necessary. When there is a third body present, in an orbit which is inclined but not necessarily of short period, the eccentricity of a close binary can be strongly modified by ‘Kozai cycles’. We show that this may complicate attempts to account for spin rates of stars in close binaries.  相似文献   

11.
Explicit analytical expressions for the tidal velocities in the stars which are components of the binary system are obtained, taking into account the viscosity of the stellar matter, the star's rotation, the eccentricity of the orbit and tilt of the axis of rotation to the orbital plane.Equations which determine the tidal evolution of the star's axial and orbital motions are obtained and analyzed. Numerical solutions of these equations are analyzed.  相似文献   

12.
Based on the spectral observations of the LAMOST (DR2) survey, the radii, masses, and luminosities of 700 481 stars were estimated. These stars belong to spectral types A, F, G, and K, and have metallicities between ?0.845 and 0.0. To determine the properties of the stars, we used up-to-date models of the stellar interior structure, computed with account for the stellar evolution rate and the initial mass function. The use of evolutionary estimates for two types of stars—with and without rotation—allowed us to account for the uncertainty associated with the lack of data on the rotation velocity of the stars under consideration. The obtained stellar radii, together with the photometric estimates of interstellar extinction and angular diameters can be used to study the dependence of interstellar extinction on distance as well as to estimate the stellar distances.  相似文献   

13.
We present results of evolutionary computations for massive close binaries with the Brussels simultaneous evolution code for conservative and non-conservative Roche lobe overflow (RLOF). We discuss mass transfer in massive close binaries during phases of RLOF, common envelope, spiral-in and merging. We examine the effects of stellar wind during successive stellar evolution phases and the final fate of primaries. We show how our library can be used to explain well-known binaries such as the WR + OB system V444 Cyg, HMXBs Vela X-1 and Wray 977, LMXBs like Her X-1, and binary pulsars. More details on the evolution of massive close binaries can be found in “The Brightest Binaries” (Vanbeveren et al., 1998).  相似文献   

14.
自转本身是恒星的基本物理量之一,同时影响恒星的其它许多物物量,包括对恒星半径、形状和体积的影响;对光度、包指数、谱线轮廓、等值宽度、偏振度等观测量的影响;对引力加速度、元素丰度的影响;对恒星内部结构,如中心压力、温度、密度的影响。这些将会影响到恒星在H—R图上的位置,演化路径以及年龄和寿命等。因此,无论是理论模型还是实测研究,对自转快的恒星应该进行自转影响的修正。  相似文献   

15.
The aim of the present investigation has been to consider rotational evolution of solar-type stars simulated by a polytropic model that possesses differential rotation of Clement's type. A properly defined reduction factor moderates the effects of such a rotation. The present treatment is based upon the general Eulerian equation, governing nonuniform (i.e., nonrigid-body) rotation, which has been set up in a previous investigation. Nonconservative terms, arising when stellar wind torque is under consideration, are taken into account. Data available for the viscosity of the Sun are used to construct a plausible viscosity model. Certain assumptions are made that remove the mathematical difficulties and simplify the physical ground. The obtained results are compared to corresponding estimates of recent observations.  相似文献   

16.
Stellar radiation zones are the seat of meridional currents. This circulation has a strong impact on the transport of angular momentum and the mixing of chemicals that modify the evolution of stars. First, we recall in details the dynamical processes that are taking place in differentially rotating stellar radiation zones and the assumptions which are adopted for their modelling in stellar evolution. Then, we present our new results of numerical simulations which allow us to follow in 2D the secular hydrodynamics of rotating stars, assuming that anisotropic turbulence enforces a shellular rotation law and taking into account the transport of angular momentum by internal gravity waves. The different behaviors of the meridional circulation in function of the type of stars which is studied are discussed with their physical origin and their consequences on the transport of angular momentum and of chemicals. Finally, we show how this work is leading to a dynamical vision of the evolution of rotating stars from their birth to their death. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
B. R. Pettersen 《Solar physics》1989,121(1-2):299-312
We review the flaring activity of stars across the HR-diagram. Brightenings have been reported along the entire Main Sequence and in many stars off the Main Sequence. Some stars are decidedly young, others are in advanced stages of stellar evolution. Flares are common on stars with outer convection zones and outbursts have been reported also on other types of stars, although confirmations are needed for some of them.Analyses of flare occurrence sometimes find flares to be randomly distributed in time, and sometimes indicate a tendency for flares to come in groups. Preferred active longitudes have been suggested. Recent solar results, where the occurrence rate for flares is found to exhibit a periodicity of 152 days, suggest that stellar flare data should be reanalyzed over long time baselines to see if the present confusing situation can be resolved.The radiation from stellar flares is dominated by continuum emission and about equal amounts of energy have been recorded in the optical, UV, and X-ray regions of the spectrum. In solar flares strong continuum emission is rarely recorded and a large collection of bright emission lines takes prominence. Small flares occur more frequently than large ones and the latter have longer time-scales. Flare energies can exceed 1037 erg. The most productive flare stars are those where the convective envelopes occupy large volumes. Slow stellar rotation rates are believed to reduce the level when the star has been braked significantly from its young rotation rate.  相似文献   

18.
The birefringent effects of photon–pseudo-scalar boson (Goldstone) particle mixing in intergalactic magnetic field are calculated for cosmological objects. We use the recent results of PVLAS collaboration that reported recently the observation of a rotation of the polarization plane of light propagating through a transverse static magnetic field. Such result was interpreted as arising due to conversion of photon into pseudo-scalar with coupling strength   g ∼ 4 × 10−6 GeV−1  . This result contradicts to data of stellar evolution that excluded standard axion model and seems to claim existence of supersymmetry (SUSY) pseudo-scalars. We estimate the intergalactic magnetic field magnitude as ∼10−16 G based on Hatsemekers et al. observations of extreme-scale alignments of quasar polarization vectors. We analysed some additional results of astronomical observations that could be explained by axion interpretation of the PVLAS data: a sharp steepening of the quasi-stellar object (QSO) continuum shortward of ≃1100 Å, observed circular polarization of active galactic nuclei (AGNs) and QSOs, discrepancy between observed intrinsic polarization of stars in the Local Bubble and stellar spectral classification. The observed polarization of stars in the Local Bubble cannot be explained by interstellar origin.  相似文献   

19.
Evolutionary synthesis models have been used to study the physical properties of unresolved populations in a wide range of scenarios. Unfortunately, their self-consistency is difficult to test and there are some theoretical open questions without an answer: (1) The change of the homology relations assumed in the computation of isochrones due to the effect of stellar winds (or rotation) and the discontinuities in the stellar evolution are not considered. (2) There is no consensus about how the isochrones must be integrated. (3) The discreteness of the stellar populations (that produce an intrinsic statistical dispersion) usually are not taken into account, and model results are interpreted in a deterministic way instead of a statistical one. The objective of this contribution is to present some inconsistencies in the computation and some cautions in the application of the results of such codes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
We study the evolution of a rigidly rotating protoneutron star (PNS) with hyperons and nucleons or solely nucleons in its core due to the escape of trapped neutrinos. As the neutrinos escape, the core nucleonic neutron star (NS) expands and the stellar rotation slows. After the neutrinos escape, the range of the spin periods is narrower than the initial one, but the distribution is still nearly uniform. A PNS with hyperons, at the late stage of its evolution, keeps shrinking and spinning up until all the trapped neutrinos escape. Consequently, the distribution of the stellar initial spin periods is skewed towards shorter periods. If the hyperonic star is metastable, its rotational frequency accelerates distinguishedly before it collapses to a black hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号