首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Adult horseshoe crabs,Limulus polyphemus, were tagged in the Middle Atlantic Bight area, from New York to Virginia on the continental shelf and within bays, to determine their migratory patterns and longevity. Of 30,432 horreshoe crabs that were tagged during the years 1986–2002, 1,122 were recovered alive, and 1,027 were dead. Many of the live recoveries were observed within 30 d (54.4%) and after years (37.53%) with one tagged animal surviving up to 10 yr. In 9 locations from Great Kills Harbor, New York, to Chesapeake Bay, Maryland, the horseshoe crabs return to their release beach within days during the spawning season. Of the 762 (100%) recoveries from crabs released along the Delaware Bay shoreline, 75.07% traveled 0–20 km, 21.0% traveled 20–50 km, 2.36% traveled 50–100 km, and 1.57% traveled over 100 km. Within Delaware Bay, 327 tagged animals (43.6%) had moved away from the release points to other locations, and 59 of these had moved out of the bay onto the continental shelf along the Mid-Atlantic Bight coastline. Horseshoe crabs migrate into Delaware Bay from waters off Ocean City, Maryland, and adjacent coastal bays. In addition to defining the range of the Delaware Bay spawning populations, 2 neighboring populations were identified by the tagging program. In one, animals tagged in southern New York mingled with those in the Sandy, Hook, New Jersey area, comprising a population that ranged from Raritan Bay across New York Harbor to Jamaica Bay. The second confirmed that a discrete population existed in northern Chesapeake Bay in the general vicinity of the Annapolis Bay Bridge.  相似文献   

2.
Atlantic horseshoe crabs,Limulus polyphemus, are currently harvested for biomedical, scientific, and bait purposes. In recent years, changes in population abundance and magnitude of harvesting have raised concerns about the status of this resource. We found horseshoe crab harvest in Pleasant Bay, Massachusetts, was selective by sex and size. Biomedical harvest preferred larger individuals and females, the scientific harvest preferred smaller individuals and males, and the bait harvest preferred females. Total 2001 harvest for all purposes accounted for the mortality of ∼1–2% the adult population. Biomedical harvest accounted for the greatest loss of horseshoe crabs from Pleasant Bay, ∼1–1.6% of the total population. Although biomedical harvest had the lowest associated mortality rate (∼10–15%), many more crabs were harvested from Pleasant Bay for biomedical purposes than for other uses. The scientific harvest accounted for the mortality of ∼0.4% of the population, and bait harvest accounted for the smallest mortality at ∼0.06% of the population. Harvest mortality rate was estimated to be lower in Pleasant Bay than in other Cape Cod areas and may be lower than natural mortality in the population. This study is the first qualitative investigation of commercial harvest on horseshoe crab populations and emphasizes that harvest pressures on different populations need to be individually evaluated.  相似文献   

3.
During a reward program for Atlantic sturgeon (Acipenser oxyrinchus), 40 federally endangered shortnose sturgeon (Acipenser brevirostrum) were captured and reported by commercial fishers between January 1996 and January 2000 from the Chesapeake Bay. Since this is more than double the number of published records of shortnose sturgeon in the Chesapeake Bay between 1876 and 1995, little information has been available on distributions and movement. We used fishery dependent data collected during the reward program to determine the distribution of shortnose sturgeon in the Chesapeake Bay. Sonically-tagged shortnose sturgeon in the Chesapeake Bay and Delaware River were tracked to determine if individuals swim through the Chesapeake and Delaware Canal. Shortnose sturgeon were primarily distributed within the upper Chesapeake Bay. The movements of one individual, tagged within the Chesapeake Bay and later relocated in the canal and Delaware River, indicated that individuals traverse the Chesapeake and Delaware Canal.  相似文献   

4.
Riverine populations of shortnose sturgeon (Acipenser brevirostrum) once occurred in rivers and estuaries along the east coast of North America from the St. John River, New Brunswick, to the St. Johns River, Florida. Within this range, 19 population segments were identified by the U.S. Federal Shortnose Sturgeon Recovery Team; empirical data supporting this structure is limited. We obtained samples from 11 (12 including a small sample from the Cape Fear River, North Carolina) of these population segments and used PCR and direct sequence analysis of 440 base pairs of the mitochondrial DNA (mtDNA) control region to define the coast-wide genetic population structure of shortnose sturgeon. Collections from most population segments exhibited significant differences in haplotype frequencies with their nearest neighbors, including from the Ogeechee and Savannah Rivers, Georgia (despite the known movement of hatchery-reared offspring from the Savannah into the Ogeechee River). Collections from the Chesapeake Bay and Delaware River exhibited similar haplotype frequencies, suggesting that specimens collected in the Chesapeake Bay had dispersed from the Delaware River. Collections from the Kennebec River and Androscoggin River within a hypothesized single population segment did not exhibit significant differentiation of mtDNA haplotype frequencies. Haplotype frequencies were almost identical between collections from above and below the Holyoke Dam on the Connecticut River, indicating that these aggregations should be managed as a single unit. Our results support the population segment status afforded to shortnose sturgeon in at least the following 9 systems; St. John River, Kennebec-Androscoggin Rivers, upper-lower Connecticut River, Hudson River, Delaware River-Chesapeake Bay, Pee Dee River, Cooper River, Savannah River, and Ogeechee-Altamaha Rivers.  相似文献   

5.
We assessed the suitability of intertidal habitats for spawning by horseshoe crabs (Limulus polyphemus) at 12 proposed restoration sites identified by the United States Army Corps of Engineers along the shore of Jamaica Bay, a highly developed estuary in New York City. Based on beach geomorphology, we chose to quantify horseshoe crab activity at five of the sites during the May–July 2000 breeding season. Horseshoe crabs spawned intensively on small patches of suitable sand within larger areas of eroding shoreline with bulkheads and rubble fill. Small areas of sand behind grounded barges at Brant Point and Dubos Point had densities of over 100,000 eggs m−2, which was equal to or greater than the egg densities on longer, more natural appearing beaches at Spring Creek and Dead Horse Bay, or at a sand spit at Bayswater State Park. There were no significant differences in the percentage of Jamaica Bay horseshoe crab eggs that completed development when cultured using water from Jamaica Bay or lower Delaware Bay, a less polluted location. Only 1% of the embryos from Jamaica Bay exhibited developmental anomalies, a frequency comparable to a previously studied population from Delaware Bay. We suggest that the distribution and abundance of horseshoe crabs at our study areas in Jamaica Bay is presently limited by the availability of suitable shoreline for breeding, rather than by water quality. Restoration efforts that increase the amount of sandy beach in this urban estuary have a good likelihood of benefiting horseshoe crabs and providing additional value to migrating shorebirds that use horseshoe crab eggs as food.  相似文献   

6.
Concern for the status of horseshoe crab (Limulus polyphemus) has increased as harvest for conch and eel bait has increased and spawning habitat has decreased. In early 1999 a workshop was held at the behest of the Atlantic States Marine Fisheries Commission to design a statistically valid survey of horseshoe crab spawning in Delaware Bay. The survey that resulted was a redesign of a volunteer-based spawning survey that began in 1990, and its network of volunteers was relied on to implement the three-stage sampling design in 1999. During May and June of 1999, 163 participants surveyed during the highest of the daily high tides on 16 beaches (8 on each site of Delaware Bay). During the first half of the spawning season, spawning was associated with lunar phases, but moderated by wave height. Disproportionately more spawning occurred within 3 d of the first new and full moons, and spawning activity (measured by an index of female density) was correlated inversely to the percent of beaches with waves ≥0.3 m. Spawning was heaviest on the Delaware shore around the full moon in May in spite of low waves in New Jersey during the new and full moons in May. Number of beaches sampled was the most important factor in determining the precision of the spawning index and power to detect a decline. Explicit consideration of statistical power has been absent from the current debate on horseshoe crab status and harvest. Those who argue against harvest restrictions because of a lack of statistically significant declines take on a burden to show that the surveys they cite have high statistical power. We show the Delaware Bay spawning survey will achieve high statistical power with sufficient sampling intensity and duration. We recommend that future Delaware Bay spawning surveys sample on 3 d around each new and full moon in May and June and increase the number of beaches to ensure high statistical power to detect trends in baywide spawning activity.  相似文献   

7.
Blue crab (Callinectes sapidus) plays an important ecological and economic role in estuaries from South America to New England. It supports a large commercial fishery in the United States with approximately one third of the landings taken from Chesapeake Bay. I developed a stage-based matrix model of the blue crab population to address three key questions: What is the ability of blue crab populations to support sustainable exploitations? What stages of the life cycle are most important in regulating the dynamics of the populations? And specific of the Chesapeake Bay, what is the importance of a winter dredge fishery in determining long-term sustainability of the crab population? The model indicated that with the current pattern of exploitation blue crab populations are able to sustain a total instantaneous mortality rate (Z)~0.7. If the natural mortality rate is estimated for a maximum life expectancy of 8 yr, this translates to moderate levels of exploitation (F<0.32). This value is less than the current estimate of exploitation in Chesapeake Bay (0.9–1.1) indicating that the level of exploitation in this system needs to be reduced to avoid overfishing. Transitions to and from small age-1 crabs were shown to be important in regulating the overall dynamics of the population. The egg production realized by large adults was also shown to be an important regulatory process. The model indicated that reductions in the winter dredge fishery would have a substantial role in ensuring the long-term sustainability of the population. Reductions in other sectors of the fishery are also required to ensure sustainability.  相似文献   

8.
The distribution, abundance, and dispersal patterns of horseshoe crab (Limulus polyphemus) trilobite larvae were determined from 671 plankton tows taken near a spawning beach in lower Delaware Bay, New Jersey, in 1998 and 1999. In both years, peaks in larval abundance occurred during periods of rough surf (>30 cm wave heights). Planktonic larvae were significantly more abundant nocturnally than during the day, but there was no evidence of a lunar component to larval abundance. Larvae were strongly concentrated inshore; trilobites were 10–100 times more abundant in the immediate vicinity of the shoreline than they were 100–200 m offshore. The strong tendency ofLimulus larvae to remain close to the beach suggests that their capability for long-range dispersal between estuaries is extremely limited. We suggest that limited larval dispersal potential may help explain previously observed patterns of genetic variation among the Mid-Atlantic horseshoe crab populations.  相似文献   

9.
As part of the Microbial Exchanges and Coupling in Coastal Atlantic Systems (MECCAS) Project, crab larvae were collected in the shelf waters off Chesapeake Bay in June and August 1985 and April 1986. We conducted hydrographic (temperature, salinity, nutrients) and biological (chlorophyll, copepods) mapping in conjunction with Eulerian and Lagrangian time studies of the vertical distribution of crab larvae in the Chesapeake Bay plume. These abundance estimates are used with current meter records and drifter trajectories to infer mechanisms of larval crab dispersion to the shelf waters and recruitment back into Chesapeake Bay. The highest numbers of crab larvae were usually associated with the Chesapeake Bay plume, suggesting that it was the dominant source of crab larvae to shelf waters. Patches of crab larvae also were found in the higher salinity shelf waters, and possibly were remnants of previous plume discharge events. The distribution of crab larvae in the shelf waters changed on 1–2 d time scales as a consequence of both variations in the discharge rate of the Chesapeake Bay plume and local wind-driven currents. Downwelling-favorable winds (NW) intensified the coastal jet and confined the plume and crab larvae along the coast. In April during a downwelling event (when northwesterly winds predominated), crab zoeae were transported southward along the coast at speeds that at times exceeded 168 km d−1. During June and August the upwelling-favorable winds (S, SW) opposed the anticyclonic turn of the plume and, via Ekman circulation, forced the plume and crab larvae to spread seaward. Plume velocities during these conditions generally were less than 48 km d−1. The recruitment of crab larvae to Chesapeake Bay is facilitated in late summer by the dominance of southerly winds, which can reverse the southward flow of shelf waters. Periodic downwelling-favorable winds can result in surface waters and crab larvae moving toward the entrance of Chesapeake Bay. Approximately 27% of the larval crabs spend at least part of the day in bottom waters, which have a residual drift toward the bay mouth. There appears to be a variety of physical transport mechanisms that can enhance the recruitment of crab larvae into Chesapeake Bay.  相似文献   

10.
The Delaware Bay region is the epicenter of horseshoe crab, Limulus polyphemus, activity, and despite the ecological and commercial importance of this species, few studies have examined the long-term movements of horseshoe crabs in this area and the amount of mixing that takes place between smaller coastal embayments within the region and the Delaware Bay proper, factors that are critical to effective management. To better understand these factors, 5568 crabs were tagged in the Delaware Inland Bays as part of the U.S. Fish and Wildlife Service’s (USFWS) Cooperative Horseshoe Crab Tagging Program in 2002–2016. A high re-sight rate of 20.1% (1123 crabs) was reported to the USFWS. Re-sights suggest that the Delaware Bay population is distributed between coastal New Jersey (south of Barnegat Bay) and coastal Virginia (north of Chincoteague Inlet). There were 90 re-sights in the Inland Bays and 148 re-sights in Delaware Bay, with 320 days or more between tagging and re-sight, showing that substantial interchange between successive spawning seasons occurs. Distance analyses demonstrated that crabs can move between the Inland Bays and other Delaware Bay region waterbodies within a single year. The findings of this study support the current management strategy of splitting the harvest of Delaware Bay crabs between New Jersey, Delaware, Maryland, and Virginia and also demonstrate that the waterbodies within the Delaware Bay region are highly connected. This connectivity supports protecting spawning habitat within the smaller embayments of the Delaware Bay region and including spawning surveys from these systems in future stock assessments.  相似文献   

11.
Because the Delaware Bay horseshoe crab (Limulus polyphemus) population is managed to provide for dependent species, such as migratory shorebirds, there is a need to understand the process of egg exhumation and to predict eggs available to foraging shorebirds. A simple spatial model was used to simulate horseshoe crab spawning that would occur on a typical Delaware Bay beach during spring tide cycles to quantify density-dependent nest disturbance. At least 20% of nests and eggs were disturbed for levels of spawning greater than one third of the average density in Delaware Bay during 2004. Nest disturbance increased approximately linearly as spawning density increased from one half to twice the 2004 level. As spawning density increased further, the percentage of eggs that were disturbed reached an asymptote of 70% for densities up to 10 times the density in 2004. Nest disturbance was heaviest in the mid beach zone. Nest disturbance precedes entrainment and begins the process of exhumation of eggs to surface sediments. Model predictions were combined with observations from egg surveys to estimate a snap-shot exhumation rate of 5–9% of disturbed eggs. Because an unknown quantity of eggs were exhumed and removed from the beach prior to the survey, cumulative exhumation rate was likely to have been higher than the snap-shot estimate. Because egg exhumation is density-dependent, in addition to managing for a high population size, identification and conservation of beaches where spawning horseshoe crabs concentrate in high densities (i.e., hot spots) are important steps toward providing a reliable food supply for migratory shorebirds.  相似文献   

12.
Long records of monthly salinity observations along the axis of Chesapeake Bay, Delaware Bay, and Long Island Sound are used to test a simple advection–dispersion model of the salt distribution in linearly tapered estuaries developed in a previous paper. We subdivide each estuary into three to five segments, each with linear taper allowing a distributed input of fresh water, and evaluate the dispersion in each segment. While Delaware Bay has weak dispersion and a classical sigmoidal salinity structure, Long Island Sound and Chesapeake Bay are more dispersive and have relatively small gradients in the central stretches. Long Island Sound is distinguished by having a net volume and salt flux out of its low-salinity end resulting in a smaller range of salinity and increasing axial gradients at its head rather than the usual asymptotic approach to zero salinity. Estimates of residence times based on model transport coefficients show that Long Island Sound has the most rapid response to fresh-water flux variations. It also has the largest amplitude cycle in river discharge fluctuation. In combination, these cause the large seasonal variation in the salinity structure relative to interannual variability in Long Island Sound as compared with Chesapeake Bay and Delaware Bay.  相似文献   

13.
Breeding activity of the horseshoe crab,Limulus polyphemus, was quantitatively monitored in Apalachee Bay, Florida, throughout one breeding season. Breeding peaked at times of full and new moon at the hour of high tide. Breeding activity was heavier on night tides than on corresponding day tides of the same date. Males routinely outnumbered females and indications of sperm competition were present. Many horseshoe crabs buried in the intertidal zone throughout the subsequent low tide and returned to the beach to breed again on the following high tide. A tagging study of the horseshoe crab indicated that male animals return to breeding beaches more frequently than females. Most animals tagged at breeding beaches did not move away from the tagging site during a breeding season and were recovered at the point of release. No long-range movements were noted. The sex ratio of animals tagged near breeding beaches was predominately male while it was predominately female for animals collected and tagged 3–6 miles offshore. A nine percent recovery rate was achieved. Existing localized populations are potentially subject to depletion due to heavy collecting pressure on breeding beaches.  相似文献   

14.
Phylogeographic patterns of the SW Atlantic estuarine crab Neohelice granulata were examined using mitochondrial DNA cytochrome oxidase I sequences and analyzed together with morphometric data. Specimens were sampled during a 4-year period (2001?C2004) from 11 localities encompassing the full distributional range of this species along the SW Atlantic (22°57?? S to 42°25?? S). DNA sequences were obtained from 69 individuals belonging to seven localities, and morphometric variation in 12 continuous characters was analyzed for 646 crabs from ten localities. Strong genetic differentiation, consistent with a pattern of isolation-by-distance, was detected among all localities indicating that gene flow occurs mainly between neighboring populations. Analyses of molecular variance showed genetic subdivision between the southern (Argentina) and the northern (Brazil) sites, suggesting restricted gene flow at a regional scale. The genetic structure of this species could be divided into two distinct groups due to a limited gene flow between southern and northern regions as a consequence of larval dispersal patterns. Coastal currents in the vicinity of the Rio de la Plata likely act as a barrier to dispersal within the species range. Moreover, genetic data indicate that populations of N. granulata might have undergone a northward demographic expansion since the late Pleistocene. The morphometric analysis showed no geographical pattern of morphological differentiation, although there were differences among sampling sites.  相似文献   

15.
A spatially-explicit methodology was developed for estimating system carrying capacities of fish stocks, and used to estimate the seasonal and spatial patterns of carrying capacity of Chesapeake Bay for Atlantic menhaden (Brevoortia tyrannus). We used a spatially-explicit three-dimensional (3-D) model that divided the heterogeneous habitat of Chesapeake Bay into over 4,000 cubes. Each cube represented a volume of water that was characterized by a specific set of environmental variables (phytoplankton biomass, temperature, and dissolved oxygen) driven by the 3-D water quality model. Foraging and bioenergetics models transformed the environmental variables into measures of potential growth rates of menhaden. Potential carrying capacity of menhaden was estimated as a function of phytoplankton production, menhaden consumption rate, and potential growth rate, combining phytoplankton production, thermal habitat, and menhaden physiology into one ecological value that is a measure of habitat quality from the perspective of the fish. Seasonal analysis of the Chesapeake Bay carrying capacity for Atlantic menhaden suggested two bottleneck periods: one in early June and a second during the fall. The bottleneck in carrying capacity was at about 10 billion age-0 fish. Annual recruitment of age-0 menhaden for the entire Atlantic coast of the U.S. ranged from 1.2–18.6 billion fish between 1955 and 1986. It appears that carrying capacity of, Chesapeake Bay does not limit the coastwide production of young menhaden. Any conditions such as nutrient reduction strategies, further eutrophication, or global climatic warming, that may influence the carrying capacity during the fall or early June periods, may ultimately alter coastwide abundance of menhaden through changes in Chesapeake Bay carrying capacity.  相似文献   

16.
Knowledge of resource-use and movement patterns is a missing component in the development of horseshoe crab (Limulus polyphemus) management strategies. Available evidence indicates the potential for a variety of possible migratory behaviors, but the lack of high-resolution, spatial-temporal data has hindered development of a year-round profile of ranging behavior. This need was addressed in the present study by using acoustic telemetry to track the movements of adult horseshoe crabs in two subembayments (Egypt and Hog Bays) of the Taunton Bay Estuary, Maine, from June 2003 to June 2005. Estimated mean total home range sizes were 64.1 and 61.4 ha for breeding crabs tagged in Egypt and Hog Bays, respectively. We observed no horseshoe crab dispersal to areas outside of the subembayments where they were tagged, so no mixing was observed between Egypt and Hog Bay individuals despite a < 4-km separation. Observed shifts in movement patterns, resource use (subtidal versus intertidal), and vagility facilitated a profile of seasonally partitioned horseshoe crab activity, which included late April to early May post-wintering, June–July breeding, August–September pre-wintering, and October–April wintering, where space usage represented about 10% of the mean total home range size. The apparent isolation of these resident populations implies a heightened vulnerability to overexploitation and large-scale habitat alteration that might be more easily sustained by larger, more vagile populations. This work underscores the need to apply horseshoe crab conservation, research, and management efforts at scales that are appropriate to the ranging patterns of crabs, which first requires application of high-resolution methods to identify those patterns.  相似文献   

17.
To determine the genetic structure of the bay anchovy (Anchoa mitchilli) within Chesapeake Bay, 16 isozyme systems encoding 21 loci for 20 population were examined using horizontal starch gel electrophoresis. Contingency Chisquare analysis revealed significant allelic frequency differences at nine loci (AAT-1, AAT-2, ALD-1, CPK-2, GAP-1, GLY-1, LDH-1, MDH-1, and MDH-2). Two loci, ALD-1 and MDH-1, were responsible for nine of 14 tests not conforming to Hardy-Weinberg expectations, with some of these deviations attributed to possible scoring and/or sampling error. Estimates for mean average heterozygosity were relatively high, ranging from 0.40 to 0.096, with 33–57% of the loci polymorphic. A low Fst value (0.041) along with high genetic identity estimates (I=0.997) indicated little substructuring of bay anchovy populations within Chesapeake Bay.  相似文献   

18.
The Great Bay Estuary, New Hampshire, USA is near the northern distribution limit of the American horseshoe crab (Limulus polyphemus). This estuary has few ideal beaches for spawning, yet it supports a modest population of horseshoe crabs. There is no organized monitoring program in the Great Bay Estuary, so it is unclear when and where spawning occurs. In this 2-year study (May through June, 2012 and 2013), >5,000 adult horseshoe crabs were counted at four sites in the estuary. The greatest densities of horseshoe crabs were observed at Great Bay sites in the upper, warmer reaches of the estuary. Peaks of spawning activity were not strongly correlated with the times of the new or full moons, and similar numbers of horseshoe crabs were observed mating during daytime and nighttime high tides. While many environmental factors are likely to influence the temporal and spatial patterns of spawning in this estuary, temperature appears to have the most profound impact.  相似文献   

19.
Atlantic menhaden (Brevoortia tyrannus) is well known for its commercial and ecological importance and has been historically declining in the Chesapeake Bay (Maryland), one of its principal nursery habitats along the eastern coast. Using data from the Striped Bass Seine Survey of the Maryland Department of Natural Resources (2003), we evaluated how the distribution of Atlantic menhaden has changed from 1966 to 2004 for 12 river drainages. We observed significant or marginally significant declines in 42% of the drainages, with drainages of the northern Bay showing the majority of those declines. Continued recruitment to several drainages of the Bay may partly explain why the adult spawning population is not declining. We determined if temporal changes in abundance were related to changes in salinity or water quality for five major drainages of the watershed. For one of these drainages, the Patuxent River, differences in productivity across sites largely explained differences in abundance. For the four remaining drainages, differences in recruitment could not be explained by productivity or salinity gradients. While reducing nitrogen loading and enhancing water clarity may improve Atlantic menhaden production, we suggest that the role of offshore processes on large-scale declines has been largely neglected and studies on larval ingression are necessary for further elucidation of spatial and temporal patterns of juvenile distribution in the Chesapeake Bay.  相似文献   

20.
The blue crab, Callinectes sapidus, is an ecologically and economically valuable species in Chesapeake Bay. Field surveys and laboratory experiments indicate that blue crab mortality is significant during severe winters. We applied a temperature and salinity-dependent survival model to empirical temperature and salinity data to explore spatial and interannual patterns in overwintering mortality. Harmonic regression analysis and geostatistical techniques were used to create spatially explicit maps of estimated winter duration, average temperature, average salinity, and resulting crab survival probability for the winters of 1990–2004. Predicted survival was highest in the warmer, saline waters of the lower Bay and decreased with increasing latitude up bay. There was also significant interannual variation with survival being lowest after the severe winters of 1996 and 2003. We combine the survival probability maps with maps of blue crab abundance to show how winter mortality may reduce blue crab abundance prior to the start of the harvesting season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号