首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
利用1961—2010年喀什地区所属喀什市、莎车县、巴楚县、塔什库尔干县等4个代表性站50a的年最大冻土深度、冬季平均气温、极端最低气温、极端最低地温等资料,采用气候趋势系数和气候倾向率方法,对1961年以来喀什地区最大冻土深度变化进行了分析。结果表明,喀什地区平原多年平均最大冻土深度为48.1cm,年际最大值与最小值深度差为82cm,年际变化总体呈明显的减小趋势,其变化倾向率为-3.8cm/10a,年代际变化呈阶梯状逐渐减小,冻土深度减小主要受冬季平均气温升高的影响,气温每升高1℃,冻土深度减小7.75cm;山区多年平均最大冻土深度为148.8cm,年际最大值与最小值深度差为88cm,年际变化总体呈明显的减小趋势,其变化倾向率为-2.5cm/10a。  相似文献   

2.
Changes to soil freezing dynamics with climate change can modify ecosystem carbon and nutrient losses. Soil freezing is influenced strongly by both air temperature and insulation by the snowpack, and it has been hypothesized that winter climate warming may lead to increased soil freezing as a result of reduced snowpack thickness. I used weather station data to explore the relationships between winter air temperature, precipitation and soil freezing for 31 sites in Canada, ranging from the temperate zone to the high Arctic. Inter-annual climate variation and associated soil temperature variation over the last 40 years were examined and used to interpolate the effects of projected climate change on soil freezing dynamics within sites using linear regression models. Annual soil freezing days declined with increasing mean winter air temperature despite decreases in snow depth and cover, and reduced precipitation only increased annual soil freezing days in the warmest sites. Annual soil freeze–thaw cycles increased in both warm and dry winters, although the effects of precipitation were strongest in sites that experience low mean winter precipitation. Overall, it was projected that by 2050, changes in winter temperature will have a much stronger effect on annual soil freezing days and freeze–thaw cycles than changes in total precipitation, with sites close to but below freezing experiencing the largest changes in soil freezing days. These results reveal that experimental data relevant to the effects of climate changes on soil freezing dynamics and changes in associated soil physical and biological processes are lacking.  相似文献   

3.
A previously developed plant species-climatic envelope model was evaluated further and used to predict effects of hypothesized climatic change on the potential distribution of 124 native woody plant species in Florida, U.S.A. Twelve scenarios were investigated. These included mean annual temperature increases of 1 °C or 2 °C, achieved either by equal 1 °C or 2 °C increases on a monthly basis throughout the year, or by disproportionately larger seasonal increases in winter and smaller ones in summer. The various temperature increases were then combined with each of several precipitation changes, ranging from +10% to –20%, to produce the final set of scenarios. More detailed analysis involving six of the scenarios and a subset of 28 representative, ecologically important species suggested that (1) large decreases in the Florida range of many temperate species would result if 1 °C warming occurs predominantly in winter or with a 20% decrease in annual precipitation, or (2) if 2 °C warming occurs, with or without decrease in annual precipitation, and regardless of whether there is a uniform monthly warming pattern or one that is higher in winter than in summer. Available information concerning other factors that might also affect climatic-change responses suggests that these large predicted impacts on temperate Florida species may be underestimates. Subtropical Florida species will tend to move north and inland with warming but extensive human assistance may be needed, if they are to realize their newly expanded, potential natural ranges.  相似文献   

4.
The influence of the predicted climate warming on soil frost conditions in Finland was studied using a climate scenario based on a Hadley Centre (U.K.) global ocean-atmosphere general circulation model (HadCM2) run. HadCM2 results were dynamically downscaled to the regional level using the regional climate model at the Rossby Centre (Sweden). The future period this study focuses on is the end of the 21st century. The study was limited to ground surface conditions in which snow has been removed. The predicted air temperature rise was interpreted in terms of changes in soil frost conditions using an empirical dependence that was found between measured soil frost depths and the sum of daily mean air temperatures calculated from the beginning of the freezing period. On average the annual maximum soil frost depth will decrease in southern and central Finland from the present approx. 100–150 cm by about 50 cm. In northern Finland the change will be from depths of about 200–300 cm to about 100–200 cm depending on station. The annual maximum soil frost depth in the future would thus be about the same in northern Finland as it is in the current climate in southern Finland. In southern Finland after about 100 years the ground will seldom be frozen in December and even in January there will be no soil frost in about half of the years. In Central and northern Finland the probability of completely unfrozen ground in December–March is very small, even in the future.  相似文献   

5.
Philip Camill 《Climatic change》2005,68(1-2):135-152
Permafrost covers 25% of the land surface in the northern hemisphere, where mean annual ground temperature is less than 0°C. A 1.4–5.8 °C warming by 2100 will likely change the sign of mean annual air and ground temperatures over much of the zones of sporadic and discontinuous permafrost in the northern hemisphere, causing widespread permafrost thaw. In this study, I examined rates of discontinuous permafrost thaw in the boreal peatlands of northern Manitoba, Canada, using a combination of tree-ring analyses to document thaw rates from 1941–1991 and direct measurements of permanent benchmarks established in 1995 and resurveyed in 2002. I used instrumented records of mean annual and seasonal air temperatures, mean winter snow depth, and duration of continuous snow pack from climate stations across northern Manitoba to analyze temporal and spatial trends in these variables and their potential impacts on thaw. Permafrost thaw in central Canadian peatlands has accelerated significantly since 1950, concurrent with a significant, late-20th-century average climate warming of +1.32 °C in this region. There were strong seasonal differences in warming in northern Manitoba, with highest rates of warming during winter (+1.39 °C to +1.66 °C) and spring (+0.56 °C to +0.78 °C) at southern climate stations where permafrost thaw was most rapid. Projecting current warming trends to year 2100, I show that trends for north-central Canada are in good agreement with general circulation models, which suggest a 4–8 °C warming at high latitudes. This magnitude of warming will begin to eliminate most of the present range of sporadic and discontinuous permafrost in central Canada by 2100.  相似文献   

6.
利用和林县气象局1960—2008年气温、40、80cm地温月平均数据,降水、日照、积雪月总量数据,对地温与气温的变化关系及其影响因子进行了分析。结果表明,40cm地温与气温有相同的变化趋势,其突变点与气温变化的突变点相同,均为1987年。40cm地温在夏季略受降水的影响,而冬季受积雪的影响较明显。其终年与日照时数相关较弱,说明地-气辐射过程平衡的速度较快,会很快消除掉其他气象因子带来的地温与气温之间差异的阶变。40cm与80cm地温变化的一致度很高,表明80cm很少得到来自地壳内部热量,80cm地温变化的两个异常点分别位于1988年和1990年,处于1987年附近但落后于1987年,说明气候突变会影响到80cm地温变化,但影响滞后。  相似文献   

7.
Recent variations of the surface temperature of the Earth can be inferred from borehole temperature measurements. Generalized inversion is used to extract the information from the data; the potential of the method is evaluated. Tests were performed with synthetic data to demonstrate the effectiveness of the inversion to recover the gross features of the surface temperature history even when the data are affected by noise and errors. The tests show that it is possible to reconstruct the long term changes in ground temperature during the past 300 years; the resolution decreases with time, in particular if noise and errors must be filtered. Temperature logs, obtained in eastern Canada, and not suspected of being affected by non-climatic factors, have been inverted. The analysis confirms that eastern Canada has experienced warming by 1 to 2°C over the past 100–200 years. The relationship between air and ground temperatures has been examined. In eastern Canada ground temperature follows air temperature closely in summer but stays well above air temperature in winter. The number of days with snow on the ground correlates with the difference between annual mean ground and air temperature.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate-Program  相似文献   

8.
1961-2007年台安县气候变化特征分析   总被引:4,自引:2,他引:2       下载免费PDF全文
在全球变化背景下,台安县气候变化地域特征明显。本文利用1961—2007年的气候资料,通过气候倾向率和Mann-Kendall检测等方法,研究了台安县气候变化特征。结果表明:近47 a来,台安县气候明显变暖,平均气温以0.34℃/10 a的速度上升,积温净增加约260 ℃或以上,冬季增温对气候变暖的贡献最大,直接导致冬季最大冻土深度以3.6 cm/10 a速度变浅。年降水量出现减少趋势,春、夏季降水量减少比较明显,极端降水日数无变化规律。四季日照时数明显减少,不利于绿色植物的光合作用。近47 a间,除了年平均最高气温和降水量外,平均气温、年日照时数、平均最低气温、最大冻土深度、大于等于10 ℃积温和大于等于0 ℃积温等要素都发生了显著突变,但突变时间存在差异。  相似文献   

9.
1961~2005年西双版纳浅层地温对气候变化的响应   总被引:4,自引:0,他引:4  
蒙桂云  喻彦 《气象科技》2010,38(3):316-320
利用1961~2005年云南景洪0~20 cm各层逐月平均地温,采用气候倾向率、累积距平、信噪比等气候统计方法,研究了近45年西双版纳浅层平均地温的变化趋势、气候突变和异常年份等。结果表明:各年、季浅层平均地温均呈现极显著的升高趋势,升温率为0.14~0.40℃/10a,春季最小,冬季最大,年和春、冬两季表层升温率最大。各浅层平均地温在1980年秋季均发生了突变,冬季突变出现在1978年,以突变点划分,前为冷期,后为暖期,0 cm、15 cm和20 cm年平均地温,突变前只有20 cm年平均地温增温趋势不显著,突变后则相反,只有20 cm年平均地温呈显著的增温趋势,这表明20世纪80年代以来,20 cm地温对气候变暖的响应更强。年平均地温除10 cm外均在1971年异常偏低,各浅层年平均地温2003年均异常偏高。气温升高是影响地温上升的主要原因。  相似文献   

10.
Incorporating organic soil into a global climate model   总被引:3,自引:1,他引:2  
Organic matter significantly alters a soil’s thermal and hydraulic properties but is not typically included in land-surface schemes used in global climate models. This omission has consequences for ground thermal and moisture regimes, particularly in the high-latitudes where soil carbon content is generally high. Global soil carbon data is used to build a geographically distributed, profiled soil carbon density dataset for the Community Land Model (CLM). CLM parameterizations for soil thermal and hydraulic properties are modified to accommodate both mineral and organic soil matter. Offline simulations including organic soil are characterized by cooler annual mean soil temperatures (up to ∼2.5°C cooler for regions of high soil carbon content). Cooling is strong in summer due to modulation of early and mid-summer soil heat flux. Winter temperatures are slightly warmer as organic soils do not cool as efficiently during fall and winter. High porosity and hydraulic conductivity of organic soil leads to a wetter soil column but with comparatively low surface layer saturation levels and correspondingly low soil evaporation. When CLM is coupled to the Community Atmosphere Model, the reduced latent heat flux drives deeper boundary layers, associated reductions in low cloud fraction, and warmer summer air temperatures in the Arctic. Lastly, the insulative properties of organic soil reduce interannual soil temperature variability, but only marginally. This result suggests that, although the mean soil temperature cooling will delay the simulated date at which frozen soil begins to thaw, organic matter may provide only limited insulation from surface warming.  相似文献   

11.
The more humid, warmer weather pattern predicted for the future is expected to increase the windthrow risk of trees through reduced tree anchorage due to a decrease in soil freezing between late autumn and early spring, i.e during the most windy months of the year. In this context, the present study aimed at calculating how a potential increase of up to 4°C in mean annual temperature might modify the duration of soil frost and the depth of frozen soil in forests and consequently increase the risk of windthrow. The risk was evaluated by combining the simulated critical windspeeds needed to uproot Scots pines (Pinus sylvestris L.) under unfrozen soil conditions with the possible change in the frequency of these winds during the unfrozen period. The evaluation of the impacts of elevated temperature on the frequency of these winds at times of unfrozen and frozen soil conditions was based on monthly wind speed statistics for the years 1961–1990 (Meteorological Yearbooks of Finland, 1961–1990). Frost simulations in a Scots pine stand growing on a moraine sandy soil (height 20 m, stand density 800 stems ha–1) showed that the duration of soil frost will decrease from 4–5 months to 2–3 months per year in southern Finland and from 5–6 months to 4–5 months in northern Finland given a temperature elevation of 4°C. In addition, it could decrease substantially more in the deeper soil layers (40–60 cm) than near the surface (0–20 cm), particularly in southern Finland. Consequently, tree anchorage may lose much of the additional support gained at present from the frozen soil in winter, making Scots pines more liable to windthrow during winter and spring storms. Critical wind-speed simulations showed mean winds of 11–15 m s–1 to be enough to uproot Scots pines under unfrozen soil conditions, i.e. especially slender trees with a high height to breast height diameter ratio (taper of 1:120 and 1:100). In the future, as many as 80% of these mean winds of 11–15 m s–1 would occur during months when the soil is unfrozen in southern Finland, whereas the corresponding proportion at present is about 55%. In northern Finland, the percentage is 40% today and is expected to be 50% in the future. Thus, as the strongest winds usually occur between late autumn and early spring, climate change could increase the loss of standing timber through windthrow, especially in southern Finland.  相似文献   

12.
基于1981—2021年北京地区6个气象站的逐日最大冻土深度、平均气温、平均地表温度及5、10、15、20、40、80 cm地温等资料,分析了近40年北京地区最大冻土深度的时空分布特征及其与气温和地温的关系。结果表明:北京地区最大冻土深度总体呈变浅趋势,气候倾向率为-2.3 cm/10 a,各站点最大冻土深度变浅趋势从西到东呈逐渐减弱趋势。北京地区最大冻土深度与40、80 cm地温相关性最好,与地表温度相关性较差。选取2021至2022年北京地区冻土对比试验数据,评估测温式冻土自动观测仪观测精度,发现仪器安装至少一个冻融周期后与冻土人工观测吻合度更好,测温式冻土自动观测仪的观测精度与仪器安装位置的地下岩层、土质分布密切相关,需要在仪器稳定运行后根据当地实际优化算法和冻融阈值。  相似文献   

13.
This paper presents probable effects of climate change on soil moisture availability in the Southeast Anatolia Development Project (GAP) region of Turkey. A series of hypothetical climate change scenarios and GCM-generated IPCC Business-as-Usual scenario estimates of temperature and precipitation changes were used to examine implications of climate change for seasonal changes in actual evapotranspiration, soil moisture deficit, and soil moisture surplus in 13 subregions of the GAP. Of particular importance are predicted patterns of enhancement in summer soil moisture deficit that are consistent across the region in all scenarios. Least effect of the projected warming on the soil moisture deficit enhancement is observed with the IPCC estimates. The projected temperature changes would be responsible for a great portion of the enhancement in summer deficits in the GAP region. The increase in precipitation had less effect on depletion rate of soil moisture when the temperatures increase. Particularly southern and southeastern parts of the region will suffer severe moisture shortages during summer. Winter surplus decreased in scenarios with increased temperature and decreased precipitation in most cases. Even when precipitation was not changed, total annual surplus decreased by 4 percent to 43 percent for a 2°C warming and by 8 percent to 91 percent for a 4°C warming. These hydrologic results may have significant implications for water availability in the GAP as the present project evaluations lack climate change analysis. Adaptation strategies – such as changes in crop varieties, applying more advanced dry farming methods, improved water management, developing more efficient irrigation systems, and changes in planting – will be important in limiting adverse effects and taking advantage of beneficial changes in climate.  相似文献   

14.
Scenarios indicate that the air temperature will increase in high latitude regions in coming decades, causing the snow covered period to shorten, the growing season to lengthen and soil temperatures to change during the winter, spring and early summer. To evaluate how a warmer climate is likely to alter the snow cover and soil temperature in Scots pine stands of varying ages in northern Sweden, climate scenarios from the Swedish regional climate modelling programme SWECLIM were used to drive a Soil-Vegetation-Atmosphere Transfer (SVAT)-model (COUP). Using the two CO2 emission scenarios A and B in the Hadley centres global climate model, HadleyA and HadleyB, SWECLIM predicts that the annual mean air temperature and precipitation will increase at most 4.8°C and 315 mm, respectively, within a century in the study region. The results of this analysis indicate that a warmer climate will shorten the period of persistent snow pack by 73–93 days, increase the average soil temperature by 0.9–1.5°C at 10 cm depth, advance soil warming by 15–19 days in spring and cause more soil freeze–thaw cycles by 31–38%. The results also predict that the large current variations in snow cover due to variations in tree interception and topography will be enhanced in the coming century, resulting in increased spatial variability in soil temperatures.  相似文献   

15.
Palynological, geomorphological, and relict vegetation evidence point to the existence of cooler and more humid conditions along semiarid and temperate Chile during the Pleistocene. Departing from an actualistic model, and utilizing a regression technique that includes significant independent variables on the basis of R 2 and F statistics, the best fit multivariable model was produced for annual rainfall and snowline elevation. Predicted values for rainfall are obtained by controlling sea surface temperatures and air temperatures (the most significant variables in the model) at different latitudes. A variation of only 1 °C of the winter sea and air temperatures induces more than a doubling of the annual precipitation in north-central Chile, and increases by nearly fifty percent in southern Chile. Entering the predicted values of precipitation and lowering the winter temperatures by 1 or 2 °C produces a slight depression of the snowline in semiarid north-central Chile and a significant descent in southern Chile. The predicted depression of the snowline coincided well with geomorphological evidence of glacial advances and fossil periglacial phenomena in the Andes. Cooling and increased precipitation during the Pleistocene pluvial elicited northward shifts of the temperate rainforest of southern Chile in the order of 7 deg latitude.  相似文献   

16.
The snow-sea-ice albedo parameterization in an atmospheric general circulation model (GCM), coupled to a simple mixed-layer ocean and run with an annual cycle of solar forcing, is altered from a version of the same model described by Washington and Meehl (1984). The model with the revised formulation is run to equilibrium for 1 × CO2 and 2 × CO2 experiments. The 1 ×CO2 (control) simulation produces a global mean climate about 1° warmer than the original version, and sea-ice extent is reduced. The model with the altered parameterization displays heightened sensitivity in the global means, but the geographical patterns of climate change due to increased carbon dioxide (CO2) are qualitatively similar. The magnitude of the climate change is affected, not only in areas directly influenced by snow and ice changes but also in other regions of the globe, including the tropics where sea-surface temperature, evaporation, and precipitation over the oceans are greater. With the less-sensitive formulation, the global mean surface air temperature increase is 3.5 °C, and the increase of global mean precipitation is 7.12%. The revised formulation produces a globally averaged surface air temperature increase of 4.04 °C and a precipitation increase of 7.25%, as well as greater warming of the upper tropical troposphere. Sensitivity of surface hydrology is qualitatively similar between the two cases with the larger-magnitude changes in the revised snow and ice-albedo scheme experiment. Variability of surface air temperature in the model is comparable to observations in most areas except at high latitudes during winter. In those regions, temporal variation of the sea-ice margin and fluctuations of snow cover dependent on the snow-ice-albedo formulation contribute to larger-than-observed temperature variability. This study highlights an uncertainty associated with results from current climate GCMs that use highly parameterized snow-sea-ice albedo schemes with simple mixed-layer ocean models.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorological stations in the Tibetan Plateau, and the NCEP/NCAR monthly average reanalysis data.Results show that the thawing dates of the Tibetan Plateau gradually become earlier from 1980 to 1999,which is consistent with the trend of global warming in the 20th century. Because differences in the thermal capacity and conductivity between frozen and unfrozen soils are larger, changes in the freezing/thawing process of soil may change the physical properties of the underlying surface, thus affecting exchanges of sensible and latent heat between the ground surface and air. The thermal state change of the plateau ground surface must lead to the thermal anomalies of the atmosphere over and around the plateau, and then further to the anomalies of the general atmospheric circulation. A possible mechanism for the impact of the thawing of the plateau on summer (July) precipitation may be as follows. When the frozen soil thaws early (late) in the plateau, the thermal capacity of the ground surface is large (small), and the thermal conductivity is small (large), therefore, the thermal exchanges between the ground surface and the air are weak (strong). The small (large) ground surface sensible and latent heat fluxes lead to a weak (strong) South Asian high, a weak (strong) West Pacific subtropical high and a little to south (north) of its normal position. Correspondingly, the ascending motion is strengthened (weakened) and precipitationin creases (decreases) in South China, while in the middle and lower reaches of the Changjiang River, the ascending motion and precipitation show the opposite trend.  相似文献   

18.
Fully and accurately studying temperature variations in montane areas are conducive to a better understanding of climate modeling and climate-growth relationships on regional scales. To explore the spatio-temporal changes in air and soil temperatures and their relationship in montane areas, on-site monitoring over 2 years (2015 and 2016) was conducted at nine different elevations from 2040 to 2740 m a.s.l. on Luya Mountain in the semiarid region of China. The results showed that the annual mean of air temperature lapse rate (ATLR) was 0.67 °C/100 m. ATLR varied obviously in different months within a range of 0.57~0.79 °C/100 m. The annual mean of the soil temperature lapse rate (STLR) was 0.48 °C/100 m. Seasonally, monthly mean soil temperature did not show a consistent pattern with regard to elevation. The relationships between air and soil temperatures showed piecewise changes. Soil was decoupled from the air temperature in cold winter and early spring. The parameters of the growing season based on the two temperature types had no corresponding relations, and seasonal mean of soil temperature showed the smallest value at mid-elevation rather than in the treeline ecotone. Based on these changes, our results emphasized that altitudinal and seasonal variability caused by local factors (such as snow cover and soil moisture) should be taken into full consideration in microclimate extrapolation and treeline prediction in montane areas, especially in relation to soil temperature.  相似文献   

19.
青藏高原多年冻土区典型下垫面冻融过程作用分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用青藏高原腹地安多站土壤观测资料,根据10cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,并结合感热通量、积雪深度、相对湿度和降水资料定性的探讨了冻融过程对地气热量、水分交换的影响。结果表明:各层土壤在东亚季风爆发前期由上至下完成融化过程,10月中旬~12月上旬完成冻结过程,融化期普遍长于冻结期。土壤湿度大值区在时间上集中在高原雨季,空间上10cm深度以上为湿度大值区,而且上层土壤的温度梯度要明显大于下层。在融化阶段整层土壤的温度长期保持0℃的等温相变现象,此时,表层土壤温度日变化幅度为全年最大,最高日变幅达22.5℃。安多站地面除12月个别天数和1月上旬是冷源外,全年为地面热源,近地面感热通量从1月开始增大,到6月上旬达到峰值,之后逐渐减小。同时,感热通量的变化对相对湿度、降水和积雪的变化较为敏感。   相似文献   

20.
晁华  徐红  王当  王小桃  朱玲  顾正强 《气象科技》2017,45(1):116-121
利用辽宁省61个气象站1964—2013年的冻土观测资料,采用线性回归、相关性分析、不同气候期对比等方法,结合ArcGIS分析了辽宁省冻土的空间和时间变化特征。结果表明:辽宁省冻土随纬度呈带状分布;土壤冻结具有明显的季节变化特征,冻结期在10月至翌年5月,冬末春初冻结的面积和深度达到最大值;冻结日自北向南逐渐推迟,消融日则相反;在全球变暖背景下,冻土深度随温度的上升而减小;大部分地区年平均气温和地表温度与最大冻土深度呈显著负相关,是影响冻土深度的重要因素;从各气候期100cm等深度线也可以明显看出最大冻土深度呈逐渐减小趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号