首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
利用2003年8月22日-9月3日中国北极科学考察队在北冰洋78°N浮冰站获得的近地层观测资料,采用整体输送法对北冰洋浮冰近地层特征参数进行了分析研究。结果表明,在考察期间,雪面吸收的净辐射仅为3.6 W/m2,其中以感热和潜热向大气输送的能量分别占52%和31%,向海冰深层传导的热量很少;近中性层结条件下的平均拖曳系数Cdn为1.16×10-3,略小于75°N北冰洋浮冰上近中性层结的Cdn。与1999年75°N附近冰站观测结果的对比表明,当海冰密度及冰站所在浮冰的尺度不同时,海冰与大气相互作用的热力学和动力学过程的差异显著,在研究北冰洋地区海/冰/气相互作用对气候过程影响时,应考虑这一问题。  相似文献   

2.
北冰洋浮冰站大气边界层结构的观测研究   总被引:4,自引:2,他引:4       下载免费PDF全文
利用2003年8月23日-9月3日我国第二次北极科学考察队在北冰洋浮冰站探测的50次大气廓线及相关资料,对北冰洋的大气边界层垂直结构进行了研究。结果显示,观测期间北冰洋(78°N附近,143°-148°W)浮冰区白天的对流边界层高度大于夜间的稳定边界层高度。大气边界层可分为稳定型、不稳定型和多层结构等几种类型。个例分析表明来自高空较强的暖湿气流与冰面近地层冷空气强烈相互作用,会形成强风切变和逆温、逆湿过程,有时100m高度内的风切变达10m/s,逆温达8℃。此种过程会导致北冰洋高纬度地区的大块海冰破裂,形成新的无冰海域,加强了海/冰/气的相互作用。该观测事实将有助于进一步提高对北冰洋高纬度边界层特征及其影响的认识。  相似文献   

3.
利用卫星海冰密集度资料和船基海冰走航观测数据分析了2012年12月至2013年3月南极罗斯海海冰密集度、厚度和浮冰尺寸等参数的时空变化特征。12月下旬罗斯海西侧浮冰区南北向宽约1 000 km,沿雪龙船航线平均密集度在5成以上,平均海冰厚度为100 cm,平均冰上积雪厚度为16 cm,高密集度区域主要为尺寸较小的块浮冰(2—20 m)和小浮冰(20—100 m),低密集度区域主要为大尺寸浮冰(500—2 000 m)。1月和2月罗斯海大部分海域无海冰覆盖,3月海冰迅速冻结,下旬即覆盖整个罗斯海。SSMIS和AMSR2两种卫星遥感数据均能较好反映航线上的真实海冰密集度状况,AMSR2产品与观测符合更好。与1978—2012的气候平均值相比,观测区在2012年夏季冰情偏重。本文的分析结果可帮助我们了解罗斯海海冰的时空特征,为中国后续罗斯海科考提供参考。  相似文献   

4.
在 2013—2014年南半球夏季时对南极普里兹湾海区的反照率进行了走航观测。利用安装于破冰船船头的高光谱辐照度计测量入射和反射的350—920 nm的太阳短波辐射, 基于此观测数据, 经计算得到了反照率。分析比较不同下垫面的反照率, 通过比较不同航段的观测结果, 得到了反照率的空间变化以及从海冰融化期至冻结初期的变化。不同下垫面的反照率差异较大, 有积雪覆盖的固定冰反照率最大, 有积雪覆盖的浮冰其次, 而积雪融化的浮冰则反照率有所降低。新冰的反照率较低, 有积雪覆盖的新冰反照率迅速增加。比较不同波段的反照率, 发现融化期由于积雪含水量较大, 增加了对近红外辐射的吸收, 降低了该波段的反照率。结合卫星遥感(AMSR-2)和人工观测的海冰密集度, 发现区域平均的反照率主要取决于海冰密集度, 然而也受下垫面物理特征影响, 例如2月底至3月初形成的新冰, 反照率只有老冰的1/3— 1/2。新冰形成, 会直接增加海冰密集度, 但由于其反照率较低, 对空间平均反照率的贡献较小。因此, 若要建立合理的冰水混合区的反照率参数化方案, 必须充分考虑海冰类型和冰面积雪的物理状态, 并考虑反照率的波长依赖性。  相似文献   

5.
北冰洋浮冰区的气象要素特征   总被引:6,自引:3,他引:3       下载免费PDF全文
利用中国首次北极科学考察队观测的气象资料 ,初步分析研究了 1 999年 8月 1 9~ 2 4日北冰洋浮冰 ( 75°N,1 60°W)上的温、压、湿、风、云量、辐射、海表温度、冰面及冰中温度等气象要素变化特征 ,并结合 50 0 h Pa高度场分析了该期间的天气过程。结果表明 :在考察期间海面与冰面温度日变化差异明显。除晴天夜间出现逆温外 ,气温随高度增大而减小 ,冰面为热源 ,不断有向上的热量输送。海温则稳定少变。冰中热交换主要发生在冰下 0~ 40 cm深度。由于有海上湿平流等影响 ,存在“逆湿”现象。晴天反射率具有明显日变化 ,早晚大 ,中午小。海冰表面平均反射率约为 0 .76。辐射与云量特别是低云量的关系密切  相似文献   

6.
雪和海冰作为北极地区反照率最高的地表类型,可以将大部分入射辐射能量反射回天空,其表面反照率的变化对整个地表-大气辐射平衡系统和全球气候变化都会有重要影响。在2010年中国第4次北极科学考察期间用ASD光谱仪对北极太平洋扇区不同类型的海冰表面反照率进行了现场测量,观测时段为7月27日至8月23日,地理范围在72°18′-87°20′N和152°34′-178°22′W之间。观测结果表明积雪覆盖海冰的反照率最高,干雪覆盖时均值达到0.82,融化的湿雪覆盖时反照率会有一定程度地降低。夏季北极地区存在大量融池,融池海冰按颜色划分为白冰,蓝冰和灰冰,白冰的平均反照率为0.54,蓝冰的为0.31,灰冰的只有0.20,融池水的反照率只有0.16。融池是北极夏季反照率变化的重要原因。  相似文献   

7.
天山冰川消融参数化能量平衡模型   总被引:34,自引:0,他引:34  
康尔泗 Ohmur  A 《地理学报》1994,49(5):467-476
本文运用在天山乌鲁木齐河源的冰川能量平衡观测和常规气象站观测要素,建立了冰川消融参数化能量平衡模型。以日照、日平均气温、低云量、水汽压和风速为模型基本输入因子,模拟计算和讨论了消融期冰川表面辐射平衡和能量平衡。  相似文献   

8.
海冰生物群落是北极生态系统的重要组成部分,在北冰洋初级生产和碳循环中扮演着重要角色。本文利用荧光显微分析技术对2012年度夏季采集于北冰洋中心区的浮冰生物群落进行了分析,结果显示:柱总生物量平均为105.85±53.41 mgC •m-2,其中细菌占生物量的47.2%,而后依次是硅藻(26.7%),鞭毛虫(18.2%),鞭毛藻(6.9%)和纤毛虫(1.0%)。最高纬站位(123°43.454′E 87°39.598′N)出现冰底鞭毛藻藻华现象,生物量可达329.6 μg C•L-1,该站位生物群落处于硅藻藻华后期,海冰上层存在较大程度的融冰作用,底部冰芯营养盐N/P比较高,可能形成有利于鞭毛藻生长的小生境。与已有研究结果的对比表明,近年来夏季北极海冰的快速融化对浮冰生物群落结构产生了明显影响,异养类群生物量升高,细菌取代硅藻成为优势类群。  相似文献   

9.
基于Modis地表温度的横断山区气温估算及其时空规律分析   总被引:5,自引:1,他引:4  
姚永慧  张百平  韩芳 《地理学报》2011,66(7):917-927
横断山区气象观测站稀少且多分布在河谷之中,气温资料极度匮乏,严重影响山区地理与生态研究。随着遥感技术的发展,热红外遥感数据,结合地面观测数据,可以用来推测山区气温。本文通过对横断山区2001 年-2007 年间64 个气象台站的多年月平均气温数据(Ta) 与Modis地表温度多年月平均值(Ts) 进行了时序分析和回归分析,并取得如下研究结果:(1) Ts 与Ta 具有非常好的线性相关关系,89%的台站的决定系数高于0.5;95%的台站的标准误差都低于3 oC,84.4%的台站标准误差低于2.5 oC;12 个月份的Ts 与Ta 的决定系数R2在0.63~0.90 之间,标准误差在2.22~3.05 oC之间。(2) 研究区内月均气温的变化范围在-2.25~15.64 oC之间;生长季(5-9 月份) 的月均气温变化范围为:10.44~15.64 oC。(3) 等温线的海拔高度自山体外围向内部逐渐升高,与山体效应的增温效应相吻合;0 oC等温线自10 月份从海拔4700±500 m左右逐渐降低,至1月份降至最低点,约在3500±500 m左右,此后,逐渐回升,至次年5 月份再次达到4700±500 m左右,也就是说横断山区5200 m以下的广大山区全年至少有6~12 个月的气温在0 oC以上。研究表明:可以利用Modis月均地表温度结合地面观测台站的数据较精确的估算山区月均气温。  相似文献   

10.
董玉祥  黄德全  马骏 《地理科学》2010,30(3):391-397
河北昌黎黄金海岸典型沙丘的实地观测表明,风沙流中中沙与细沙输沙量的垂向分布在沙丘表面不同部位的变化并无本质性差别但有一定变化幅度的差异,如绝对输沙量均在迎风坡至丘顶增加、丘顶至背风坡坡脚减小,但中沙输沙量在迎风坡增加的幅度小于细沙、在背风坡减少的幅度大于细沙;相对输沙量在沙丘不同部位的变化趋向类似,但细沙的变化幅度要小于中沙;中沙的垂向分布模式均为幂函数,细沙则表现为指数分布(0~10cm高度内)和幂函数分布(10~30cm高度内)。  相似文献   

11.
Summer sea ice characteristics of the Chukchi Sea   总被引:1,自引:0,他引:1       下载免费PDF全文
During August 1999, we investigated sea ice characteristics; its distribution, surface feature, thickness, ice floe movement, and the temperature field around inter-borders of air/ice/seawater in the Chukchi Sea. Thirteen ice cores were drilled at 11 floe stations in the area of 72°24′ 77°18′N, 153°34′ 163°28′W and the ice core structure was observed. From field observation, three melting processes of ice were observed; surface layer melting, surface and bottom layers melting, and all of ice melting. The observation of temperature fields around sea ice floes showed that the bottom melting under the ice floes were important process. As ice floes and open water areas were alternately distributed in summer Arctic Ocean; the water under ice was colder than the open water by 0.4 2.8℃. The sun radiation heated seawater in open sea areas so that the warmer water went to the bottom when the ice floes move to those areas. This causes ice melting to start at the bottom of the ice floes. This process can balance effectively the temperature fluctuating in the sea in summer. From the crystalline structure of sea ice observed from the cores, it was concluded that the ice was composed of ice crystals and brine-ice films. During the sea ice melting, the brine-ice films between ice crystals melted firstly; then the ice crystals were encircled by brine films; the sea ice became the mixture of ice and liquid brine. At the end of melting, the ice crystals would be separated each other, the bond between ice crystals weakens and this leads to the collapse of the ice sheet.  相似文献   

12.
Timo Vihma 《极地研究》2008,19(2):108-122
Evolution of the Arctic sea ice and its snow cover during the SHEBA year were simulated by applying a high-resolution thermodynamic snow/ice model (HIGHTSI).Attention was paid to the impact of albedo on snow and sea ice mass balance,effect of snow on total ice mass balance,and the model vertical resolution. The SHEBA annual simulation was made applying the best possible external forcing data set created by the Sea Ice Model Intercomparison Project.The HIGHTSI control run reasonably reproduced the observed snow and ice thickness.A number of albedo schemes were incorporated into HIGHTSI to study the feedback processes between the albedo and snow and ice thickness.The snow thickness turned out to be an essential variable in the albedo parameterization.Albedo schemes dependent on the surface temperature were liable to excessive positive feedback effects generated by errors in the modelled surface temperature.The superimposed ice formation should be taken into account for the annual Arctic sea ice mass balance.  相似文献   

13.
I. Sobota 《Polar Science》2011,5(3):327-336
This study examines the mass balance, accumulation, melt, and near-surface ice thermal structure of Irenebreen, a 4.1 km2 glacier located in northwest Spitsbergen, Svalbard. Traditional glaciological mass balance measurements by stake readings and snow surveying have been conducted annually at the glacier since 2002, yielding a mean annual net mass balance of −65 cm w.e. for the period 2002–2009. In 2009, the annual mass balance of Irenebreen was −63 cm w.e. despite above-average snow accumulation in winter. The near-surface ice temperature in the accumulation area was investigated with automatic borehole thermistors. The mean annual surface ice temperatures (September–August) of the accumulation area were −3.7 °C at 1 m depth and −3.3 °C at 10 m depth. Irenebreen is potentially polythermal, with cold ice and a temperate surface layer during summer. This temperate surface layer is influenced by seasonal changes in temperature. In winter, the temperature of all the ice is below the melting point and temperate layers are probably present in basal sections of the glacier. This supposition is supported by the presence of icings in the forefield of Irenebreen.  相似文献   

14.
北极冰面融池对于研究北极海冰质量平衡、海洋混合层热收支和盐量收支等具有重要意义。为了获得准确的融池覆盖率,本研究提出了一种利用无人机进行北极海冰融池及冰面粗糙度信息提取的方法。在第7次中国北极科学考察期间,利用无人机获取加拿大海盆周边浮冰区冰面航拍影像,针对海冰航拍图像特殊性改进了基于暗原色先验的图像去雾算法,对拼接后的航拍图像进行融池识别,计算得到航拍区域的融池覆盖率。同时利用航拍影像三维建模得到海冰表面相对高程和冰面粗糙度,继而对融池覆盖率和海冰表面粗糙度分布规律进行研究。结果表明,在本次航拍区域,海冰粗糙度大的区域具有更多小面积的融池,而融透的、面积大的融池多出现在粗糙度小的平整冰区。  相似文献   

15.
One of sea ice core samples was taken from Arctic by the First Chinese National Arctic Research Expedition Team in 1999. 20 vertical and 2 horizontal ice sections were cut out of the ice core sample 2.22 m in length, which covered the ice sheet from surface to bottom except losses for during sampling and section cutting. From the observation and analysis of the fabrics and crystals along the depth of the ice core sample, followings were found. Whole ice sheet consists of columnar, refrozen clastic pieces, granular, columnar, refrozen clastic pieces, granular, columnar and refrozen clastic pieces. This indicates that the ice core sample was 3-year old, and the ice sheet surface thawed and the melt water flowed into ice sheet during summer. Hence, the annual energy balance in Arctic can be determined by the ice sheet surface thawing in summer, and bottom growth in winter. The thickness of the ice sheet is kept constantly at a certain position based on the corresponding climate and ocean conditions; A new  相似文献   

16.
Scanning Multichannel Microwave Radiometer (SMMR) data are used to estimate the annual melt duration (number of days with melt) for elevation transects over the Greenland ice sheet during the period from 1979‐1986. The annual melt duration is used to estimate the number of positive degree days (PDDs), which are used in a degree‐day mass balance model to determine ablation rates and the equilibrium line altitude (ELA). The annual melt duration along two transects estimated with SMMR data compares favorably, particularly above the ELA, to melt duration calculated from surface temperature data for the same locations. The mass balance estimates and ELA locations along eight transects agree reasonably well with measurements reported in previous studies using surface temperature data. ELAs were within 10m of published values along two transects, and the root mean square error of SMMR‐derived versus surface mass balance measurements was 43mm yr?1. The estimated error in SMMR‐derived ablation is between ±15% and ±50%, but could be reduced substantially by using daily microwave data available from the Special Sensor Microwave/Imager (SSM/I). This research shows the feasibility of using passive microwave data to estimate the ablation rate in order to determine ELA, which can be used to monitor the mass balance of the ice sheet.  相似文献   

17.
Scanning Multichannel Microwave Radiometer (SMMR) data are used to estimate the annual melt duration (number of days with melt) for elevation transects over the Greenland ice sheet during the period from 1979-1986. The annual melt duration is used to estimate the number of positive degree days (PDDs), which are used in a degree-day mass balance model to determine ablation rates and the equilibrium line altitude (ELA). The annual melt duration along two transects estimated with SMMR data compares favorably, particularly above the ELA, to melt duration calculated from surface temperature data for the same locations. The mass balance estimates and ELA locations along eight transects agree reasonably well with measurements reported in previous studies using surface temperature data. ELAs were within 10m of published values along two transects, and the root mean square error of SMMR-derived versus surface mass balance measurements was 43mm yr?1. The estimated error in SMMR-derived ablation is between ±15% and ±50%, but could be reduced substantially by using daily microwave data available from the Special Sensor Microwave/Imager (SSM/I). This research shows the feasibility of using passive microwave data to estimate the ablation rate in order to determine ELA, which can be used to monitor the mass balance of the ice sheet.  相似文献   

18.
Satellite–derived albedo maps of the western part of the Greenland ice sheet (between 64.5 and 70.5 N) reveal a north–south extending zone with relatively low albedos at some distance from the ice margin. In the literature it has been hypothesized that this "dark zone" is due to a local maximum in melt–water accumulation on the ice–covered surface. A plausible explanation for this maximum in melt–water accumulation is thatrelative to the situation within the "dark zone", melt–water accumulation is reduced at higher elevations by a smaller melt–water production rate whereas runoff occurs more easily at lower elevations where slopes are generally steeper. For the present paper AVHRR images from eight years (1990–1997) were analysed. The following indications confirming the "melt–water accumulation hypothesis" were found: (1) there is a significant correlation between the annual mean albedo lowering within the "dark zone" and the annual amount of melt as inferred from local mass–balance measurements; and (2) within each summer season the albedo lowering within the "dark zone" seems to respond to the melt–water production rate as inferred from local temperature measurements. The effect of melt–water accumulation on the albedo implies a positive feedback between the albedo and the amount of melt. It is estimated that approximately 40% of the interannual mass–balance variations in the "dark zone" are due to this feedback.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号