首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Suspended particulate matter (SPM) was collected in the freshwater-seawater mixing zone in the lower reaches of the Daugava River (Latvia) and adjacent marine area, during five cruises in 1998-2001. The study focused on biogeochemical phase exchange processes. SPM in the freshwater was found to be mainly allochthonous with a high content of organic matter, Mn and sorbed phosphate. Property-salinity plots suggested flocculation of humic-Fe complexes across the salinity gradient. The variability of sorbed phosphate was related to particulate Fe, although no dependence on pH and ionic strength was observed. The Mn contents of SPM mainly follow conservative mixing, but there are also indications of interface exchange of Mn in the mixing zone. The geochemical behaviour of particulate Al appears to differ from that of Fe. In early spring, trace element contents in SPM (Cr, Ni, Cu, Zn, Cd, Pb) correlate tightly with particulate organic matter, whose distribution is linked to phytoplankton distributions.  相似文献   

2.
Cation adsorption on oxides and clays: The aluminum case   总被引:1,自引:0,他引:1  
The sorption mechanisms for trace metal ions on montmorillonite have been investigated. Complexation with surface hydroxyl groups located on the brocken edges of platelet particles is found to occur over a pH range similar to that observed on silica and other oxides, at comparable metal/site ratios. A second mechanism involving cation exchange on the negatively charge basal plane, which does not involve proton exchange in our experimental conditions, has been invoked to explain the low pH behavior. Consistent with this cation exchange mechanism, adsorption at low pH is strongly ionic strength dependant. A quantitative model which involves both mechanisms is presented and tested against both cation and proton adsorption data.  相似文献   

3.
A study of the removal of As(V) from aqueous solution by Fe2(SO4)3 has been carried out to establish optimum parameters for the process. Optimum arsenic removal is obtained at pH = 5, and mole ratio Fe(III)/As(V) = 7. Minimum arsenate solubility is obtained from sediments precipitated at pH = 5 and Fe/As = 7…8.  相似文献   

4.
Paul Schindler's early work on the acid-base chemistry of oxides was instrumental for the development of the concept of surface complexation. This approach has not only been important in establishing a theory on the adsorption of metal ions and ligands as a function of pH and solution variables, but has become essential in establishing surface speciation (coordinative structural and electronic arrangement at the solidwater interface) which in turn determines surface reactivity. The factors that affect dissolution of Fe(III) (hydr)oxides and inhibition of dissolution are discussed. A few examples for the inhibition of reductive and ligand-promoted dissolution by binuclear complexes of oxoanions (phosphate, borate) and of protonpromoted dissolution by Cr(III) are given.  相似文献   

5.
This study addresses the changes in dissolved major and trace element concentrations along the Orinoco River, including the mixing zone between the Orinoco and Apure Rivers. Water samples from the Apure and Orinoco Rivers were collected monthly in four sectors over a period of 15 months. Auxiliary parameters (pH, dissolved oxygen, conductivity, and temperature), total suspended sediments, dissolved organic carbon (DOC), and major (Na, K, Ca, Mg, and Si) and trace (Al, Fe, Mn, Zn, Cu, and Cr) element concentrations were measured in all sectors. The relative contribution of both rivers after the Apure–Orinoco confluence was determined using Ca as a tracer. Moreover, a mixing model was developed to determine whether dissolved species exhibit a conservative behavior during mixing. The results indicate that DOC is removed from waters during the Apure–Orinoco mixing, probably due to absorption of DOC on mineral phases supplied by the Apure River. Dissolved Na, Ca, and Mg behave conservatively during the mixing processes, and their concentrations are controlled by a dilution process. The anomaly in the temporal pattern of K in the Orinoco is caused by the input of biogenic K originating from the Apure River during the high‐water stage. The loss of dissolved Si during the low‐water stage can be explained by the uptake of Si by diatoms. Dissolved Mn, Zn, Al, and Fe showed a non‐conservative behavior during the Apure–Orinoco mixing. The removal of Mn and Zn from the dissolved phase can be explained by the formation of Mn‐oxyhydroxides and the scavenging of Zn onto Mn oxides. Dissolved Fe is controlled by redox processes, although the removals of Fe and Al due to the preferential adsorption of large organometallic complexes by mineral surfaces after the Apure–Orinoco confluence can affect the mobility of both elements during transport. The conservative behavior shown by Cu and Cr can be related to the tendency of both elements to be complexed with small organic colloids, which are not preferentially adsorbed by clays.  相似文献   

6.
Transport and retention of Escherichia coli through the mixture of quartz, Al‐coated and Fe‐coated sands was examined using column experiments to investigate the effect of geochemical heterogeneity on bacteria transport. The first set of the experiments was performed in quartz, Al‐coated and Fe‐coated sand mixtures (coated sand: 0, 5, 10, 25, 50, 100%) to examine the influence of positively‐charged sand grains on bacteria transport. The second experiments were carried out to observe the impact of pH (range 6·74–8·21) on bacteria transport in the mixture of quartz 50% and Fe‐coated sand 50%. The third experiments were conducted to analyse the effect of ionic strength (0, 50, 100, 200 mM) on bacteria transport in the mixture of quartz 50% and Al‐coated sand 50%. The first experiments show that bacterial mass recoveries were in the range of 3·6–43·4%, decreasing nonlinearly as the content of Al‐ and Fe‐coated sands increased. In the second experiments, the bacterial mass recoveries were in the range of 35·5–79·2%, increasing linearly as the solution pH increased. In the third experiments, the mass recovery was 3·4% at 0 mM. As the ionic strength increased to 50mM, the mass recovery decreased to 0%. When the ionic strength increased further to 100 and 200 mM, no bacterial mass was recovered as in the case of 50 mM. It indicates that in the mixed medium of quartz 50% and Al‐coated sand 50% both positive (increment of bacterial adhesion) and negative (decrement) effects of ionic strength may be counterbalanced, minimizing the impact of ionic strength on the bacterial adhesion. This study helps to understand the role of metal oxides and solution chemistry in the transport of bacteria in geochemically heterogeneous media Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Adsorption and oxidative transformation processes critically affect the mobility and toxicity of arsenic (As) in the environment. In this study, the detoxification of arsenite through adsorption and oxidation by pyrolusite was systematically investigated. Disappearance of aqueous As(III) in the solution can be efficiently achieved using pyrolusite. The As(III) oxidative transformation product arsenate or As(V) was obtained both in the solution and on the pyrolusite surface. The arsenic species adsorbed on pyrolusite exist in two forms: As(III) and As(V). Furthermore, over 64.8% of the adsorbed As cannot be desorbed. They were fixed more stably in the structure of the mineral to achieve a safer removal. Lower As(III) initial concentration increased As(III) detoxification rates. Elevating the reaction pH from 4.5 to 7.9 elicited a slight effect on the disappearance rate of As(III). Efficient As(III) detoxification can be achieved by pryrolusite within the studied pH range. The addition of low‐molecular‐weight carboxylic acids decreased the detoxification rate of As(III) through competition for active sites on pyrolusite. Co‐existing divalent metal ions, such as Ca2+, Ni2+, and Mn2+, also decreased the detoxification rate of As(III). However, the trivalent ion Cr3+ largely increased the detoxification rate through co‐precipitation and adsorption processes.  相似文献   

8.
The increased accumulation of toxic pharmaceuticals and personal care products in the environment is a concern of worldwide relevance. Efficient technologies are needed to mitigate the level of such chemicals in natural waters. The suitability of multi‐walled carbon nanotubes (MWCNTs) to remove aqueous triclosan (a widely used anti‐microbial agent) was investigated in the present study. Tested operational parameters included the pH (3.0–11.0) value and the ionic strength (10?3, 10?2, and 10?1 M). Kinetic and thermodynamic studies were conducted at different initial concentrations (4, 8, and 10 mg/L) and temperatures (288, 298, and 308 K). Results showed higher triclosan adsorption at pH 3.0 (157.7 mg/g) than at pH 11.0 (103.9 mg/g). With an increase of ionic strength from 10?3 to 10?2 M, the adsorption capacity increased from 136.1 to 153.1 mg/g and from 80.8 to 105.8 mg/g at pH 3.0 and 10.0, respectively, while further increase of ionic strength to 10?1 M slightly reduced the triclosan adsorption to 149.9 and 94.7 mg/g due to the aggregation of MWCNTs. The Polanyi–Manes model (PMM) provided a best fitting of adsorption isotherms to the experimental data, and the kinetic process was well described by the pseudo second‐order kinetic model. The calculated thermodynamic parameters (ΔH0 = ?88.08 kJ/mol, ΔS0 = ?173.38 J/mol K) suggested that the adsorption of triclosan is spontaneous and exothermic in nature. The findings of the present work have significant implications for the removal of triclosan from aqueous solution with MWCNTs.  相似文献   

9.
Pyridine is a very toxic pollutant that has to be removed from wastewater. In this work, adsorption of pyridine on activated carbon cloth (ACC) is studied as a possible alternative for eliminating pyridine from aqueous solution. The ACC was produced from polyacrylonitrile. The adsorption equilibrium data of pyridine on ACC was obtained in a batch adsorber. The experimental data was interpreted with the isotherms of Langmuir, Freundlich, and Prausnitz‐Radke (PR), and the PR isotherm better represented the experimental data. The capacity of ACC for adsorbing pyridine was favored increasing the solution pH from 3 to 6, and this effect was due to the π–π dispersive and electrostatic interactions between the pyridine species in solution and the surface complexes of ACC. The modified Langmuir model fitted reasonably well the influence of pH on the adsorption capacity. In this model was assumed that both neutral pyridine and pyridinium were simultaneously adsorbed on ACC accordingly to the experimental results. The adsorption capacity was almost independent of temperature. The reversibility study revealed that 75% of the pyridine can be desorbed from ACC indicating that part of the pyridine was irreversibly adsorbed, and possibly chemisorbed.  相似文献   

10.
11.
This paper is an experimental investigation into the removal of arsenic species from simulated groundwater by adsorption onto Ca2+ impregnated granular activated carbon (GAC‐Ca) in the presence of impurities like Fe and Mn. The effects of adsorbent concentration, pH and temperature on the percentage removal of total arsenic (As(T)), As(III) and As(V) have been discussed. Under the experimental conditions, the optimum adsorbent concentration of GAC‐Ca was found to be 8 g/L with an agitation time of 24 h, which reduced As(T) concentration from 188 to 10 μg/L. Maximum removal of As(V) and As(III) was observed in a pH range of 7–11 and 9–11, respectively. Removal of all the above arsenic species decreased slightly with increasing temperature. The presence of Fe and Mn increased the adsorption of arsenic species. Under the experimental conditions at 30°C, the maximum percentage removals of As(T), As(III), As(V), Fe, and Mn were found to be ca. 94.3, 90.6, 98.0, 100 and 63%, respectively. It was also observed that amongst the various regenerating liquids used, a 5 N H2SO4 solution exhibited maximum regeneration (ca. 91%) of the spent GAC‐Ca.  相似文献   

12.
13.
In natural waters arsenic concentrations up to a few milligrams per litre were measured. The natural content of arsenic found in soils varies between 0.01 mg/kg and a few hundred milligrams per kilogram. Anthropogenic sources of arsenic in the environment are the smelting of ores, the burning of coal, and the use of arsenic compounds in many products and production processes in the past. A lot of arsenic compounds are toxic and cause acute and chronic poisoning. In aqueous environment the inorganic arsenic species arsenite (As(III)) and arsenate (As(V)) are the most abundant species. The mobility of these species is influenced by the pH value, the redox potential, and the presence of adsorbents such as oxides and hydroxides of Fe(III), Al(III), Mn(III/IV), humic substances, and clay minerals.  相似文献   

14.
Laboratory incubation experiments were carried out on sediment cores collected from Esthwaite Water, U.K., during April 1987, when the sediments displayed a characteristic surface (1.5 to 2 cm) oxide floc. The experiments were undertaken at 10°C, in the dark, under variable redox and pH conditions for periods of ~ 720 h (30 d). In some cases, realistic amounts of decomposing lake algae were added to simulate the deposition of an algal bloom. Pore waters and overlying waters were obtained from the incubated sediment cores at various time intervals and the samples analysed for pH and dissolved Fe, Mn, Zn and Cu by AAS. The results demonstrated that trace metal concentrations at the sediment-water interface can show rapid, pulsed responses to episodic events associated with controlling factors such as algal deposition and mixing conditions. The variations in dissolved Fe and Mn concentrations could generally be explained by their well known redox behaviour. Appreciable loss of Mn from solution under conditions of well-developed anoxia was consistent with adsorption of Mn2+ by FeS. Cu and Zn were both rapidly (24 h) released into solution during incubation of sediment cores prior to the development of anoxia in the overlying waters. Their most likely sources were the reductive remobilization of Mn oxides and the decomposition of organic matter. The addition of decomposing algae to a series of cores resulted in even higher interfacial dissolved concentrations of Cu and Zn, probably through acting as a supplementary source of the metals and through increased oxide dissolution. Switching from anoxic to oxic conditions also rapidly increased dissolved Cu and Zn concentrations, possibly due to their release during the oxidation of metal sulphides. The enhanced releases of dissolved Cu and Zn were generally short-lived with removal being attributed to the formation of sulphides during anoxia and to adsorption by Fe and Mn oxides under oxic conditions.  相似文献   

15.
The ionic states and degrees of complexation of mercury and antimony are studied in the presence of various geological materials and brine solutions and a simulated Tivoli spring water. The formation of anionic chloride complexes is confirmed but, for the first time, simultaneous formation of cationic hydration complexes is reported. The use of electrophoretic techniques in this study are outlined.  相似文献   

16.
This paper deals with kinetics and equilibrium studies on the adsorption of arsenic species from simulated groundwater containing arsenic (As(III)/As(V), 1:1), Fe, and Mn in concentrations of 0.188, 2.8, and 0.6 mg/L, respectively, by Ca2+ impregnated granular activated charcoal (GAC‐Ca). Effects of agitation period and initial arsenic concentration on the removal of arsenic species have also been described. Although, most of the arsenic species are adsorbed within 10 h of agitation, equilibrium reaches after ~24 h. Amongst various kinetic models investigated, the pseudo second order model is more adequate to explain the adsorption kinetics and film diffusion is found to be the rate controlling step for the adsorption of arsenic species on GAC‐Ca. Freundlich isotherm is adequate to explain the adsorption equilibrium. However, empirical polynomial isotherm gives more accurate prediction on equilibrium specific uptakes of arsenic species. Maximum specific uptake (qmax) for the adsorption of As(T) as obtained from Langmuir isotherm is 135 µg/g.  相似文献   

17.
In this paper, a novel composite material the silica grafted by poly(N‐vinyl imidazole) (PVI), i.e., PVI/SiO2, was prepared using 3‐methacryloxypropyl trimethoxysilane (MPS) as intermedia through the “grafting from” method. The adsorption behavior of metal ions by PVI/SiO2 was researched by both static and dynamic methods. Experimental results showed that PVI/SiO2 possessed very strong adsorption ability for metal ions. For different metal ions, PVI/SiO2 exhibited different adsorption abilities with the following order of adsorption capacity: Cu2+ > Cd2+ > Zn2+. The adsorption material PVI/SiO2 was especially good at adsorbing Cu(II) ion and the saturated adsorption capacity could reach up to 49.2 mg/g. The empirical Freundlich isotherm was found to describe well the equilibrium adsorption data. Higher temperatures facilitated the adsorption process and thus increased the adsorption capacity. The pH and grafting amount of PVI had great influence on the adsorption amount. In addition, PVI/SiO2 particles had excellent eluting and regenerating property using diluted hydrochloric acid solution as eluent. The adsorption ability trended to steady during 10 cycles.  相似文献   

18.
We use molecular dynamics simulation to study the mechanisms involved in the adsorption of aqueous uranyl species(UO_2~(2+)) to the basal surfaces of clay minerals,including kaolinite,pyrophyllite and montmorillonite.Uranyl ion can form various complexes with carbonates,namely,[UO_2(H_2O)_5]~(2+),[UO_2(H_2O)3(CO_3)],[UO_2(H_2O)2(CO_3)_2]~(2-),[UO_2(CO_3)_3]~(4-).The simulations show that at aqueous clay interfaces,both uranyl species and surface type control the adsorption pattern.The noncarbonato and monocarbonato uranyl species can form outer-sphere complexes on siloxane surfaces through electrostatic interaction,but the dicarbonato and tricarbonato uranyl complexes rarely adsorb on the siloxane surfaces.Strong outer-sphere adsorptions of the uranylcarbonate complexes on gibbsite surfaces are observed,which are fixed by hydrogen bonds between the ligands(carbonate and/or H_2O) and surface hydroxyls.The sorption behaviors derived in this study provide new insights into understanding the migration and enrichment of uranium and other radionuclides.  相似文献   

19.
Leachate derived from bioleaching process contains high amount of metals that must be removed before discharging the water. Aspergillus fumigatus was isolated from a gold mine tailings and its ability to remove of As, Fe, Mn, Pb, and Zn from aqueous solutions and leachate of bioleaching processes was assessed. Batch sorption experiments were carried out to characterize the capability of fungal biomass (FB) and iron coated fungal biomass (ICFB) to remove metal ions in single and multi‐solute systems. The maximum sorption capacity of FB for As(III), As(V), Fe, Mn, Pb, and Zn were 11.2, 8.57, 94.33, 53.47, 43.66, and 70.4 mg/g, respectively, at pH 6. For ICFB, these values were 88.5, 81.3, 98.03, 66.2, 50.25, and 74.07 mg/g. Results showed that only ICFB was found to be more effective in removing metal ions from the leachate. The amount of adsorbed metals from the leachate was 2.88, 21.20, 1.91, 0.1, and 0.08 mg/g for As, Fe, Mn, Zn, and Pb, respectively. The FT‐IR analysis showed involvement of the functional groups of the FB in the metal ions sorption. Scanning electron microscopy revealed that surface morphological changed following metal ions adsorption. The study showed that the indigenous fungus A. fumigatus was able to remove As, Fe, Mn, Pb, and Zn from the leachate of gold mine tailings and therefore the potential for removing metal ions from metal‐bearing leachate.  相似文献   

20.
Batch adsorption experiments were carried out using nonliving biomass of Porphyra yezoensis Ueda (red alga) for the removal of Congo red from aqueous solutions at 25°C. The effects of process parameters such as contact time, adsorbent concentration and ionic strength were investigated. The raw biomass and Congo red loaded biomass were characterized by Fourier transform infrared spectroscopy (FTIR). The pseudo first order, pseudo second order and intraparticle diffusion models were tested. The results showed that adsorption of Congo red followed pseudo second order kinetics very well. Langmuir and Freundlich equations were applied to the data related to the adsorption isotherms, and the observed maximum adsorption capacities (qm) were 71.46 mg/g at 25°C. Adsorbent concentration and ionic strength had a marked effect on Congo red adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号